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Abstract
Renal gluconeogenesis is one of the major pathways for endogenous glucose 
production. Impairment in this process may contribute to hyperglycemia in cases 
with insulin resistance and diabetes. We reviewed pertinent studies to elucidate 
the role of renal gluconeogenesis regulation in insulin resistance and diabetes. A 
consensus on the suppressive effect of insulin on kidney gluconeogenesis has 
started to build up. Insulin-resistant models exhibit reduced insulin receptor (IR) 
expression and/or post-receptor signaling in their kidney tissue. Reduced IR 
expression or post-receptor signaling can cause impairment in insulin’s action on 
kidneys, which may increase renal gluconeogenesis in the state of insulin 
resistance. It is now established that the kidney contributes up to 20% of all 
glucose production via gluconeogenesis in the post-absorptive phase. However, 
the rate of renal glucose release excessively increases in diabetes. The rise in renal 
glucose release in diabetes may contribute to fasting hyperglycemia and increased 
postprandial glucose levels. Enhanced glucose release by the kidneys and renal 
expression of the gluconeogenic-enzyme in diabetic rodents and humans further 
point towards the significance of renal gluconeogenesis. Overall, the available 
literature suggests that impairment in renal gluconeogenesis in an insulin-
resistant state may contribute to hyperglycemia in type 2 diabetes.

Key Words: Renal gluconeogenesis; Insulin-resistance; Insulin; Insulin receptor signaling; 
Diabetes; Gluconeogenic enzymes
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Core Tip: Recently, investigators have begun elucidating the role of renal gluconeo-
genesis in physiology and pathology. Recent evidence suggests a significant role of the 
kidney in glucose metabolism under pathological conditions, such as insulin resistance 
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and diabetes. This review summarizes the findings from the literature that have 
enhanced our knowledge related to the significance of renal gluconeogenesis in normal 
and pathological states.
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INTRODUCTION
Gluconeogenesis is the process of glucose production by non-carbohydrate carbon 
substrates. During the process, glucose-6-phosphate is produced from precursors, like 
lactate, glycerol, and amino acids, with subsequent hydrolysis by glucose-6-
phosphatase (G6Pase) to glucose. Previously, kidney was not considered to 
significantly contribute to the overall glucose release[1], however, re-evaluation using 
the net balance techniques suggested up to 20% contribution to overall glucose 
production[2]. The rate of renal gluconeogenesis varies in response to physiological 
activities, such as fasting, postprandial, exercise, stress, and pathological stimuli, like 
diabetes and insulin sensitivity[3-5].

The liver, kidney, and intestine are the three tissues that express the key glucon-
eogenic enzymes, including phosphoenolpyruvate carboxykinase (PEPCK), fructose-
1,6-bisphosphatase (FBPase), and G6Pase. G6Pase helps in the final release of glucose 
into the circulation by dephosphorylating glucose-6-phosphate. PEPCK is involved in 
the phosphorylation of oxaloacetic acid and FBPase dephosphorylates fructose-1,6 
bisphosphate to fructose-6-phosphate.The activity of these enzymes is regulated by 
insulin. Besides, insulin also regulates the other rate-limiting step, like the availability 
of gluconeogenesis substrates[6-8]. Renal gluconeogenesis is more sensitive to insulin 
activity than hepatic gluconeogenesis[3]. Impaired insulin action due to inefficient 
receptor expression/signaling may blunt insulin’s suppressive effect on gluconeo-
genesis. It could contribute to hyperglycemia as seen in insulin-resistant and diabetic 
rat models and humans[9-15]. Patients with type-2 diabetes mellitus exhibit an 
increase of about 300% in glucose production[16,17]. Glucose-induced glucose release 
by the kidneys may potentially contribute to postprandial hyperglycemia in diabetic 
patients[3].Renal gluconeogenesis contributes to normal glucose levels in the post-
absorptive state and plays a key role in postprandial hyperglycemia in diabetic 
patients[5].

