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Abstract
Health hazards due to the consumption of heavy metals like arsenic have become a worldwide problem. Metabolism of arsenic produces various intermediates which are more toxic and causes toxicity. Arsenic exposure results in impairment of glucose metabolism, insulin secretion in pancreatic β-cells, altered gene expressions and signal transduction and affecting insulin stimulated glucose uptake in adipocytes or skeletal muscle cells. Arsenic toxicity causes abnormalities in glucose metabolism through increase in oxidative stress. Arsenic interferes with sulfydryl group and phosphate group present in various enzymes involved in glucose metabolism namely pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and contributes to its impairment. Arsenic inhibits glucose transporters present in cell membrane, alters expression of genes involved in glucose metabolism, transcription factors and inflammatory cytokines which stimulate oxidative stress. Some theories suggest that arsenic exposure under diabetic condition inhibits hyperglycemia. However, exact mechanism behind the arsenic behavior as antagonistic or synergistic on glucose homeostasis and insulin secretion is not yet fully understood. Present review delineates the relationship between arsenic and biochemical basis of it’s relationship to glucose metabolism. This review also addresses potential therapeutic and nutritional interventions for attenuating arsenic toxicity. Several other potential nutritional supplements are highlighted in the review that could be used to combat arsenic toxicity.  
© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Review illustrated about interference of arsenic with enzymes, genes and transcription factors involved in glucose metabolism and also possible nutritional aspects for attenuating arsenic toxicity.  
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INTRODUCTION
Arsenic is a heavy toxic metal belongs to 5th group in periodic table. It is present in both inorganic and organic forms in different surroundings and its level is increased by anthropogenic contamination[1]. It is an ubiquitous element and is found in four oxidation states -3, 0, +3, and +5. It is an environmental contaminant of worldwide concern due to its high toxicity and presence in groundwater aquifers. Arsenic contamination in water has been found in countries like Canada, India, Bangladesh, United States, China, Taiwan, Mexico, Poland, Japan, Nepal[2] and currently from Iran[3]. Inorganic arsenic is believed to be the major form of arsenic in water, soil and various foods[4] and is said to be group I carcinogens based on clinical studies[5].  

Flora reported that the major exposure route of inorganic arsenic (iAs) is by means of contaminated drinking water in India, Bangladesh, China and American countries. Argentina (200 ppb), Mexico (400 ppb ), Taiwan (50-1980 ppb), Indo-Bangladesh region (800 ppb) are countries where arsenic concentration in drinking water is reported to be beyond WHO guidelines maximum permissible value (10 ppb)[6]. 
Epidemiological studies in various regions of the world with high levels of arsenic in groundwater have associated arsenic exposure with increased risks of different types of cancer (skin, liver, kidney and lung), arteriosclerosis and cardiovascular diseases, diabetes, hypertension and neurological diseases (Alzheimer and Parkinson)[7-13]. Arsenic stimulates alteration in oxidative stress, cell calcium signaling, impairment of cell mitochondrial function and affect cell cycle progression[14-17]. Some of these toxic effects at cellular and molecular levels ultimately lead to cancer[18]. Although arsenic induces adverse health effects, yet all exposed human beings do not develop arsenic related symptoms related to the exposure, suggesting that genetic susceptibility is also an important aspect involved in the human response to arsenic exposure. 
Metabolism of arsenic in human body
Metabolism of arsenic takes place in liver where first step is methylation. The presence of monomethylarsenic acid (MMAV) and dimethylarsenic acid (DMAV) indicates the methylation of arsenic in bile and urine. Monomethylarsenic acid is comparatively more toxic than the dimethylarsenic acid[19]. Previously it was suggested that arsenic metabolism is the detoxification procedure but now it is reported that intermediates of arsenic metabolism generate more toxicity. Absorbed arsenic undergoes biomethylation to form MMAV and DMAV (urinary excretion products) and are more toxic than iAs[20]. Pentavalent arsenic (iAsV) is quickly reduced to trivalent arsenic (iAsIII) and is then enzymatically methylated in human and animals which is then excreted out via urine in the form of dimethylated metabolite DMAV[21-24]. Methylation of arsenic requires S-adenosylmethionine as the methyl donor and glutathione sulfydryl as a vital co-factor[25] (Figure 1). 
Along with the major metabolite DMAv, dimethylmonothioarsenic acid (DMMTA v), a thiolated metabolite, is also found in urine as minor metabolite[26-29]. And also, DMMTAv and dimethyldithioarsenic acid (DMDTAv) is found in organs in vivo and in vitro[30-32]. Moreover, iAs consumed by marine organisms are converted into arsenosugars and arsenobetaines and their thiolated metabolites are recognized as minor marine arsenometabolites[33-36]. Arsenic is ingested as arsenate or arsenite, is altered into dimethylated form for excretion, and inorganic arsenicals and their metabolite viz., DMA. Among these arsenic metabolites DMDTAV and DMMTAV are current arsenic metabolites noticed in urine and organs in man and animals[26-29, 31,32]. It has been suggested that DMMTAV is simply absorbed by organs/tissues and is more toxic in nature[37]. DMMTAV is absorbed efficiently by organs in a way different from that of DMDTAV, although DMMTAV and DMDTAV are thioarsenicals. In addition, the distribution and metabolism of DMMTAV are like in manner similar to DMAIII in hamsters, while DMDTAV is in a manner similar to DMAV[38].
Oxidative stress
Arsenic causes toxicity via oxidative stress by affecting the antioxidant enzymes[6,39]. It stimulates the production of reactive oxygen species (ROS) which results in the induction of adverse health effects[20,40]. Mitochondrion is the chief site of ROS generation in cells and enhanced ROS formation is due to the abnormal function of electron transfer through respiratory chain in mitochondria which in turn results in the production of hydrogen peroxide (H2O2), superoxide anion (O2.-) and hydroxyl radicals  (OH.)[41]. Further, in the electron transport chain, complexes I and III  are the major leak sites for ROS formation, as some of the electrons passing through the mitochondrial respiratory chain leak out to molecular oxygen (O2) to form superoxide radicals and then dismutate to H2O2. Increased ROS causes cellular and metabolic impairment through oxidative damage which results in physiological abnormalities and deleterious chronic disorder. H2O2 is produced during the oxidation of As(III) to As(V) in the middle of formation of intermediary arsine species such as dimethylarsinic radicals [(CH3)2As•] and dimethylarsinic peroxyl [(CH3)2AsOO•] involving O2•− [42]. Arsenic leads to increase in consumption of oxygen by cell which results in ROS production and hence increase in oxidative stress[43]. Hepatic and renal heme oxygenase isoform-1 (HO-1) are also involved in the production of ROS by iAs which in turn results in extra free iron and biliverdin formation[44]. This free iron participates in a Fenton reaction resulting in the formation of hydroxyl free radical (•OH) which attacks DNA[45]. 

