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Abstract
Alcohol is a well-recognized teratogen that can cause 

variable physical and behavioral effects on the fetus. 
Alcohol use and abuse during pregnancy is one of 
the major health and societal problems and has been 
linked to a wide range of birth defects in the offspring 
collectively termed as fetal alcohol spectrum disorder 
(FASD). The severity of abnormalities may depend 
on a number of factors that include the amount, the 
frequency, the period during gestation and the route of 
alcohol administration. The current knowledge about the 
neurobiological basis of FASD is limited. However, recent 
studies have suggested that the membrane-derived lipids 
especially bioactive endogenous cannabinoids (eCB) 
such as arachidonyl ethanolamide and 2-arachidonyl 
glycerol resulting from alcohol exposure, may play a 
significant role in modulating neurophysiological and 
neurobehavioral effects in chronic alcohol exposed adult 
animals. Based on these findings and on reported studies 
on the role of eCB signaling in neurodevelopment and 
behavior, it is speculated that the eCB signaling may play 
a critical role in fetal alcohol syndrome and FASD-related 
behavioral effects. The current discussion will touch 
upon some of the mechanistic explanations about the 
role of eCB signaling system in FASD and provide further 
guidance for future direction.

Key words: Lipid; Cannabinoids 1 receptor; Alcohol; 
γ-aminobutyric acid; Endocannabinoid; Fetal alcohol 
spectrum disorder

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Drinking during pregnancy leads to severe 
neurobiological consequences in the fetus and results 
in a variety of morphological and neurobehavioral ab
normalities including mental retardation. One of the 
promising neurobiological mechanisms that can explain 
fetal alcohol spectrum disorder as discussed in this editorial 
is that of the possible role of alcohol-induced alteration in 
the levels of bioactive endogenous cannabinoids (eCBs) 
that are derived from membrane lipids and eCB signaling. 
Further studies exploring dietary supplementation with 
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unsaturated fatty acids that can regulate the levels of the 
eCBs and testing of the drugs targeted against the eCB 
signaling, may have significant therapeutic value. 
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INTRODUCTION
Alcohol use and abuse during pregnancy has been linked 
to a wide range of birth defects that include anatomical, 
physiological and behavioral abnormalities in the off­
spring collectively termed as fetal alcohol spectrum 
disorder (FASD)[1-3]. Although the risk is much greater 
with heavy and binge drinking, exposure even to a small 
amount of alcohol for a shorter period during critical 
periods of gestation has been shown to be sufficient 
to produce birth defects in animal models[3-9]. Mental 
retardation, learning disabilities and craniofacial defects 
are some of the reported abnormalities that result from 
alcohol-induced impairment of central nervous system 
(CNS) development[2]. A key question has been; whether 
there is a threshold for vulnerability below which alcohol 
can be consumed safely without harming the developing 
fetus? What is also not clear is that of molecular 
mechanisms underlying FASD-related neurophysiological, 
neuroanatomical and neurobehavioral abnormalities 
and neurodegeneration. In this editorial I will present 
evidence for a potential role, the eCB signaling system 
may play during fetal growth and development and 
attempt to provide mechanistic explanation, for involve­
ment of the endocannabinoid (eCB) signaling system in 
FASD resulting from maternal drinking during pregnancy.

DEVELOPMENTAL STAGES DURING 
NERVOUS SYSTEM DEVELOPMENT AND 
POSSIBLE DISRUPTION BY INSULT SUCH 
AS ALCOHOL EXPOSURE
Alcohol can cause alterations in normal growth and 
development beginning from embryonic stage through 
fetal stage leading to a range of birth defects. Between 
third and six weeks of fertilization the CNS begins to 
form[10]. During this critical period of fetal growth, any 
insult such as alcohol, may result in accumulation of sig­
nificant amount of alcohol in maternal placenta and in 
fetal tissue longer than the maternal tissue because of 
lack of alcohol metabolizing enzyme in fetal tissue[11]. This 
may cause disruption in normal development of nervous 
system machinery. The documented studies suggest 
that exposure to alcohol during first trimester leads 

