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Abstract
The Wnt/β-catenin signaling pathway is instrumental in 
successful differentiation and proliferation of mammalian 
cells. It is therefore not surprising that the herpesvirus 

family has developed mechanisms to interact with 
and manipulate this pathway. Successful coexistence 
with the host requires that herpesviruses establish 
a lifelong infection that includes periods of latency 
and reactivation or persistence. Many herpesviruses 
establish latency in progenitor cells and viral reactivation 
is linked to host-cell proliferation and differentiation 
status. Importantly, Wnt/β-catenin is tightly connected 
to stem/progenitor cell maintenance and differentiation. 
Numerous studies have linked Wnt/β-catenin signaling 
to a variety of cancers, emphasizing the importance 
of Wnt/β-catenin pathways in development, tissue 
homeostasis and disease. This review details how the 
alpha-, beta-, and gammaherpesviruses interact and 
manipulate the Wnt/β-catenin pathway to promote a 
virus-centric agenda.
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Core tip: The Wnt/β-catenin signaling pathway is 
essential for many host cell functions. Herpesviruses 
have evolved to manipulate and control this vital 
pathway to promote viral propagation, evade host 
immune recognition and maintain latency.
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INTRODUCTION
Herpesviruses have been coevolving with vertebrates 
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for millions of years and have developed multiple 
mechanisms to avoid immune recognition and manipu­
late host signaling pathways to promote efficient 
viral replication. This is evident in the ability of herpes­
viruses to persist for the lifetime of the host while 
causing limited adverse effects[1]. In general, severe 
symptoms are only seen in those individuals who 
are immunocompromised[2]. Accumulating evidence 
suggests that herpesviruses interact with the Wnt/
β-catenin pathway to regulate viral gene expression 
and alter host cell gene expression by manipulating 
downstream signaling components during both active 
infection and latency. 

The Wnt/β-catenin pathway is responsible for a 
signaling cascade that is required during embryonic 
development and continues throughout the life of an 
organism. Nearly every tissue and organ depends on 
this signaling cascade for normal function. Correct 
Wnt/β-catenin signaling is crucial in the development 
of many organs including the brain, heart, lung, bone, 
liver, kidney and gut among others[3,4]. Many of these 
essential roles continue in adulthood in relation to tissue 
homeostasis, regeneration, maintenance and repair 
functions. Additionally, Wnt/β-catenin has been shown 
to be important in cell migration, genetic stability and 
apoptosis[5-8]. With such widespread influence on many 
diverse signaling cascades, dysfunctional Wnt/β-catenin 
signaling can have deleterious effects. Unregulated 
Wnt/β-catenin signaling was first linked to human 
disease in the 1990s when adenomatous polyposis coli 
(APC) protein was found to interact with β-catenin[9,10]. 
Since then, Wnt/β-catenin signaling has been impli­
cated in many cancers[11-15], fibrosis[16,17], and metabolic 
disease[18]. 

Although conclusive data on the importance of 
Wnt/β-catenin signaling during the complete replication 
cycle of all herpesvirus members are lacking, accumulat­
ing data are beginning to reveal the importance of this 
pathway to viral replication, latency and pathogenesis. 
The potential to target the Wnt/β-catenin pathway for 
therapeutic intervention is enormous but is compound­
ed by the complexity of the signaling cascade, the 
number of potential players involved during signaling 
activation and its importance to cellular homeostasis. 
Understanding how herpesviruses manipulate this 
pathway has increased our knowledge of this important 
pathway and may ultimately lead to novel antiviral 
therapies. 

THE WNT/b-CATENIN SIGNALING 
CASCADE
Wnts are lipid-modified glycoprotein ligands that act in 
an autocrine or paracrine manner. Wnt signaling can be 
divided into three main signaling cascades: Canonical 
Wnt and two β-catenin-independent pathways, the 
non-canonical planar cell pathway[19] and the non-
canonical Wnt/calcium pathway[20,21]. This review will 