ROS produced intracellularly at the time of physiological processes, regulates cell functions for instance endocytic pathways, autophagy, gene expression, intracellular Ca2+, glucose homeostasis, hypoxic and inflammatory responses[46-49]. ROS function as second messenger because of stimulation/supression of numerous signaling features by oxidation of sulfydryl groups and by changing the intracellular redox status therefore inducing cell signaling pathways, downstream gene expression and cell reproduction or death[13,20]. The signaling molecules affected include protein tyrosine kinases and phosphatases, protein serine/threonine kinases and phosphatases, small G proteins, lipid signaling, Ca2+ signaling and transcription factors[50]. Biochemical reactions like glycation, results in the formation of advanced glycation end-products (AGEs) and protein oxidation causes alterations in cells which in turn results in the formation of disulfides between cysteine and methionine residues, cyclization of polyunsaturated fatty acid residues of phospholipids forming malondialdehyde (MDA), lipid peroxidation, 4-hydroxy-2-nonenal (HNE) and nucleic acid oxidation[7,8,51,52]. Free radicals produced during iAs metabolism are the source of oxidative stress[45]. Low concentrations of MMAIII and DMAIII are cytotoxic in human and rat skin, bladder, lung cells and human hepatocytes[53-56]. Cellular offense in response to methylated metabolites is involved in genotoxicity with strong proof of oxidative stress as a causal factor. Genotoxicity of MMAIII and DMAIII can be reversed by ROS inhibitors[57]. Moreover, methylated metabolites mainly DMAIII and trimethylarsenic oxide (TMAO), also plays role in arsenic induced genotoxicity[58]. Cells having low methylation capabilities are more prone to cyotoxicity by arsenic specifying that other mechanisms are also employed in cytotoxicity induced by arsenic. In vitro study on mammalian cell lines shows that there is no clear link between arsenic methylation capability of arsenic by cell and resulting cytotoxicity induced by sodium arsenite[59]. The possible mechanism of arsenic toxicity is depicted in Figure 2.