to facial deformations, while exposure during second 
trimester can disrupt neuronal formation and neuronal 
connectivity and third trimester exposure interferes with 
CNS development[10,12-15]. It has also been reported that 
children of binge drinking pregnant women exhibited 
rather severe cognitive and behavioral deficits[13]. 
Adolescence is a critical stage during brain development, 
which is characterized by neuronal maturation, mye­
lination and synaptic plasticity and any interference 
by alcohol during this critical period of fetal growth 
may hamper proper nervous system development[14]. 
These changes in the brain affect every developmental 
events that include emerging sexuality, emotionality and 
judgment in the offspring. 

NEUROBIOLOGICAL CONSEQUENCES OF 
FETAL ALCOHOL EXPOSURE
Although much remains to be understood with regard 
to neurobiological changes in the offspring due to 
maternal alcohol use and abuse during pregnancy, 
recent studies with pre-clinical models provide some 
intriguing information regarding possible neurobiological 
mechanisms underlying deleterious effects of in utero 
alcohol exposure in the offspring. The primary focus of 
studies aimed at defining mechanisms have been placental 
dysfunction, nutritional deficiency, acetaldehyde toxicity, 
fetal hypoxia and the role of prostaglandins[12,15]. Other 
mechanisms discussed in the literature are; alterations 
in regulation of gene expression, enhancement of free 
radical formation and excitotoxic neuroinflammatory 
microglial activation[8,9,16]. Recent studies also suggest 
that alcohol’s effect is mediated via several intracellular 
signal transduction pathways involving many classical 
transmitters[16]. Alcohol may cause FASD effects by 
disrupting membrane proteins such as neurotransmitter 
receptors (e.g., NMDA, GABA and glutamate and ion 
channels)[17]. However, significant new developments 
have emerged in recent years, which can provide better 
mechanistic explanation of the FASD. Major focus of 
the current discussion will be on one of the alternate 
mechanisms namely, on the role of membrane-derived 
bioactive lipids specifically eCBs that act through central 
cannabinoid (CB) receptors. 

ROLE OF ENDOCANNABINOIDS AND 
ENDOCANNABINOID SIGNALING DURING 
FETAL GROWTH AND DEVELOPMENT
The eCB system consists of CB1 and 2 receptors, their 
endogenous ligands, the eCBs, arachidonyl ethanolamide 
(AEA), 2-Arachidonyl glycerol (2-AG), and the enzymes 
involved in their synthesis, degradation and transport[18-20]. 
Besides the well characterized eCBs, AEA and 2-AG, much 
remains to be understood about the lesser known eCBs 
such as palmitoyl and oleoyl ethanolamides, which may 
also have some physiological roles (Figure 1). The eCBs 
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are considered as a new class of neuromodulator and 
are found abundantly in cerebral cortex, basal ganglia 
and limbic structures, and exert their effects mainly 
through the CB receptors[21,22]. Since their discovery, 
the eCBs and their signaling have gained prominence 
in recent years and have been implicated in a variety of 
health and diseases. The CB1 receptor has been found 
to be the most abundant presynaptic G-protein coupled 
receptor[23].

The role of the eCB system in alcohol-induced neuro­
toxicity is complex and much remains to be understood. 
The eCB system is suggested to play an important role 
during brain development and is implicated in prenatal 
wiring of the brain during developmental processes 
such as neuronal cell proliferation, cell migration and 
differentiation and stem cell proliferation[24,25]. It has been 
demonstrated in earlier studies that the eCB system is 
present in early embryo before neurogenesis suggesting 
its role in early embryogenesis[26]. It is also of significance 
to note that the eCBs are reported to be present in 
placenta and possibly in peripheral fetal tissue[27]. 