focus on the canonical Wnt pathway but crosstalk of 
the three signaling cascades has been reported and is 
therefore unavoidable. Briefly, in the absence of Wnt 
stimulation, cytoplasmic β-catenin is phosphorylated 
and degraded by the ubiquitin-proteasome system 
(Figure 1). Upon binding of Wnt, phosphorylation of 
β-catenin is blocked allowing it to translocate to the 
nucleus where it complexes with transcription factors 
to upregulate Wnt target gene transcription (Figure 
1). Canonical Wnt signaling is initiated when Wnts 
bind to a heterodimeric transmembrane receptor 
complex consisting of Frizzled (Fz) receptor and the 
co-receptors low-density lipoprotein receptor-related 
protein 5 (LRP5) and LRP6. The ligand interaction 
induces conformational changes and subsequent 
phosphorylation of target proteins. This results in 
recruitment and signaling through the scaffold protein 
Dishevelled promoting the inhibition of the destruction 
complex, which contains Axin, APC, β-catenin, casein 
kinase Iα/β (CKI Iα/β), and glycogen synthase kinase-
3α/β (GSK-3α/β). APC directly interacts with β-catenin 
and Axin. Axin binds to the cytoplasmic tail of LRP6 
and this complex is regulated through phosphorylation 
by GSK-3 and CK1. When the destruction complex 
is intact, Axin associated β-catenin is phosphorylated 
by CKI and GSK-3β at N-terminal Ser/Thr residues. 
Phosphorylated β-catenin is then recognized by the 
E3 ubiquitin ligase complex β-TrCP (Beta-Transducin 
Repeat Containing E3 Ubiquitin Protein Ligase) and 
targeted for degradation by the proteasome. In 
the presence of Wnt ligand, signaling results in the 
dissociation of the destruction complex and loss of 
GSK-3 mediated phosphorylation of β-catenin. Axin is 
recruited to the phosphorylated tail of LRP preventing 
β-catenin phosphorylation and ubiquitination. As a 
result, β-catenin is free to accumulate and translocate 
to the nucleus where it interacts with members of the 
T cell factor/lymphoid enhancer-binding factor (TCF/
LEF) family of transcription factors and transcriptional 
coactivators such as CREB-binding protein (CBP), E1A-
associated protein p300, and Pygopus to initiate Wnt 
target gene expression[22]. β-catenin can also interact 
with many other transcription factors not linked to the 
TCF/LEF family but that do play important roles in cell 
maintenance and differentiation[23-25]. For more in depth 
reviews on Wnt/β-catenin signaling, the reader is referred 
to many of the excellent reviews available[23,26-29]. 

HERPESVIRUSES
The taxonomic order Herpesvirales includes over 
130 herpesviruses divided into three virus families: 
Herpesviridae that can infect mammals, birds and 
reptiles; Alloherpesviridae that infect amphibians 
and bony fish; and Malacoherpesviridae that infects 
some invertebrates, including molluscs[30-32]. These 
classifications are based on genome size/structure 
and biological function. Herpesviridae is a family of 
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enveloped, DNA viruses that is further divided into 3 
subfamilies (Alphaherpesvirinae, Betaherpesvirinae and 
Gammaherpesvirinae). A criterion for inclusion in the 
Herpesviridae family morphologically is centered on 
the virion structure[33]. The virion is spherical in shape 
and includes a core, capsid, tegument and envelope. 
The core contains the viral genome, which is a linear, 
double-stranded DNA molecule. The core is surrounded 
by an icosahedral capsid that is enclosed within a 
proteinaceous layer called the tegument. Finally, a lipid 
bilayer envelope surrounds the exterior of the tegument 
and completes the structure of the virion. 

Humans can be infected by eight different herpe­
sviruses. Herpesvirus infections are typically systemic, 
although some may be localized. Gene expression 
is tightly regulated and orchestrated in a temporal 
manner. Simplistically, immediate-early genes encod­
ing regulatory proteins are expressed soon after 
infection, followed by expression of early genes that 
are important for replication of viral DNA. Finally, late 
genes encoding structural proteins are expressed. 
Due to various host immune evasion strategies, her­
pesviruses establish life-long latent infections in infected 
individuals. In an oversimplified model in regards to 
human infection, Alphaherpesvirinae establish latency 
in neurons, Betaherpesvirinae in monocytes and 
Gammaherpesvirinae in lymphocytes, monocytes, and 
macrophages[1,32,34].

HUMAN ALPHAHERPESVIRUSES
The subfamily Alphaherpesvirinae includes three 
members. The human herpesviruses 1 and 2 (HHV-1/2) 
also known as herpes simplex virus (HSV) (type 1/2) 

belong in the genus Simplexvirus while HHV-3 or Vari­
cella-zoster virus (VZV) is classified in the genus 
Varicellovirus[32,33]. Infection can result in skin vesicles 
or mucosal ulcers and on rare occasions meningitis and 
encephalitis[2]. 