Arsenic and diabetes mellitus 
Diabetes mellitus is one of the world’s oldest known diseases. Type 2 diabetes mellitus (T2DM) is the widespread global metabolic disorders, distinguished by unusual metabolism of carbohydrate and lipid, mainly resulting either from fault in insulin secretion and/or insulin action, or adipocyte functioning[60]. In T2DM, entire body glucose homeostasis is disrupted because of insulin resistance and impaired glucose uptake by peripheral tissues, consisting of skeletal muscle and adipose tissue. In these tissues, glucose homeostasis is regulated by the mechanism of insulin dependent stimulation of glucose uptake. 
Worldwide incidence of diabetes among people aged 20-79 years was approximately 6.4% in 2010. This rate is supposed to rise up to 70% in developing countries and 20% in developed countries from 2010 to 2030[61]. Globally more than 0.39 million people die every year from diabetes which is supposed to increase in next decade[62,63]. T2DM is more prevalent than type 1 diabetes mellitus. In India, World Health Organization (WHO) reported that about 32 million people suffered from diabetes in 2000. According to International Diabetes Federation (IDF), the total diabetic patients were nearly 40.9 million which is supposed to increase up to 69.9 million till 2025[64]. Environmental and lifestyle factors are the main causes of remarkable increase in T2DM prevalence[65,66].  
Epidemiological studies suggest that T2DM is one of the most familiar non-cancerous metabolic disorders correlated with chronic exposure to iAs. Lai et al[67] in 1994 first established the link between diabetes and iAs. The correlation between arsenic toxicity and diabetes mellitus is a burning issue for this new world. Increased prevalence of T2DM is associated with the use of drinking water containing high levels of iAs or in occupational areas with chronic exposures to iAs[68-75]. This is more prevalent in people consuming contaminated water in Bangladesh and Taiwan and in community doing job in copper smelters and art glass industry in Sweden[67,70-72,74-76]. According to American Diabetes Association, diabetes caused due to arsenic toxicity or arsenic induced diabetes may come under 'the other specific types’[77]. In epidemiologic studies, arsenic exposed subjects show symptoms of diabetes mellitus similar to T2DM[70]. Because of the symptoms more identical to T2DM, it is considered that pathophysiology related with diabetes mellitus induced by arsenic should be more likely to that of type 2 diabetes[6].  According to Wang et al[78], there is a relationship between increased risk of metabolic syndrome, one of the most important cardiovascular disease risk factor and exposure to iAs in general population[78]. Figure 3 shows the possible way by which arsenic causes diabetes mellitus.

Arsenate replaces phosphate group 
Arsenate (AsV) replaces phosphate group in various biochemical reactions owing to alike structure and properties[79]. Arsenate reacts in vitro with glucose and gluconate[80,81] to form glucose-6-arsenate and 6-arsenogluconate, respectively which is similar to glucose-6-phosphate and 6-phosphogluconate, correspondingly. Arsenate also replaces phosphate group in sodium pump and anion exchange transport system of human erythrocytes[82]. Arsenate inhibits ATP formation during glycolysis by substituting arsenate for phosphate anion in a process known as arsenolysis. In one of the steps of glycolysis, phosphate group is enzymatically linked to D-gylceraldehyde-3-phosphate to form 1,3-diphospho-D-glycerate. In this reaction, phosphate is replaced by arsenate to form an unstable anhydride 1-arsenato-3-phospho-D-glycerate and hydrolyzes into arsenate and 3-phosphoglycerate. The unstability of arsenic anhydride is due to the longer As-O bond length than that of P-O bond length[79]. ATP is not generated during glycolysis in the presence of arsenate[83,84]. At mitochondrial level, arsenolyiss may occur during oxidative phosphorylation in the presence of succinate to form adenosine-5’-diphosphate (ADP) arsenate[81]. ADP-phosphate formed during oxidative phosphorylation is difficult to hydrolyze in comparison to ADP-arsenate. During the process of cellular respiration, aresnolysis diminished ATP production by substituting phosphate with arsenate in respiratory pathways.  In vitro study suggest that arsenate exposure caused reduction of ATP in rabbit and human erythrocytes[85,86]. Activity of hexokinase is inhibited at higher concentrations of arsenate[87]. On the contrary, the two pentavalent forms of methylated metabolites as monomethylarsonate and dimethylarsonate will not disturb metabolism of phosphate or bind to sulfydryl groups[88].
Affinity for sulfydryl group

Arsenic affinity for thiols, especially the vicinal thiols of enzymes, is an accepted mechanism for arsenic toxicity thereby inhibits catalytic activity of an enzyme by binding to a thiol containing active site[84]. Trivalent arsenicals easily react in vitro with molecules havine sulfydryl group for instance cysteine and reduced glutathione (GSH)[85]. The complex linking vicinal thiols and arsenic is generally strong. Mainly three pathways have been suggested by which arsenic decreases cellular GSH level: (1) In the reduction of arsenates to arsenites, GSH functions as an electron donor; (2) Arsenite has a strong affinity for GSH; (3) Arsenic induced free radicals oxidize GSH. 
    As a consequence of obstruction of kerb cycle and disruption of oxidative phosphorylation by arsenic, reduction in cellular ATP followed by cell death occur. Due to interaction of arsenic with thiol groups, methylated trivalent arsenicals such as MMAIII inhibits GSH reductase and thioredoxin reductase[89,90]. Cellular redox condition is modicied by methylated arsenicals activities which inturn results in cytotoxcicity. GSH protects cell from cytotoxins and is also involved in the metabolism arsenic, through the formation of GSH conjugates. Numerous proteins with regulatory functions such as nuclear factor kappa B (NFκB), Adiponectin (AP)-1 are susceptible to the cellular redox surroundings. These proteins are regulated by GSH by altering the redox state of particular sulfydryl group of target proteins including stress kinases, transcription factors and caspases[91]. 