GLUCOSE PRODUCTION AND UTILIZATION BY THE KIDNEYS
The kidneys’ substantial contribution to systemic glucose levels via gluconeogenesis 
has now been recognized[18-20]. The first evidence of glucose release by the kidneys 
emerged in 1938 when Bergman et al[21] reported doubled glucose utilization in the 
hepatectomized animals along with nephrectomy. Several studies confirmed that renal 
cortex can produce glucose from non-carbohydrate precursors[9,22-25]. The primary 
sources for renal glucose production involve lactate from cellular respiration, 
glutamine from protein, and glycerol from triglyceride breakdown[26]. Other than the 
in vitro studies, incorporating these precursors into glucose by the human kidney has 
also been quantitated[27,28]. Studies using the isotopic approach in human subjects 
suggested lactate to be the most important renal gluconeogenic substrate, followed by 
glutamine and glycerol[3,28,29]. Several studies have suggested kidney's role in 
maintaining glucose homeostasis through gluconeogenesis[18,19,26]. Early human 
studies using a combination of net renal glucose balance and isotopic measurements 
have demonstrated that the kidney releases significant amount of glucose in post-
absorptive state[30]. The kidney was once thought to contribute mainly to whole-body 
glucose production only during acidosis or prolonged starvation[6,18,26]. The role and 
contribution of the glucose production by the kidney in other physiological and 
pathological conditions have emerged[18,31]. The kidney accounts for 10% systemic 
gluconeogenesis in the absorptive phase; the rate rises to as much as 25% in the post-
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absorptive phase[32]. Moreover, in the case of prolonged fasting, the kidney prevents 
and reverses hypoglycemia by a counter-regulatory process of increased gluconeo-
genesis and inhibition of glucose uptake[33]. Besides such adaptive changes, impaired 
renal insulin signaling/sensitivity affects renal gluconeogenesis[15]. Improving renal 
insulin sensitivity may reduce systemic glucose levels via gluconeogenesis inhibition 
[34]. In the postprandial state, the renal glucose release accounts for approximately 
50% of the endogenous glucose release for several hours. These observations 
suggested that increased renal glucose release may play an important role in 
facilitating efficient liver glycogen repletion by permitting substantial suppression of 
hepatic glucose release. Hormones (notably insulin and catecholamines), substrates, 
enzymes, and glucose transporters are some of the other factors which affect glucose 
production by the kidney[31,35-39].

The kidney differentially regulates glucose levels in the medulla and the cortex, 
with glucose utilization in the renal medulla and glucose production in the kidney 
cortex[19]. The separation of these processes is based on the differences in the distri-
bution of various enzymes. The nephrons present in the renal medulla have glucose-
phosphorylating and glycolytic enzymes; thus, they are involved in the 
phosphorylation and accumulation of glycogen. However, these cells lack glucon-
eogenic enzymes, and therefore, cannot synthesize or release free glucose into the 
circulation. On the other hand, renal cortex cells, more precisely the proximal tubule 
cells, possess gluconeogenic enzymes, and can produce and release glucose[26,40]. 
Therefore, the net equilibrium of glucose in the kidney is represented by the difference 
between renal glucose release by the cortex and renal glucose uptake by the medulla 
(Figure 1).

LOCALIZATION AND REGULATION OF KEY GLUCONEOGENIC ENZYMES 
IN THE KIDNEYS
PEPCK, FBPase, G6Pase, and pyruvate carboxylase catalyze the irreversible steps in 
gluconeogenesis. All these key enzymes are exclusively expressed in the S1–S3 
segments of the proximal tubule[41-43]. PEPCK enzymes exist in two isoforms: 
cytosolic and mitochondrial. These enzymes are encoded by the two nuclear genes. 
According to human data, 60% of PEPCK is confined to mitochondria, while 40% to 
cytosol[44]. The cytoplasmic form is regulated at the transcriptional level by 
nutritional and hormonal stimuli, whereas the expression of mitochondrial form 
remains constitutive[45] (Figure 2). These three key enzymes are rate-limiting and, 
under metabolic alterations, PEPCK has been most extensively reported to be 
regulated. For example, in acidotic conditions, the expression and the activity of renal 
PEPCK have been found to be upregulated, while G6Pase and FBPase were marginally 
regulated[15,23,46]. Similarly, under insulin resistance conditions, PEPCK expression 
increased significantly compared to the levels of FBPase and G6Pase[12,15]. Further, 
the PEPCK/PCK1 activity in the kidney and the liver of diabetic patients correlates 
with the levels of PCK1 mRNA, with PEPCK and G6P being regulated at the post-
transcriptional level, while FBP being regulated at the pre-or the post-translational 
level[8,47,48]. PEPCK and G6Pase have been shown to be transcriptionally regulated 
by a complex network of transcription factors and cofactors, including CREB, HNF-4α, 
and FOXO1[49].