HHV-1 (HSV-1)
To date there have been no focused, thorough investi­
gations of the role of Wnt/β-catenin on HSV-1/2. The 
studies that have been completed implicate individual 
members of the Wnt/β-catenin signaling cascade in viral 
pathogenesis. An example of this is the upregulation of 
the antiviral cytokine interferon-β (IFN-β) during HSV-1 
infection. In adult immunocompetent mice, macrophages 
are essential for clearing HSV-1 from the blood; how­
ever, it was observed that macrophages from Akt-/- mice 
display poor clearance of HSV-1. The Akt1 family of 
serine/threonine kinases was shown to phosphorylate 
β-catenin at serine 552 allowing accumulation and 
β-catenin mediated induction of IFN-β[35]. Akt1 classically 
has been described as a β-catenin transcriptional pro­
moter, exerting its effects by repressing GSK-3 mediated 
β-catenin proteasomal degradation[36]. Interestingly, the 
serine 552-phosphorylation site is distinct from the site 
typically targeted by GSK-3. The authors conclude that 
Akt1 is responsible for inhibiting GSK-3 phosphorylation 
of β-catenin on Ser9 and also for direct phosphorylation 
of β-catenin at serine 552 allowing for stabilization, 
enhanced nuclear translocation and transcriptional 
activity of β-catenin (Figure 2). 

In a second study, Choi et al[37] observed that 
HSV-1 infection and replication was more efficient in a 
fibroblast-like murine cell line, L929. Knocking down Axin 
or treatment with Wnt3a conditioned media reduces 
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HSV-1 replication in L929 cells. They further showed that 
Axin expression minimalizes HSV-1 induced cell death, 
which in turn promotes increased HSV-1 replication. In a 
follow up study, this group observed that HSV-1 infection 
also induced autophagy but this is delayed in L929 cells 
ectopically expressing L-Axin[38]. The authors concluded 
that delay in induction of autophagy favors HSV-1 viral 
replication likely by suppression of HSV-1 mediated 
cell death. The implication is that HSV-1 replication is 
inversely related to Wnt signaling.

Lastly, Piacentini et al[39] demonstrated that HSV-1 
infection disrupts synaptic function in cultured murine 
cortical neurons through GSK-3 activation and intracel­
lular accumulation of amyloid-β protein. In a previous 
study this group showed that HSV-1 mediated increases 
in intracellular Ca2+ is the main mechanism for activa­
tion of GSK-3 in this model[39]. These studies suggest a 
possible link between HSV-1 pathogenesis and Alzhei­
mer’s disease.

To date, the involvement of Wnt/β-catenin signaling 
during VZV infection has been underinvestigated. Markus 
et al[40] observed an increase in canonical Wnt pathway 
transcription in infection of neurons derived from human 
embryonic stem cells. The Wnt pathway was unaffected 
during late VZV infection of fibroblasts. Intriguingly, 
like HSV-1 and -2, VZV will enter latency in neurons 
but will lytically replicate in fibroblasts suggesting a 
differing need for Wnt pathway modification by the 
virus in different stages of the viral life cycle[40]. Given 
the limited studies on Wnt/β-catenin signaling during 

alphaherpesvirus infections, how vital Wnt/β-catenin 
signaling is to viral replication and pathogenesis remains 
unknown. The studies mentioned above seem to portray 
a conflicting role of β-catenin in viral replication. More 
thorough studies using defined cell types and carefully 
delineated “branches” of the Wnt pathway will provide a 
clearer understanding.

HUMAN BETAHERPESVIRUS
The human Betaherpesvirinae subfamily consists of the 
three viruses: HHV-5 known as human cytomegalovirus 
(HCMV), HHV-6A/B, and HHV-7 (the latter two are 
commonly referred to as Roseolovirus)[32,33]. Infection 
is usually asymptomatic but infectious mononucleosis 
like symptoms are seen in HCMV infections and the 
development of a rash is associated with Roseolovirus. 
In immunocompromised individuals (organ transplant 
patients, HIV positive individuals, etc.) or during 
pregnancy, infection and/or reactivation of β-herpesvirus 
can have life-threatening consequences. Of these three 
viruses, HCMV is the most studied and is considered 
the prototypical betaherpesvirus. As little is known 
about Wnt/β-catenin regulation during infection by the 
polyphyletic Roseolovirus group, this portion of the 
review will focus exclusively on HCMV. 

HHV-5 (HCMV)
The Wnt/β-catenin pathway is one of the many cellular 
pathways manipulated by HCMV to likely facilitate lytic 
viral replication. By dysregulating the physiological 
condition of the Wnt/β-catenin pathway, HCMV inhibits 
or severely hampers the processes of cellular repli­
cation, movement/migration, and differentiation among 
others[41,42]. 