Arsenic impairs pathways of glucose catabolism 
Insulin independent diabetes is the common form of diabetes mellitus among people chronically exposed to iAs[71]. It has been suggested that at cellular level, iAs or its metabolites disturbs glucose metabolism and insulin signaling. Trivalent arsenicals are moderately effective inhibitors of numerous enzymes involved in glucose metabolism such as succinyl Co-A synthase, α-ketoglutarate dehydrogenase and pyruvate dehydrogenase (PDH)[92,93]. PDH complex is the most studied enzyme and is considered most sensitive to be inhibited by arsenite. During cell respiration, pyruvate converts into acetyl-CoA in the presence of pyruvate dehydrogenase enzyme complex (dihydrolipoyl transacetylase, dihydrolipoyl dehydrogenase, pyruvate decarboxylase, thiamine pyrophosphate, lipoic acid, CoASH, FAD, NAD+). Arsenite inhibits PDH by binding to the lipoic acid moiety[94]. It has been reported that MMAIII is a strong inhibitor of PDH than arsenite[93]. Kreb cycle provides reducing power to electron transport chain for ATP generation. Inhibition of PDH leads to decreased generation of ATP and energy as well resulting in cell damage and cell death. 

Additionally, an organic derivative of arsenite, phenylarsine oxide (PAO) inhibits basal or insulin stimulated glucose uptake by canine kidney cells, adipocytes and intact skeletal muscle[95-100]. Arsenic interferes with sulfydryl containing enzymes such as pyruvate dehydrogenase and α-ketoglutarate dehydrogenase and also it competes with the phosphate binding sites on glycolytic enzymes thereby uncouples oxidative phosphorylation and impairs glucose metabolism as well[101,102]. Interference of arsenic with phosphate binding sites in ATP results in the formation of ADP-arsenate which inhibits metabolic pathway that requires ATP. Glucose-6-phosphate is an essential mediator for glycolysis, glycogenesis, gluconeogenesis and glycogenolysis, and pentose phosphate pathway (PPP). PPP generates nicotinamide adenine dinucleotide phosphate (NADPH), an essential cofactor for glutathione reduction. Insufficient production of NADPH from PPP further interrupts the cell’s ability to deal with oxidative stress[103]. Glucose-6-phosphate dehydrogenase (G6PDH) activity in mice exposed to arsenic, is significantly reduced in a time related manner[104]. G6PDH is an enzyme of PPP, an alternate metabolic pathway for glucose. An enhanced threat to oxidative stress induced diabetes and diminish in nitric oxide generation are due to reduced blood activity of G6PDH[105,106]. Also, exposure to arsenic results in an increase in glycosylated hemoglobin level which indicates high blood glucose level and is reported in Danish people working in wood industry[73]. Thus, people exposed to iAs both from environment and occupation are prone to diabetes mellitus. 
Modulation of insulin signal transduction pathways

Signal transduction pathway activated by insulin which results in glucose uptake has been widely studied. It comprises of binding of insulin molecule to α-subunit of insulin receptor followed by activation of tyrosine kinase moiety leading to autophosphorylation of β-subunit of insulin receptor, consequently phosphorylation of  insulin receptor substrate 1 or 2, phosphorylation and activation of phatidylinositol 3-kinase, phosphorylation of phosphatidylinositol-4,5-biphosphate at the cell membrane to phosphatidylinositol-3,4,5-triphosphate (PIP3)[107-109]. PIP3 promotes phosphorylation of protein kinase B (PKB/AKt) and protein kinase C (PKC) enzymes that is, PKC λ and PKC ζ[110, 111]. The phosphorylation of PKB/AKT results in the transport of GLUT4 from the perinuclear space to plasmalemma and in the activation of glucose uptake[112, 113]. 

    iAsIII and methylated arsenicals interfere with main signal transduction pathways in human cells[114]. Arsenic exposed cells show inhibition in expression or activation of PKB/AKT, which is an essential component of the insulin stimulated signal transduction pathway. Thus, insulin dependent signal transduction at PKB/AKT level is inhibited which is responsible for hyperglycemia in human exposed to iAs. In vitro study shows that iAsIII  interupts with the expression and phosphorylation of PKB/AKT and inhibits insulin stimulated glucose uptake and  mobilization of GLUT4[115].  Arsenic is also involved in the modulation of Mitogen-activated protein kinases (MAPK) pathway and related growth factors[114,116]. MAPK signaling pathway regulates stepwise phosphorylation of protein kinases and also terminates the activation of transcription factors needed for cellular proliferation, differentiation or apoptosis.