It has also been reported that eCBs and CB1 receptors 
play critical roles in directional migration of neuroblasts 
and subsequent synaptogenesis and neuron to neuron 
communication[28]. The levels of the two eCBs, AEA and 
2-AG significantly fluctuate during CNS development[29]. 
The levels of eCB, AEA increases during embryo im­
plantation and during early phase of organogenesis. 
On the other hand, 2-AG levels increase gradually and 
reach peak levels during synaptogenesis[29]. Thus any 
disruption in eCB signaling due to circumstances such 
as alcohol exposure may result in a broad array of neuro­
developmental abnormalities. The eCB system plays 
a crucial role during brain development by modulating 
neuronal function and neurogenesis[24]. It is demonstrated 
that the activation of CB1 and CB2 receptors modulates 
the rate of neurogenesis[24]. The significance of the eCB 
system during fetal development and growth is further 
supported by the observation that pharmacological 

blockade of CB1 receptors in mid-to-late gestational 
periods adversely affects the progenitor proliferation 
in subventricle zone, disrupts axonal path finding and 
results in cortical delamination[30]. Furthermore, in utero 
exposure to tetrahydrocannabinol led to inappropriate 
interneuron positioning during corticogenesis[31]. The CB1 
receptor expression is found to increase dramatically from 
infancy to young adulthood in regions such as prefrontal 
cortex (PFC), striatum, and hippocampus[32]. These 
changes in receptor expression may be both regionally 
and temporally specific as demonstrated in some specific 
brain regions such as shell and core, and PFC during 
adolescence[31]. Similar to CB receptors, developmental 
changes in eCBs, AEA and 2-AG during adolescence 
have also been reported[33,34]. The eCB system is one of 
the major neuromodulatory system and plays a critical 
role in mediating release of neurotransmitters in the 
CNS[35,36]. CB1 receptors are present on cells such as 
astrocytes, microglia and oligodendrocytes[37,38], which 
may affect the white matter development because of 
the exposure to teratogen like alcohol[39]. Similarly, effect 
on grey matter development may result in hippocampal 
and amygdala volume changes[40-42]. Furthermore, PFC 
neurons during adolescence may also be affected by in 
utero alcohol exposure and results in functional effect 
on GABA release by CB1 receptor activation that are co-
expressed on GABAergic neurons in PFC. Consequently, 
this may affect inhibitory inputs to pyramidal neurons 
in the PFC resulting in impaired cognitive function[43]. 
Activation of CB1 receptors also results in increased extra­
cellular dopamine thereby enhancing the dopaminergic 
activity[43]. 

Further support for a role for eCB signaling system 
is derived from recent reports, which suggest that phar­
macological or genetic manipulation of CB1 receptors 
reverses alcohol-induced learning and memory, emotion 
and anxiety, reward, eating, nociception and motor 
systems, among others in a neonatal alcohol exposure 
model[16]. 

ECB SIGNALING AND FETAL ALCOHOL 
EFFECTS
Although there is considerable amount of literature on the 
role of eCB signaling system in sensitivity to, tolerance 
and dependence on alcohol in adult animals[18,19], there 
have not been any studies directly implicating eCB 
system in FASD. Except for a handful of studies, where a 
neonatal model for alcohol exposure on post-natal days 
4-10, a period equivalent to third trimester in humans 
when significant brain development and rapid synaptic 
growth occurs, a significant effect of alcohol on the eCB 
system[16,44] and subsequent neurobehavioral deficits, 
have been demonstrated (for details see the review[16]). 
The current hypothesis/speculation is based on the 
existing knowledge of the association of developmental 
changes in the components of the eCB system with 
neurophysiological and neurobehavioral status and 
observed teratogenic effect of alcohol in the developing 
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Figure 1  Structure of endogenous cannabinoids. The structures of 
N-arachidonylglycine (A), N-arachidonyldopamine (B), 2-arachidonoylglyceryl 
ether (noladin-ether) (C), O-arachidonoyl ethanolamine (virodhamine) (D), 
2-arachidonoylglycerol (E), N-arachidonoyl ethanolamide (anandamide) (F) and 
9-octadecenoamide (oleamide) are shown (G)[20].
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information regarding the neurobiological processes 
underlying FASD. The investigation of pharmacological 
agents targeting eCB signaling system may be a worth­
while proposition to find a therapeutic solution to the 
deleterious effect of in utero alcohol exposure that leads 
to FASD and related abnormalities in the offspring. 
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