HCMV infection of the placenta may cause impaired 
invasion of placental-derived cells toward maternal spiral 
arteries leading to shallow placentation and a deficit in 
oxygen/nutrient flow to the developing fetus[43]. The Wnt/
β-catenin pathway is important in the differentiation of 
placental cytotrophoblasts into extravillous trophoblasts, 
the invasive lineage of cells that remodel maternal spiral 
arteries to establish blood flow to the placenta[44-46]. 
Using an in vitro model of first trimester cytotrophoblasts 
(SGHPL-4) infected with HCMV, Angelova et al[41] 
demonstrated that β-catenin protein levels decrease 
significantly during the late stages of infection roughly 
corresponding to expression of late proteins and 
packaging of nucleocapsids into an envelope to produce 
mature virions. This decrease in β-catenin protein is 
dependent on proteasomal degradation and occurs in 
all cellular pools including membrane, cytoplasm and 
nucleus. Remaining β-catenin, aggregates near the 
viral assembly compartment, a juxtanuclear region 
present during infection involved in virion assembly 
and egress; however, the reasons for this are currently 
unclear. Transcriptional targets of β-catenin, such as 
Dickkopf-related protein 1 (Dkk1) and Cyclin D, also 
exhibit transcriptional repression as a result. However, 
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β-catenin mRNA levels actually increase in the same 
timeframe[41]. Consistent with these results, Ueland 
et al[47] showed that plasma levels of DKK-1 were 
significantly lower in solid organ transplant patients 
with HCMV DNAemia. In contrast, Langemeijer et al[48] 
reported that HCMV infection increases transcriptional 
activation of β-catenin in a glioblastoma cell line that is 
dependent on expression of the virally encoded G-protein 
coupled receptor, US28. These different results may be 
explained by the use of different cell types and methods 
to detect β-catenin activity.

The mechanism by which HCMV depletes membrane 
stores of β-catenin is currently unknown although infection 
extensively remodels cellular membranes[49]. As for 
cytoplasmic and nuclear stores of β-catenin, HCMV exerts 
control at the level of the β-catenin destruction complex 
as disruption of this complex with lithium chloride (LiCl), 
a GSK-3β inhibitor can inhibit the degradation and 
depletion of β-catenin during infection. It should be noted 
that inhibition of β-catenin degradation does not rescue 
transcriptional function of β-catenin[41]. This may be 
due to further regulation of transcriptional activity of 
β-catenin, for example through regulation of β-catenin 
coactivators like TCF/LEF-1, by the virus or due to 
undetected post-translational modification of β-catenin. 
Viral regulation of the destruction complex appears to 
be mostly mediated at Axin1, the rate-limiting protein 
in the β-catenin destruction complex in the cytoplasm. 
PolyADP Ribose Polymerase 5a and 5b (PARP5a/b), also 
called Tankyrase (TNKS as a combination of isoforms 
1 and 2), PARsylates Axin1 leading to degradation 
through the ubiquitin proteasome pathway. During 
HCMV infection, TNKS PARsylation activity is inhibited 
allowing for stabilization of Axin1 and stabilization 
of the β-catenin destruction complex leading to the 
degradation of β-catenin seen during infection (Figure 
3)[50]. This suggests that HCMV requires a complete 
and competent β-catenin destruction complex for 
degradation of β-catenin. 

The non-canonical pathways of Wnt signaling, 
although lacking direct β-catenin regulation, seem to 
play a role in regulation of the canonical Wnt/β-catenin 
pathway during HCMV infection. Wnt5a interacts with the 
tyrosine-like orphan kinase 2 ROR2 and physiologically 
activates the Wnt/Planar Cell Polarity pathway and Wnt/
Ca2+ pathway[42]. During HCMV infection, infected cells 
become insensitive to normal Wnt5a ligand signaling but 
ROR2 expression is significantly increased. Uninfected 
trophoblasts invade toward a Wnt5a gradient in vitro 
but are incapable of doing so when infected despite the 
increased presence of ROR2. The increase in ROR2 
expression inhibits canonical signaling by repressing 
β-catenin TCF/LEF-1 transcriptional activity. Knockdown 
of non-canonical ROR2 that is overexpressed during 
infection can rescue some function of the canonical 
Wnt/β-catenin pathway in trophoblasts suggesting that 
the canonical and non-canonical Wnt pathways are 
deeply intertwined, especially during HCMV infection[42]. 