Arsenic specifically inhibits glucose transport
Sulfydryl groups play an essential role in insulin dependent and insulin independent mediating glucose transport (GLUT). Thiol component forms structural bond linking insulin’s A and B polypeptide chains, α and β subunits of insulin receptor and exofacial sulfydryl moiety present on glucose transporters at plasma membrane[6]. PAO forms stable cyclic thio-arsenite complexes with vicinal or paired sulfydryl groups of cellular proteins, inhibits glucose transport in adipocytes[95, 117]. Moreover, PAO restrains insulin stimulated glucose transport without affecting insulin binding to its receptor[117]. PAO only effects insulin dependent GLUT4 present in adipocytes and myocytes[118]. 
However, consequence of arsenite on glucose transport is dose dependent.  Studies show that arsenite stimulates glucose uptake at higher concentrations while at low level glucose uptake decreases[119]. Arsenite does not disturb regulation of GLUT4 gene expression so overall GLUT4 quantity does not alter. Walton et al[115] examined the dose-dependent decrease in insulin stimulated glucose uptake in 3T3-L1 adipocytes treated with iAs and its metabolites.
Effect on the gene expression 
There are many evidences which support that arsenic induces diabetes via alteration in gene expression. When isolated rat pancreatic β-cells exposed to 5 µmol/L arsenite for 72 h, mRNA expression and insulin secretion decreased[9]. In vitro study shows that arsenite exposure decreases the gene expression and activitry of catalase enzyme whereas the production of ROS increases[120]. Peroxisome proliferative-activated receptor-γ (PPAR-γ) (a transcription factor) controls main gene expression for insulin sensitivity. When mouse adipocytes C3H 10T1/2 cell line exposed to 6µmol/L arsenite, alteration in the expression of PPAR-γ, AP-2 genes occur which results in the inhibition of mRNA and reversal of adipocyte differentiation[121]. The transcription of cytokines namely tumor necrosis factor-α (TNF-α) and interleukins (IL), required in insulin resistance, are regulated by NFkB[122]. Human bronchial epithelial cell lines when exposed to 18µmol/L arsenite for 12 h, NF-kB dependent genes are activated, in contrast, 12.5µmol/L arsenic exposure on TNF-α stimulated HeLa cells for 2 h shows inhibition of NF-kB activation and IkB degradation[123,124]. When human GM847 fibroblast cells are exposed to 0.1 and 5µmol/L arsenite for 24 h, upregulation and expression of c-fos and c-jun genes and DNA binding activity of AP-1 takes place[125].  
Arsenic up regulates inflammatory cytokines from mononuclear cells. Human peripheral mononuclear cells when exposed to very low arsenite level, TNF-α production increases by 2-times[126]. Studies shows that when blood arsenic level ranges from 0.128 to 0.62µmol/L, expression of IL-6 increases by three fold[127].  There is suppression in the expression and phosphorylation of AKT, when 3T3-L1 adipocytes are exposed to trivalent arsenicals[115]. Activation of AKT by PDK-1 phosphorylation, is also inhibited by arsenite[128]. In adipocyte cells, arsenite exposure at higher level reduces expression and phosphorylation of AKT genes while at low level its expression is stimulated[115,129]. Also, expression of phosphoenol pyruvate carboxykinase (PEPCK) increases in chick embryos after arsenite exposure at higher dose which is might be due to interaction of arsenic with glucocorticoid receptor complexes [130,131]. 