RENAL GLUCONEOGENESIS IN THE POST ABSORPTIVE AND 
POSTPRANDIAL  STATE
As discussed in the above sections, kidneys contribute significantly towards the total 
endogenous glucose production in normal physiological conditions, including fasting 
and postprandial states[26,50]. After an overnight fast, 75% of glucose entering the 
circulation is released by the liver, and the remaining 25% is released by the 
kidney[19,32,51].After a prolonged fast of 48 h, liver glycogen stores are depleted, and 
renal gluconeogenesis becomes the major source of glucose that is released into the 
circulation[51,52].Thus, as the duration of fasting increases, the overall proportion of 
glucose released via renal gluconeogenesis increases[53]. A few studies based on 
glucose release and glucose uptake by metabolic tissues suggest that the postprandial 
phase is also important in regulating glucose homeostasis. For example, a 61% 
decrease in overall glucose release via hepatic glycogenolysis was reported previously 
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Figure 1 Schematic overview of renal gluconeogenesis and glycolysis pathway and enzyme localization. The key enzymes of gluconeogenesis 
(1) pyruvate carboxylase; (2) phosphoenolpyruvate carboxykinase; (3) fructose-1,6-biphosphatase; and (4) glucose 6-phosphatase are predominantly localized in the 
renal cortical cells whereas, the glycolytic key enzymes (1) hexokinase; (2) phosphofructokinase; and (3) pyruvate kinase are found in the renal medulla.

in a human study, virtually ceasing in 4 to 6 h[54]. This finding was attributed to the 
need for replenishing the liver glycogen stores and to limit postprandial hypergly-
cemia. Moreover, unlike the liver, renal gluconeogenesis increases by approximately 
two-folds and accounts for 60% of endogenous glucose release in the postprandial 
phase[54]. The tight hormonal regulation helps maintain a homeostasis between the 
renal glucose release and uptake. Postprandial plasma glucose levels are majorly 
regulated by insulin and glucagon levels[32]. In another study, a four-fold increase in 
insulin and up to 50% decrease in plasma glucagon levels were observed after glucose 
ingestion in humans[55,56]. This process of mutual-regulation of glucose homeostasis 
is termed as hepatorenal glucose reciprocity. The term can be defined as a 
physiological or pathological decrease in glucose release by either one of the tissues-
kidney or liver- with a linear increase in glucose release by the other[5]. Such situation 
is encountered during anhepatic phase post-liver transplantation, prolonged fasting, 
acidosis, meal ingestion, and insulin overdoses in diabetes mellitus[5,57,58].

INSULIN-MEDIATED REGULATION OF RENAL GLUCONEOGENESIS 
Insulin has been demonstrated to attenuate enhanced renal gluconeogenesis in rodent 
models of type 1 diabetes[59,60-66]. Insulin is a known suppressor of gluconeogenesis 
in both, liver and kidney; however, kidneys are more sensitive to the suppressive 
effects of insulin[67]. Using the combined isotopic and net balance approach, insulin 
was shown to suppress renal glucose release and stimulated renal glucose uptake by 
75% in conscious dogs[28]. A human study also showed that administration of insulin 
inhibitor increased renal glucose production in type 1 diabetic patients[19]. At 
molecular levels, insulin has been demonstrated to reduce the mRNA expressions of 
PCK1 and G6P[59]. This inhibitory effect is mediated through phosphorylation of 
FOXO1 via the IRS/Pi3k/Akt/FOXO1 pathway[59,68].Insulin inhibits the availability 
of gluconeogenic substrates or redirect the substrates to the oxidative pathways 