Targeting of Wnt/β-catenin signaling with select 

pharmacological inhibitors can inhibit viral replication 
suggesting that some level of β-catenin or a member of 
the canonical Wnt pathway may be necessary for viral 
replication[51]. Why HCMV infection overrides normal 
Wnt/β-catenin signaling is unknown, but some research 
indicates involvement of repurposing the molecular 
members of the pathway to further HCMV replication. 
Activity of GSK-3 has been implicated in assembly of the 
viral nucleocapsid in simian CMV (infecting Chimpanzees 
and Orangutans). Phosphorylation of the viral assembly 
protein precursor (pAP) by GSK-3 may induce con­
formational changes in the protein and stabilize pAP 
interaction with the major capsid protein during capsid 
assembly[52]. Additionally GSK-3 (along with other 
members of the β-catenin destruction complex) has 
been identified as a target for phosphorylation by the 
viral kinase UL97[53]. However, inhibition of UL97 activity 
during infection does not seem to rescue β-catenin 
degradation suggesting that UL97 phosphorylation of 
GSK-3 is not the primary mechanism by which HCMV 
depletes β-catenin stores (our unpublished data). 
Further research must be conducted to determine the 
importance of molecular mechanisms of Wnt/β-catenin 
on viral replication itself. 

HCMV infection has recently been associated 
with a diverse array of diseases and disorders such 
as diabetes[54], atherosclerosis[55], and some cancers 
(reviewed in[56,57]), along with the abovementioned 
issues with infection during pregnancy on the placenta 
and developing fetus. As data show that HCMV infection 
undermines normal functioning of canonical Wnt/
β-catenin and non-canonical Wnt signaling in diverse 
ways, differing perhaps by infection of a multitude of 
diverse cell types, it becomes key to better characterize 
this viral regulation. 

HUMAN GAMMAHERPESVIRUSES
The human Gammaherpesvirinae family includes two 
members: Human herpesvirus 4 (HHV-4) commonly 
known as Epstein-Barr virus (EBV) and HHV-8 or Kaposi’s 
sarcoma-associated herpesvirus (KSHV)[32,33]. They are 
further classified under the genera Lymphocryptovirus 
and Rhadinovirus, respectively. EBV was one of the 
first viruses to be associated with human cancer when 
it was originally identified in Burkitt’s lymphoma. Since 
then, it has become associated with B cell malignancies 
and epithelial cell associated cancers. KSHV was dis­
covered in 1994 when samples from AIDS-associated 
Kaposi’s sarcoma came back positive for viral DNA 
sequences[58]. Diseases associated with KSHV include 
B cell malignancy primary effusion lymphoma (PEL), 
Castleman’s disease and the endothelial lesion, Kaposi’s 
sarcoma.

HHV-4 (EBV)
The accumulation of β-catenin is seen in EBV-infected 
epithelial and B cells. In the earliest report, Shackelford 
et al[59] reported that β-catenin was not degraded in 
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lymphoid cells during an EBV type III latent infection. 
The authors postulate that these observations may 
be due to ubiquitinating enzymes or the dysregulation 
of other oncogenes. Interestingly, this effect was 
not observed during EBV type I latency infection[59]. 
Shortly after, a second group showed that telomerase-
immortalized human foreskin keratinocytes have 
increased β-catenin accumulation after infection with 
EBV[60]. The mechanism was shown to be dependent on 
latent membrane protein 2A (LMP2A) activation of Akt 
and Akt-mediated inactivation of GSK-3, independent 
of phosphorylation at Ser9. Treatment with LiCl led to 
β-catenin accumulation in the cytoplasm, translocation 
into the nucleus and activation of a TCF-responsive 
reporter. In a follow-up study, the immunoreceptor 
tyrosine-based activation and PY motifs of LMP2A 
were found to mediate the accumulation and nuclear 
translocation of β-catenin[61]. Using LMP2A ΔPY mutants, 
they showed that β-catenin levels and translocation 
to the nucleus decreased along with epithelial cell 
differentiation. The authors concluded that LMP2A 
mediated epithelial cell differentiation appears to be 
inversely correlated with β-catenin activation in this 
model. 

EBV latent membrane protein 1 (LMP1) has also 
been associated with an increase in β-catenin levels in 
EBV-infected BL cells[62]. Jang et al[63] reported that an 
E3 ubiquitin ligase, a human homolog of Drosophilia 
seven in absentia (Siah-1), is repressed by LMP1. 
Siah-1 binds APC and in a GSK-3 independent manner, 
degrades β-catenin. However, another study using 
transient and stable expression of LMP1 sequences 
failed to find evidence that LMP1 induces Wnt/β-catenin 
signaling or promotes the accumulation of β-catenin[64]. 
To further verify their observations, they proceeded 

to show that there was little evidence for interactions 
between LMP1 and β-catenin. The authors proposed 
that differences in cell lines and LMP1 sequences used 
may account for the conflicting results in these two 
studies.