EVIDENCES OF ALTERED ARSENIC METABOLISM IN DIABETES MELLITUS 
T2DM is hypothetically related with variations in blood arsenic concentration and there are evidences that arsenic metabolism is modified in people with T2DM and these have precise role in the pathogenesis and progression of this ailment[132]. Many in vivo and in vitro studies have done in which it has been shown that iAs induces diabetes but some experiments contradict these reports. There are convincing reports that diabetes alters the pharmacodynamics and pharmacokinetics of drugs/xenobiotics in human and animals[133,134]. Our previous studies showed that arsenic exposure causes the inhibition of hyperglycemia in diabetic rats and mice (Kulshrestha et al, Unpublished observation). Arsenic exposure in diabetic rat results in promotion of insulin secretion and decrement of arsenic concentrations[135,136].  
    The causal correlation of arsenic exposure and diabetes mellitus is still debated. Various epidemiological studies done in arsenic contaminated region proved the relationship of chronic arsenic exposure to diabetes mellitus, however exact mechanism is not known[137]. Various animal studies done on the effects of arsenic exposure on glucose metabolism and insulin secretion show inconcsistent results because of the variations in animal’s species, dose and time of exposure[128,137]. Studies done by Wang et al[138] in both human and rats suggested that glucose metabolism is altered by arsenic.
ARSENIC AND NUTRITIONAL STATUS 
Hsueh et al[139,140] suggested that arsenic toxicity is associated with nutritional status among residents living in arsenic epidemic areas like Taiwan. Since arsenic causes toxicity via oxidative stress thereby decreasing antioxidant enzymes activity hence it is possible that there is a link between arsenic induced diabetes mellitus and deficiency of antioxidants and that the individual consuming less antioxidant possess increased threat to diabetes mellitus and cardiovascular disease[141]. Thus, good nutritional status with sufficient antioxidant intake reduces the chances of arsenic induced diseases. Since arsenic interferes with GSH, people with diabetes possess lower level of GSH[142]. It has been found that selenium which is required for GSH biosynthesis is significantly lower in arsenic exposed subjects than normal controls[143,144]. GSH is required for the proper action of insulin and increased uptake of glucose and it is obligatory for the excretion of arsenic[145]. Animal studies show that nutritional status modify arsenic toxicity. Choline or methionine deficient diet (source of methyl donor group) results in reduction of arsenic methylation which leads to high retention of arsenic in body and increase in toxicity[146-148]. So by consuming methionine rich diets, arsenic toxicity can be alleviated. 
    Preventive and therapeutic measures are available against arsenic toxicity. The roles of chelating agents, antioxidants, natural/herbal remedy as protective/therapeutic agents against arsenic toxicity are discussed below.
Chelating agents 
The formation of metal ion complex is known as chelation in which two or more separate coordinate bonds are formed between monodentate or polydentate ligands and metal ion. These ligands are referred to as chelator or chelating agent which is organic compound able to link together metal ions to form complex structure called chelates. In chelation therapy, chelating agents are used to detoxify heavy toxic metals like arsenic, and converts them to a chemically inert form with greater water solubility which increases its excretion by kidney without further interaction with the body. Various chelating agents are used for treating arsenic toxicity[149]. First chelating agent used was British Anti Lewsite (BAL) which was used during World War II. It is a dithiol compound used as a therapeutic agent against heavy metal toxicity. Despite of its capacity to treat metal toxicity, its use is limited because of low therapeutic index[150]. Other metal chelators that is meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercapto-1-propanesulphonic acid (DMPS) can be administered for a much longer time period due to the very low toxicity of DMSA, it[151]. DMSA decreases the arsenic burden in cells by inhibiting constant formation of ROS[152].  Later on, numerous esters of DMSA have been produced for attaining more advantageous chelation. Flora et al[153] investigated that administration of dimethyl DMSA (DMDMSA), diethyl DMSA (DEDMSA), diisoamyl DMSA and diisopropyl DMSA (DiPDMSA) led to decrease in arsenic content from blood and soft tissues but was less effective in recovering biochemical alterations following sub-chronic arsenic exposure in rats[153]. Kreppel et al[154] observed that administration of all the monoesters, mono isoamyl DMSA (MiADMSA), mono n-amyl DMSA (MnDMSA), mono n-butyl DMSA (MnBDMSA) and mono i-butyl DMSA (MiBDMSA) were able to reduce the arsenic concentration from tissues, of which MiADMSA and MnADMSA were found most effective in mice[154]. Administration of MiADMSA (Figure 4) and mono methyl DMSA (MmDMSA) (Figure 5) resulted in reduction of arsenic concentration from blood and soft tissues of experimental animals[155,156]. Despite the beneficial effects of chelating agents against arsenic toxicity, they possess some drawbacks like non-specificity, therapeutic index, failure to permeate plasma membrane and metal redeployment and side effects like headache, nausea, vomiting etc. due to which their use has been limited[157]. Although these chelating agents enhance arsenic excretion yet these agents are having numerous drawbacks.  This opens the exploration of novel therapy without side-effects and utmost medical recuperation in terms of altered biochemical variables as complete removal of metals from the surroundings is not possible.

Antioxidants 
Arsenic exposure results in the production of ROS thus lessen the cellular antioxidants level. To prevent the increased production of ROS and their deleterious effects, antioxidant system of body acts as ROS scavenger which includes Superoxide dismutase (SOD), Glutathione Reductase (GR), Catalase, Glutahione Peroxidase (GPx), Reduced Glutathione (GSH). In addition to this endogenous system, antioxidant status is improved with exogenous antioxidants such as Vitamin C and E, Quercetin, N-acetylcysteine (NAC), α-lipoic acid.  
    N-acetylcysteine (NAC), the thiol based antioxidant, is a originator of L-cysteine and GSH and stimulates glutathione synthesis (Figure 6). It protects the cellular components against oxidative stress[6,158]. It stimulates production of GSH, hence retaining intracellular GSH level[159]. NAC plays an essential role in the chelation of toxic metals[160,161]. Co-administration of NAC and zinc alleviates the arsenic-induced hepatic and renal toxicity[162]. Flora et al[163] developed a new strategy of combination therapy of DMSA and NAC, to attain better results against arsenic toxicity in rats. NAC is effective against arsenic toxicity and recovered level of hepatic malondialdehyde[164]. The protective effect of NAC against arsenic toxicity in animals has been suggested by Hemalatha et al[165] and Reddy et al[158]. 