Sharma R et al. Renal gluconeogenesis in metabolic syndrome

WJD https://www.wjgnet.com 560 May 15, 2021 Volume 12 Issue 5

Figure 2 Gluconeogenesis Pathway and cellular compartmentalization of the gluconeogenic enzymes. Pyruvate from lactate enters mitochondria 
by mitochondrial pyruvate transporter. Pyruvate provided by alanine transamination or lactate dehydrogenation is converted to oxaloacetate (OAA) by mitochondrial 
pyruvate carboxylase. OAA is either reduced to malate and exported out in the cytoplasm by malate ketoglutarate transporter or directly converted to 
phosphoenolpyruvate (PEP) by phosphoenolpyruvate carboxykinase (PCK) 2 (mitochondrial isoform) and exported out in the cytoplasm. In the cytoplasm, malate is 
first oxidized to OAA and then converted to PEP by PCK1 (cytoplasmic isoform). Fructose-1,6-bisphosphate (FBP) is then converted to fructose-6-phosphate by 
cytoplasmic FBP1. Glucose-6-phosphatase in the cytoplasm ultimately dephosphorylates glucose-6-phosphate to release glucose. G6Pase: Glucose-6-phosphatase; 
LDH: Lactate dehydrogenase; MPC: Mitochondrial pyruvate carrier; ALT: Alanine aminotransferase; FBP: Fructose-1,6-bisphosphate; OAA: Oxaloacetate; PCK: 
Phosphoenolpyruvate carboxykinase; PEP: Phosphoenolpyruvate; mMDH: Malate dehydrogenase; cAMP: Cyclic adenosine monophosphate.

[6,26,28]. Moreover, it indirectly affects glucose release via reduction of free fatty acid 
uptake[6,69,70]. A few reports have documented an inhibitory effect of insulin on 
renal gluconeogenesis through the substrates glycerol and glutamine in the post-
absorptive state in humans[6,28]. However, regulation of renal gluconeogenesis by 
insulin, glucagon, and epinephrine is not widely studied in humans[6,71,72].

In the liver, the role of insulin or insulin receptor (IR) signaling in transcriptional 
regulation of gluconeogenic genes, that is, PCK1 and G6PC, is well known[73,74]. 
However, only a handful of studies have investigated the role of insulin via IR 
signaling in renal gluconeogenesis regulation. DeFronzoet al[75] reported the 
inhibitory effect of insulin on renal gluconeogenesis. Previously, we demonstrated 
high blood glucose and renal gluconeogenic-enzyme upregulation in mice with 
targeted deletion of IRs from the proximal tubule[13,59]. These IR knock-out (IRKO) 
mice exhibited normal insulin sensitivity, throughout their bodies. Additionally, 
increased activity and elevated mRNA expression of G6Pase observed in the IRKO 
mice indicates the role of the IR in regulating renal gluconeogenesis. In another study, 
reduced IR expression with a concomitant increase in PEPCK levels were reported in 
the kidney cortex of mice with high-fat-induced insulin resistance[76].In addition, in 
vitro studies in primary human proximal tubule (PT)cells also revealed insulin’s 
inhibitory action on cAMP/DEXA-induced gluconeogenesis, while silencing of the IR 
attenuated this inhibitory effect[65] (Figure 3). Further down the signaling mechanism, 
Nakamura et al[77] demonstrated that, unlike the liver, insulin-induced inhibition of 
proximal tubule gluconeogenesis inhibition might be mediated via the IRS1/ 
Akt2/mTORC1/2 pathway. In another study, IRS2 (IRS2–/–) knockdown has been 
shown to result in elevated blood glucose levels in mice[78].However, the post-
receptor signaling mechanism for insulin-induced inhibition of renal gluconeogenesis 
is not yet clear. Nevertheless, these studies indicate the significance of IR signaling in 
renal gluconeogenesis and suggest that defect in IR signaling to the kidneys may 
contribute to hyperglycemia in insulin resistance state[9-13,79].
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Figure 3 siRNA mediated knockdown of insulin receptor in the human proximal tubule cells increased glucose production via 
gluconeogenesis stimulation.A: Western blot showing reduced insulin receptor insulin receptor (IR) expression in IR-siRNA treated human proximal tubule 
(hPT) cells relative to scrambled; B:cAMP/Dexa induced gluconeogenesis/glucose production in the hPT cell culture media; and C: Relative phosphoenolpyruvate 
carboxykinase mRNA transcript levels in scrambled and IR-siRNA treated hPT cells with or without insulin treatment. “Citation: Pandey G, Shankar K, Makhija E, 
Gaikwad A, Ecelbarger C, Mandhani A, Srivastava A, Tiwari S. Reduced Insulin Receptor Expression Enhances Proximal Tubule Gluconeogenesis. J Cell Biochem 
2017; 118: 276-285 [PMID: 27322100 DOI: 10.1002/jcb.25632] Copyright © The Author(s) 2017. Published by John/Wiley & Sons, Inc[65]”