Lastly, EBV-mediated dysregulation of Wnt/β-catenin 
was associated with idiopathic pulmonary fibrosis (IPF)[65]. 
EBV detection in alveolar epithelial cells has been 
associated with poor prognosis. Pathogenesis is believed 
to occur in IPF due to repetitive epithelial cell injury that 
may be mediated by EBV. Using transcriptomic data, 
the authors identified altered Wnt/β-catenin pathway 
transcripts. Specifically, Wnt5b expression was altered. 
The authors conclude that EBV may be using a non-
canonical Wnt/β-catenin pathway that includes CUX1 and 
the EBV early gene Rta.

HHV-8 (KSHV)
Fujimuro et al[66] first observed the association between 
Wnt/β-catenin and KSHV in 2003. They made the 
observation that in latently KSHV-infected B cell lines 
derived from PEL, β-catenin accumulated at high levels 
in the cytoplasm. KSHV infection of PEL cells results in 
a high KSHV latency rate suggesting that the increased 
levels of β-catenin may be linked to expression of KSHV 
latency associated proteins. The latency-associated 
nuclear antigen (LANA) protein proved to be the protein 
responsible, as siRNA transient knockdown specific to 
LANA, decreased levels of LANA and β-catenin[67]. LANA 
was originally shown to be involved in the tethering of 
KSHV episomal genomes to host chromosomes to aid 
in viral DNA replication[68,69]. Using a yeast-two hybrid 
system, paired with coimmunoprecipitation assays, 
LANA was also found to possess the ability to bind to 
GSK-3α and GSK-3β[67]. 
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In addition to mediating the phosphorylation of 
β-catenin as part of the destruction complex in the 
cytoplasm, GSK-3 also translocates to the nucleus 
during apoptotic stimuli in a cell cycle-dependent 
manner. Nuclear levels of GSK-3 protein increase in 
the nucleus of PEL cells specifically during the S phase 
of the cell cycle[66]. This results in lower GSK-3 within 
the destruction complex and more unphosphoryated 
β-catenin that translocates to the nucleus and activates 
target gene expression (Figure 4). The authors proposed 
that LANA promotes the accumulation of GSK-3 in the 
nucleus, reducing the total amount of GSK-3 in the 
cytoplasm. 

Further studies revealed that the C-terminal region 
of LANA displayed limited homology to the domain of 
Axin that binds GSK-3β and is functionally similar to 
Axin[67]. LANA protein mutants were used to study the 
binding potential between LANA and GSK-3β[70]. These 
studies showed that changing Phe291 in the coding 
sequence of LANA to Leu (F291L mutant), leads to a 
reduction in binding to GSK-3 by 90%. The interaction 
of the various components of the destruction complex 
is mediated by phosphorylation, which also mediates 
the interaction of LANA and GSK-3. GSK-3 and LANA 
interactions require the LANA C-terminal GSK-3 intera­
cting domain and GSK-3 phosphorylation of the LANA 
N-terminus. Within this region are four consensus GSK-3 
phosphorylation sites [(Ser/Thr)xxx(Ser/Thr)p]. Mutation 
of the four consensus sites prevented GSK-3 binding to 
LANA, suggesting that this is a phosphorylation mediated 

event[70]. Additionally, as GSK-3 substrates typically 
must be primed prior to phosphorylation by GSK-3, 
a mutant (R96A) was used to determine if GSK-3 
phosphorylation of LANA could proceed without priming. 
Results showed that, under in vitro conditions, GSK-3 
phosphorylation of LANA requires priming kinases. 
The reader is referred to two comprehensive reviews 
detailing the manipulation of GSK-3 by KSHV[71,72]. 

Additional studies revealed that CKI and mitogen-
activated protein kinase could each function as priming 
kinases for GSK-3 phosphorylation of LANA[73]. To 
summarize, KSHV latency protein LANA, promotes 
nuclear accumulation of GSK-3 to promote dysregulation 
of β-catenin. Functionally, there is increased expression 
of cyclin D1, and when β-catenin reporters have been 
tested, there is increased activity[74]. Surprisingly, it was 
also determined that most of the GSK-3 in the nucleus 
of LANA-expressing cells is in an inactive phosphorylated 
form suggesting that despite increased GSK-3 present 
in the nucleus, there is a decrease in nuclear GSK-3 
activity. Inhibitor of the MyoD family a (I-mfa) and the 
human I-mfa domain-containing protein (HIC) has been 
shown to be negative inhibitors of the Wnt pathway. 
Kusano et al[75] showed that LANA interacts with HIC 
and I-mfa in the 995-1102 amino acid region of LANA. 
This site is located near the GSK-3 binding site and 
inhibits the LANA mediated transactivation of a β-catenin 
construct. Furthermore, this interaction decreases 
LANA-GSK-3 complex formation resulting in a decrease 
in Wnt/β-catenin signaling associated transcription. 
Thus manipulation of the Wnt/β-catenin pathway may 
play a key role in LANA-mediated oncogenesis in KSHV-
infected cells. 