    Quercetin (3,3’,4’,5,7-pentahydroxyflavon) is bioflavonoid found in fruits, vegetables, seeds and flowers (Figure 7). It has very strong antioxidant and prevents cell apoptosis caused by oxidative stress[166]. Quercetin scavenges superoxide radicals and protects from lipid peroxidation and chelate metal ions. In vitro study showed that Quercetin prevents cytotoxicity of low-density lipoproteins[167]. Quercetin co-administration with thiol chelator was found more efficient in lessening body arsenic burden[168].
    α-lipoic acid (LA, 1,2-dithiolane-3-pentanoic acid) is a dithiol antioxidant produced from octanoic acid in the mitochondria. LA is an essential cofactor for α-ketoacid dehydrogenase in mitochondria. In addition to production, LA is also consumed from diet such as wheat germ, beer, yeast, and red meat [169]. After consumption, it is taken up into the circulatory system and traverses the blood-brain barrier, where it is reduced into dihydrolipoate[170]. LA and dihydrolipoic acid (DHLA) are able to scavenge free radicals and chelate metals (Figure 8). LA treatment diminishes arsenic induced oxidative damage in vivo owing to its chelation and free radical scavenging properties[171,172].  
A range of vitamins possess antioxidant properties against arsenic poisoning. Consumption of vitamins likes A, C and E plays a protective role against arsenic toxicity[173]. Vitamin C is hydrophilic and is an intracellular and extracellular antioxidant capable of scavenging ROS in vivo and in vitro by electron transfer to inhibit lipid peroxidation. It traps free radical and protects biomembrane from oxidative damage.  Vitamin C alleviates arsenic induced oxidative stress in mice liver[174]. Its advantageous effect is due to its capability to form complex with arsenic[6]. 

    Vitamin E is a lipid soluble vitamin and its active form is α-tocopherol. It is assembled in lipophillic site of cell membrane and protects the membrane against oxidative damage. It donates electron to peroxyl radical, which is produced during lipid peroxidation[175]. Vitamin E has an ability to scavenge free radical hence protects against arsenic toxicity. In vivo study shows that Vitamin E treatment is effective against hepatotoxicity, nephrotoxicity and regularizes altered variables of heme synthesis pathway[6].  
    Co-administration of vitamin C and E in combination with a chelator was found more effective than chelator alone in sub-chronically arsenic exposed rats[39]. Administration of vitamin C and E reduced the rate of DNA fragmentation in arsenic exposed rats[176]. Some other vitamins like vitamin A and B are also reported effective against arsenic poisoning. Therapy with folic acid and vitamin B12 alleviated the oxidatice damage induced by arsenic in cardiac tissue[177]. A cross-sectional study performed in Bangladesh, reported that intakes of B-vitamins and antioxidants might reduce the risk of arsenic-related skin lesions[178]. Another antioxidants like taurine can also be very useful in reducing oxidative stress induced by arsenic[179]. 

Herbal/Natural remedies 
For several years, herbal/natural remedies are being used all over the world as therapeutic and prophylactic agents. The synergistic action of a broad range of antioxidants from natural sources is better than the activity of a single or synthetic antioxidant[180].  The use of conventional remedy, obtained from plants has been a most important part in managing arsenic toxicity. Numerous plants/spices or their extracts are familiar to possess antioxidant effects. Administration of various plant/spice extracts, such as Spirulina, Curcumin, Moringa oleifera, Hippophae rhamnoides, Centella asiatica, Allium sativum, Mentha piperita, Aloe vera barbadensis, has shown preventive and therapeutic effect against arsenic exposure in animals[179,181]. 
    Focusing attention on natural and bio-available sources of antioxidants, we explored the beneficiary effects of Spirulina in arsenic exposed diabetic rats. Spirulina administration is found to be associated with alleviation of various metabolic disorders such as diabetes mellitus, drug metal induced toxicities[181-183].   Our studies on Arsenic toxicity showed that the administration of Spirulina suspension for one week resulted in reduction of arsenic burden, restoration of blood glucose and insulin level in rats (Kulshrestha et al; Unpublished observations). Spirulina possess significant antioxidant activity due to the presence of enormous amount of phycobiliproteins, phycocyanin and allophycocyanin, phenolic compounds, γ-linoleic acid, minerals, tocopherols, β-carotens, vitamin E & C and selenium[184,185]. Spirulina possess free radical scavenging properties in addition to its biosorption effect against heavy metal toxicity [186-189]. Rahman et al[190] and Karkos et al[191] studied the efficacy of   Spirulina among chronic arsenicosis patients and found that Spirulina reverse the changes caused by arsenic[190, 191].  
    Centella or Indian Pennywort, Centella asiatica (L.) Urban Syn. Hydrocotyle asiatica L. belongs to the family Apiaceae.  C. asiatica is useful in recovering biochemical alterations in arsenic induced toxicity. It depletes tissue arsenic concentrations to some extent in rats[192]. Sea buckthorn (Hippophae rhamnoides L.) Elaeagnaceae, is a nitrogen fixing shrub inhabitant of Europe and Asia. It is now cultivated in various parts of the world for nutritional and remedial purpose. The whole plant is an excellent source of various bioactive compounds like carotenoids (α, β, δ-carotene, lycopene), vitamins (A, C, E, K, riboflavin, folic acid), organic acids (malic acid, oxalic acid), phytosterols (ergosterol, stigmasterol, lansterol, amyrins), and few vital amino acids[193-195]. In vitro and In vivo studies suggest the antioxidant and immunomodulatory properties of Sea buckthorn[196]. The antioxidant activities of H. rhamnoides extract is due to the presence of flavanoids and phenolic compounds which exhibit free radical scavenging properties[197]. Gupta and Flora evaluated the protective role of aqueous extract of H. rhamnoides fruit against arsenic toxicity. However, it does not have the ability to chelate arsenic, recommending that it should be administered along with an effective chelating agent to accomplish the best possible outcome of chelation treatment[198]. 