RENAL GLUCONEOGENESIS IN CASES OF INSULIN RESISTANCE AND 
DIABETES
Insulin resistance refers to inefficient sensitivity of primary metabolic tissues towards 
insulin and is characterized by a reduced insulin action despite hyperinsulinemia 
[80-82]. Like the other metabolic tissues, kidneys also lose their insulin sensitivity 
during insulin resistance[14,61,83].The mechanism of insulin resistance is different 
among different organs and even cells of the same organ. For example, in case of 
insulin resistance, IRS2 signaling is impaired in liver too. However, in the renal 
proximal tubules, insulin signaling via IRS1 is impaired; however, the signaling via 
IRS2 is preserved[84-87].

Insulin resistance has frequently been associated with renal abnormalities, such as 
impaired glucose metabolism[12,79,88]. These studies suggest that impairment of the 
expression or post-receptor signaling of the IR can enhance renal gluconeogenesis in 
the diabetic patients. A wide distribution of IR throughout the nephron segments and 
their reduced expression in renal epithelial cells in insulin resistance models have been 
reported[14].We and others have demonstrated reduced expression of IR and its 
phosphorylated form in the kidney cortex of diabetic rodents and humans 
[14,61,65,89]. In a previous study, newly diagnosed cases of type-2 diabetes were 
reported to exhibit impaired insulin-induced suppression of gluconeogenesis 
[9,11,79]. Our recent study also suggested impairment in meal-induced inhibition of 
renal PEPCK in individuals with reduced insulin sensitivity[15].Thus, insulin 
resistance might be responsible for high levels of gluconeogenic enzymes found in 
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renal biopsies from T2D human and rodent models[61,65,90].
Nevertheless, impaired IR signaling to the kidneys also affects kidneys’ vital 