Lastly, a recent paper reports that KSHV viral IFN 
regulatory factor 4 (vIRF4) targets the β-catenin/TCF 
transcription complex[76]. Using a TOPFlash system, 
the data suggests that LANA and vIRF4 are negative 
regulators of each other. Expression of LANA alone 
resulted in increased β-catenin protein and transcri­
ptional levels, but introducing vIRF4 reduced the levels 
of LANA-mediated β-catenin/TCF activation. The authors 
also observed that that this effect was not dependent 
on β-catenin protein stability. In conclusion, the study 
suggests that KSHV employs vIRF4 to block the 
progression of the cell cycle at the G1-S phase to aid in 
viral replication.

It has been proposed that dysregulation of the viral 
gene program leads to nonlytic expression[4]. Angelova 
et al[77] show a novel pathway that KSHV uses to 
upregulate the Wnt/β-catenin pathway. The KSHV virally-
encoded G-protein coupled receptor (vGPCR) inserted 
into a retroviral vector was transduced into endothelial 
cells. The authors observed increased cyclin D1, Wnt7A 
and pygopus 1 (Pygo) expression in vGPCR expressing 
cells as compared to non-expressing control cells. 
Additionally, β-catenin was found to accumulate in the 
nucleus of vGPCR expressing cells and β-catenin/LEF1-
dependent TOPFlash reporter constructs displayed 
increased activity. Initial data suggests that vGPCR-

Figure 4  Kaposi’s sarcoma-associated herpesvirus latency upregulates 
β-catenin. Establishment of KSHV latency involves expression of the latency 
associated protein LANA. LANA binds with and translocates GSK-3 into the 
nucleus after phosphorylation by GSK-3. This translocation of cytoplasmic pools 
of GSK-3 prevents β-catenin destruction complex formation and stability of 
cytoplasmic β-catenin. β-catenin translocation to the nucleus occurs resulting in 
increased β-catenin-mediated transcription. LANA: Latency-associated nuclear 
antigen; KSHV: Kaposi’s sarcoma-associated herpesvirus.
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induced activation of the Wnt/β-catenin is through 
the PI3K/Akt pathway, similar to what is seen in HSV 
and EBV. This conclusion was contrary to prior work 
suggesting that this effect may be mediated through 
COX2 activity; it was found that PI3K/Akt inhibition 
potently inhibited Wnt/β-catenin activity in endothelial 
cells and prevented formation of capillary endothelial 
tubes in vitro[77].

SPECULATION AND QUESTIONS
Despite numerous studies addressing the role of 
Wnt/β-catenin signaling in herpesviruses, there are 
still many questions to address. It seems at odds that 
the gammaherpesviruses would institute a program 
promoting the accumulation of β-catenin whilst the other 
family members inhibit the accumulation of β-catenin. 
The range and complexity of the Wnt/β-catenin path­
way makes a simple answer unlikely; but factors such 
as stage of viral infection and cell type are obvious 
candidates. As we understand more about herpes­
viruses, it is conceivable that the herpesvirus family can 
change the regulation and function of such an important 
pathway at different times during the viral life cycle. 
Control over apoptosis, cytoskeletal rearrangement, 
migration and differentiation are all vital components of 
viral control over the host cell that would be required at 
different times post infection. 

As mentioned previously, dysregulation of the Wnt/
β-catenin pathway is tightly associated with numerous 
human cancers. In fact, most of the human herpe­
sviruses can be thought of as oncomodulators, whether 
in a direct manner such as in the expression of onco­
genic viral proteins in gammaherpesvirinae infection 
or through indirect generation of oncostimulatory 

microenvironments by virally induced inflammation or 
cellular metabolic shifts caused by alpha- and betaher­
pesvirinae infection. Why would an evolutionarily success­
ful viral family induce cancer in its host? Ultimately, 
herpesviruses are successful because they coexist 
with their host. The development of cancer due to the 
persistence of a herpesvirus is likely an infrequent event 
that is complicated by others factors such as altered 
host cell metabolism and possibly the presence of other 
pathogens. For example, HCMV is now known to alter 
host cell metabolism during infection[78-81]. The changes 
are very similar to the Warburg-effect first identified in 
cancer cells. 