     Garlic, Allium sativum L. belongs to the family Alliaceae, contains a higher concentration of sulfur compounds. Some biologically active sulfur-containing lipophilic compounds are allicin (diallyl thiosulfinate or diallyl disulfide, DADS), S-allylycysteine (SAC), and diallylsulfide (DAS) and hydrophilic compounds include s-ethyl cysteine (SEC) and n-acetyl cysteine (NAC), these are responsible for antioxidant activities which is due to the stimulation and modification of enzymes such as 3-hydroxy-3 methylglutaryl- CoA reductase, glutathione-s-transferase and catalase[199,200]. In vitro and in vivo studies recommend that administration of aqueous extract of garlic resulted in the reduction of tissue arsenic burden and enhanced urinary arsenic excretion which is due to the chelating properties of thiosulfur components such as allicin of garlic extract[165,201].  
    Moringa oleifera is another plant belongs to Moringaceae family, exhibit antioxidant and chelating properties. The seed powder of M. oleifera protected the animals from arsenic induced oxidative damage and depleted arsenic concentrations[202]. This protection might be due to the presence of ascorbic acid and cysteine and methionine rich proteins in seed powder[203,204]. Curcumin, a polyphenolic compound, is an another herbal product which is a major constituent of Curcuma longa (Zingiberacea family). It possesses numerous pharmacological activities including antioxidant, anti-inflammatory. Curcumin protects the hepatic tissues from arsenic induced imbalance in antioxidants and oxidants. It also reduces hepatic arsenic burden[205]. Curcumin prevents arsenic induced neurotoxicity and heptotoxicity during embryonic development[206,207]. Other herbal products including Mentha piperita leaf extract, Aloe vera barbadensis also showed protective effect against arsenic toxicity[208,209]. 
CONCLUSION 

Arsenic is omnipresent in the surroundings, but the drinking water, including both groundwater and surface water supplies, is regarded as a major route of human exposure for iAs in arsenic contaminated regions. Arsenic ingestion through food chain is bound to affect physiology and biochemistry of the body. Although human exposure to arsenic is known to induce adverse health effects, level and time of exposure as well as genetic susceptibility are important factors in manifesting the outcome. Arsenic exposure plays an etiological role in diabetes development. Low or moderate arsenic exposure is found to play positive role while high level of arsenic is associated to risk of developing type-2 diabetes. Studies associated with biochemical mechanism(s) in relation to arsenic exposure and risk of developing diabetes are still contentious and needs to be delineated further.  Although various therapeutic and nutritional strategies are available to alleviate arsenic toxicity, we need to explore more preventive and therapeutic measures against arsenic toxicity. 
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Figure 1 Arsenic methylation pathway in the human body[25]. A: Arsenate reductase or purine nucleoside phosphorylase (PNP); B: Arsenite methyl transferase (As3MT); C: Glutathione S-transferase omega 1 or 2 (GSTO1, GSTO2); D: Arsenite methyl transferase (As3MT). SAHC: S-adenosylhomocysteine; SAM: S-adenosylmethionine; MMAV: Monomethylarsenic acid; MMAIII: Monomethylarsonous acid; DMAV: Dimethylarsenic acid; DMAIII: Dimethylarsinous acid.
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Figure 2 Mechanism of arsenic toxicity: Arsenic enhances the production of superoxide anion radical which results in more oxidant level than antioxidant enzymes involved in detoxication of superoxide anion radical viz., superoxide dismutase, catalase, catalase, glutathione reductase and glucose-6-phosphate dehydrogenase. SOD: Superoxide dismutase; CAT: Catalase; GPx: Glutathione peroxidase; GR: Glutathione reductase; G-6-PDH: Glucose-6-phosphate dehydrogenase; NAD+: Nicotinamide adenine dinucleotide; NADPH: Nicotinamide adenine dinucleotide phosphate reduced.
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Figure 3 Possible biochemical approaches by which arsenic induces diabetes.
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Figure 4 Mono isoamyl 2,3 dimercaptosuccinic acid.
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Figure 5 Mono methyl 2,3-dimercaptosuccinic acid.
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Figure 6 N-acetylcysteine.
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Figure 7 Quercetin.
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Figure 8 Reduction of lipoic acid.
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