functions, including the endogenous glucose production by the kidneys[13,91-93]. We 
previously reported altered systemic glucose metabolism in IRKO mice, which further 
strengthens this proposition[13].Thus, similar to the liver, insulin resistance could 
impair renal gluconeogenesis in diabetes patients[14,61]. Previous studies on diabetic 
animal models have reported increased renal gluconeogenic enzyme activity and 
glucose release[48,94-98]. In 1999, Meyer reported significantly higher systemic 
glucose levels in diabetic patients compared to normal subjects, of which 40% of 
glucose content was contributed by renal glucose release[16]. Another in vitro study 
conducted by Eid et al[12], for the very first time, reported increased gluconeogenesis 
in the proximal tubules of obese Zucker rats. Another in vivo study reported an 
intrinsic increase in renal gluconeogenesis and increased PEPCK mRNA levels in type 
2 diabetic model[12,61,83,99].The other key enzymes, FBPase and G6Pase, were, 
however, marginally regulated[12] (Figure 4). Moreover, recent rodent model studies 
conducted by us and others also indicated the significant role of renal gluconeogenesis 
in fasting hyperglycemia[13,15,59,65]. Furthermore, increased renal gluconeogenesis 
contributed to increased level of fasting glucose in T2DM patients and raised 
postprandial glucose. Furthermore, many human studies also reported an increase in 
the release of glucose by the kidney in the fasting state in T2DM patients[100-104], 
which might be attributed to gluconeogenesis[105].Additionally, abnormal postpran-
dial glucose metabolism has also been reported in T2DM patients[16]. In this study, 
dual-isotope and net balance measurement across kidney, liver, and skeletal muscles 
revealed an impaired suppression of gluconeogenesis by kidney and liver, leading to 
increased levels of postprandial glucose. The other possible reasons for this 
postprandial increase in glucose levels in type 2 diabetic condition include persistently 
increased glucose levels in the post-absorptive state[106],high levels of free fatty acids, 
and increased substrate availability[54,61,105,107,108].

CLINICAL MANAGEMENT 
Insulin resistance is a known risk factor for developing pre-diabetes, and eventually, 
type-2 diabetes. Insulin resistance at the kidney level could further contribute to 
hyperglycemia by enhancing renal gluconeogenesis. Thus, improving insulin 
sensitivity via lifestyle modifications, such as dieting and physical activity, could be a 
preventive strategy for pre-diabetes and improving glycemic levels in diabetes 
patients. Two classes of drugs, biguanides and thiazolidinediones, are available 
commercially for improving insulin sensitivity. In clinical practice, both these agents 
are in common use for glucose-lowering in patients with type-2 diabetes[26,109,110]. 
By enhancing renal insulin sensitivity, these agents exhibit great potential in 
regulation of renal function in T2DM patients[111,112]. Apart from the known insulin 
sensitizers, SGLT2 inhibitors are emerging as another promising anti-hyperglycemic 
agent. They induce glucosuria by inhibiting glucose reabsorption in the renal proximal 
tubules[113]. Inhibition of renal glucose reabsorption and induction of glucosuria by 
these agents are considered to be effective and safe in patients with T2DM. Moreover, 
their insulin-independent action lowers hypoglycemia risk commonly associated with 
other anti-diabetic drugs[26].

Interestingly, SGLT2 inhibitors have been postulated to act by modulating insulin 
sensitivity and/or renoprotective actions in T2DM patients[114]. Dapagliflozin, an 
SGLT2 inhibitor, has been shown to improve renal function and renal insulin signaling 
in an animal model of diet-induced obesity[115]. Dapagliflozin, either as monotherapy 
or add-on therapy to insulin or metformin, was found to reduce glucose and HbA1c 
levels in T2DM in clinical trials[116]. Also, dapagliflozin or empagliflozin, along with 
insulin therapy, imparts clinical benefits in patients with type-1 diabetes[117,118]. 
However, more studies are warranted to confirm their therapeutic potential as an 
adjunct therapy.

CONCLUSION
Renal gluconeogenesis plays a key role in normal physiology, where its impairment 
contributes adversely with pathological implications. Overall, this review suggested 
enhancement or insulin-mediated impairment of renal gluconeogenesis in cases of 
insulin resistance. Such impairment may further contribute to hyperglycemia in type-2 
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Figure 4 mRNA and protein levels of glucose-6-phosphatase, phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase in 
diabetic rats and their non-diabetic controls. “Citation: Eid A, Bodin S, Ferrier B, Delage H, Boghossian M, Martin M, Baverel G, Conjard A. Intrinsic 
gluconeogenesis is enhanced in renal proximal tubules of Zucker diabetic fatty rats. J Am SocNephrol 2006; 17: 398-405 [PMID: 16396963 DOI: 
10.1681/asn.2005070742] Copyright © The Author(s) 2006. Published by the American Society of Nephrology Inc[12]”

diabetes. However, more research is warranted in this area to further elucidate the 
associated mechanism.
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