Interestingly, a recent publication may bridge 
the different actions of viruses on the Wnt/β-catenin 
pathway during different stages of infection. Data from 
Marcato et al[82] suggests that the TCF/β-catenin complex 
is instrumental in mounting an effective antiviral res­
ponse. They linked two observations, namely, that IFN-β 
is needed during the innate antiviral response and that 
murine models lacking IFN-β are susceptible to viral 
infections. In this paper, the authors show that inhibiting 
GSK-3 using LiCl increases IFN-β expression if β-catenin 
interacts with the IFN-β promoter by recruitment of 
TCF/β-catenin complexes to the promoter region. 
Using Rift Valley fever virus, a RNA virus belonging to 
the Bunyaviridae family, they showed pathogenicity is 
correlated to viral targeting of the β-catenin pathway. 

Viral manipulation of Wnt/β-catenin signaling may 
be impeded using small molecules inhibitors that target 
the Wnt/β-catenin pathway. In fact, Chan et al[83] have 
shown results displaying the potential of this treatment. 
The authors used ICG-001, a small molecular Wnt 
modulator (CBP/β-catenin antagonist) to inhibit the 
growth of tumor spheres in a model of nasopharyngeal 

  Virus Pathway 
component 

Stabilization, activation or 
inhibition of pathway component

Outcome Ref.

  Alphaherpesvirinae
     HSV-1 β-catenin Stabilized β-catenin stabilized, increased transcriptional activity of β-catenin [35]

Axin Stabilized Reduced host cell apoptosis [37,38]
GSK-3 Stabilized Phosphorylation of APP [39]

  Betaherpesvirinae
     HCMV β-catenin Inhibited β-catenin degradation, decrease in β-catenin transcriptional targets [41]

Axin Stabilized TNKS PARsylation activity inhibited resulting in β-catenin degradation [50]
ROR2 Activated Repression of β-catenin TCF/LEF-1 transcriptional activity [42]
GSK-3 Stabilized Stabilization of pAP and promotion of HCMV replication [52,53]

  Gammaherpesvirinae
     EBV β-catenin Stabilized Accumulation of β-catenin in type III latency [59]

GSK-3 Inhibited LMP2A activation of Akt inactivates GSK-3 resulting in β-catenin 
accumulation

[60,61]

APC Activated/inhibited (conflicting 
results)

LMP1 represses Siah-1 promoting β-catenin accumulation. LMP1 does not 
promote β-catenin stabilization

[63,64]

     KSHV β-catenin Stabilized/inhibited (dependent 
on viral stage?)

Increased transcriptional activity, induction of viral latency/inhibition of 
LANA mediated transactivation of β-catenin 

[66,76,77]

GSK-3 Inhibited LANA promotes nuclear accumulation of GSK-3 [67,70]

Table 1  Wnt/b-catenin molecular manipulations by human Herpesviridae

GSK-3: Glycogen synthase kinase 3; HCMV: Human cytomegalovirus; TNKS: Tankyrase 1 and 2 (PARP5a/b); TCF/LEF-1: T-cell factor/lymphoid 
enhancer-binding factor 1; pAP: Protein precursor; LMP2A: Latent membrane protein 2A; APC: Adenomatous polyposis coli; LMP1: Latent membrane 
protein 1; LANA: Latency-associated nuclear antigen; KSHV: Kaposi’s sarcoma-associated herpesvirus.
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carcinoma. This epithelial malignancy is associated with 
EBV latent infection. It is hypothesized that ICG-001 
targets the cancer stem cells within the tumor reducing 
growth due to alterations in signaling cascades. To 
date, no studies have looked at the direct effects of 
small molecule inhibitors as antivirals, but targeting the 
Wnt pathway is being explored in many other diseases 
and should be examined in the context of herpesvirus 
infection (reviewed in[28]). 

CONCLUSION
Human herpesviruses exploit the Wnt/β-catenin 
signaling pathway to ensure successful replication and 
survival in host cells (Table 1). The manipulation of 
such an important signaling cascade by herpesviruses 
should not be surprising as this pathway dictates the 
expression of many essential transcriptional pathways. 
The current literature provides an incomplete picture 
of why herpesviruses alter the Wnt/β-catenin pathway 
when they do. A deeper understanding of why her­
pesviruses induce changes in the Wnt/β-catenin 
pathway when they do, would provide vital information 
about the viral purpose of manipulating this pathway 
and how to interfere with this host manipulation 
controlled by the virus. As we understand more about 
virally induced aberrant Wnt/β-catenin we can develop 
better antivirals and possibly apply this knowledge to 
other human diseases associated with the Wnt/β-catenin 
pathway.
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