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Abstract
Health hazards due to the consumption of heavy met-
als such as arsenic have become a worldwide problem. 
Metabolism of arsenic produces various intermediates 
which are more toxic and cause toxicity. Arsenic ex-
posure results in impairment of glucose metabolism, 
insulin secretion in pancreatic β-cells, altered gene ex-
pressions and signal transduction, and affects insulin-
stimulated glucose uptake in adipocytes or skeletal 
muscle cells. Arsenic toxicity causes abnormalities in 
glucose metabolism through an increase in oxidative 
stress. Arsenic interferes with the sulfhydryl groups 
and phosphate groups present in various enzymes 
involved in glucose metabolism including pyruvate de-
hydrogenase and α-ketoglutarate dehydrogenase, and 
contributes to their impairment. Arsenic inhibits glu-
cose transporters present in the cell membrane, alters 
expression of genes involved in glucose metabolism, 
transcription factors and inflammatory cytokines which 
stimulate oxidative stress. Some theories suggest that 
arsenic exposure under diabetic conditions inhibits hy-
perglycemia. However, the exact mechanism behind 

the behavior of arsenic as an antagonist or synergist 
on glucose homeostasis and insulin secretion is not yet 
fully understood. The present review delineates the re-
lationship between arsenic and the biochemical basis of 
its relationship to glucose metabolism. This review also 
addresses potential therapeutic and nutritional inter-
ventions for attenuating arsenic toxicity. Several other 
potential nutritional supplements are highlighted in the 
review that could be used to combat arsenic toxicity.  
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Core tip: This review illustrated the interference caused 
by arsenic in enzymes, genes and transcription factors 
involved in glucose metabolism and possible nutritional 
aspects for attenuating arsenic toxicity.  
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INTRODUCTION
Arsenic is a toxic heavy metal and belongs to the 5th 
group in the periodic table. It is present in both inorganic 
and organic forms in different surroundings and its level 
is increased by anthropogenic contamination[1]. It is a 
ubiquitous element and is found in four oxidation states 
-3, 0, +3, and +5. It is an environmental contaminant of  
worldwide concern due to its high toxicity and presence 
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in groundwater aquifers. Arsenic contamination in water 
has been found in countries such as Canada, India, Ban-
gladesh, United States, China, Taiwan, Mexico, Poland, 
Japan, Nepal[2] and Iran[3]. Inorganic arsenic is believed to 
be the major form of  arsenic in water, soil and various 
foods[4] and is said to be a group Ⅰ carcinogen based on 
clinical studies[5].  

Flora reported that the major exposure route of  inor-
ganic arsenic (iAs) is by contaminated drinking water in 
India, Bangladesh, China and American countries. Argen-
tina (200 ppb), Mexico (400 ppb), Taiwan (50-1980 ppb), 
and the Indo-Bangladesh region (800 ppb) are countries 
where arsenic concentration in drinking water is reported 
to be beyond WHO guidelines maximum permissible 
value (10 ppb)[6]. 

Epidemiological studies in various regions of  the 
world with high levels of  arsenic in groundwater have as-
sociated arsenic exposure with increased risks of  different 
types of  cancer (skin, liver, kidney and lung), arterioscle-
rosis and cardiovascular diseases, diabetes, hypertension 
and neurological diseases (Alzheimer and Parkinson)[7-13]. 
Arsenic stimulates alterations in oxidative stress, cell cal-
cium signaling, impairment of  cell mitochondrial func-
tion and affects cell cycle progression[14-17]. Some of  these 
toxic effects at cellular and molecular levels ultimately 
lead to cancer[18]. Although arsenic induces adverse health 
effects, all exposed humans do not develop arsenic symp-
toms related to exposure, suggesting that genetic suscep-
tibility is also an important aspect involved in the human 
response to arsenic exposure. 

Metabolism of arsenic in the human body
Metabolism of  arsenic takes place in the liver where the 
first step is methylation. The presence of  monomethy-
larsenic acid (MMAV) and dimethylarsenic acid (DMAV) 
indicates the methylation of  arsenic in bile and urine. 
Monomethylarsenic acid is comparatively more toxic than 
dimethylarsenic acid[19]. It was previously suggested that 
arsenic metabolism was a detoxification procedure, but 
now it is reported that intermediates of  arsenic metabo-
lism generate more toxicity. Absorbed arsenic undergoes 
biomethylation to form MMAV and DMAV (urinary excre-
tion products) and are more toxic than iAs[20]. Pentavalent 
arsenic (iAsV) is quickly reduced to trivalent arsenic (iAsⅢ) 
and is then enzymatically methylated in humans and ani-
mals, which is then excreted via urine in the form of  the 
dimethylated metabolite DMAV[21-24]. Methylation of  ar-
senic requires S-adenosylmethionine as the methyl donor 

and glutathione sulfhydryl as a vital co-factor[25] (Figure 1). 
Along with the major metabolite, DMAv, dimethyl-

monothioarsenic acid (DMMTAv), a thiolated metabo-
lite, is also found in urine as a minor metabolite[26-29]. 
In addition, DMMTAv and dimethyldithioarsenic acid 
(DMDTAv) are found in organs in vivo and in vitro[30-32]. 
Moreover, iAs consumed by marine organisms is con-
verted into arsenosugars and arsenobetaines and their 
thiolated metabolites are recognized as minor marine 
arsenic metabolites[33-36]. Arsenic is ingested as arsenate or 
arsenite, is altered into the dimethylated form for excre-
tion, and inorganic arsenicals and their metabolite viz., 
DMA. Among these arsenic metabolites, DMDTAV and 
DMMTAV are the current arsenic metabolites observed 
in urine and organs in man and animals[26-29,31,32]. It has 
been suggested that DMMTAV is simply absorbed by 
organs/tissues and is more toxic in nature[37]. DMMTAV 
is absorbed efficiently by organs in a different way to that 
of  DMDTAV, although DMMTAV and DMDTAV are 
both thioarsenicals. In addition, the distribution and me-
tabolism of  DMMTAV are similar to DMAⅢ in hamsters, 
while the distribution and metabolism of  DMDTAV are 
similar to those of  DMAV[38].

Oxidative stress
Arsenic causes toxicity via oxidative stress by affecting 
the antioxidant enzymes[6,39]. It stimulates the production 
of  reactive oxygen species (ROS) which results in the 
induction of  adverse health effects[20,40]. The mitochon-
drion is the chief  site of  ROS generation in cells and 
enhanced ROS formation is due to the abnormal func-
tion of  electron transfer through the respiratory chain in 
mitochondria which in turn results in the production of  
hydrogen peroxide (H2O2), superoxide anion (O2

.-) and 
hydroxyl radicals (OH.)[41]. Furthermore, in the electron 
transport chain, complexes I and Ⅲ are the major leak 
sites for ROS formation, as some of  the electrons pass-
ing through the mitochondrial respiratory chain leak out 
to molecular oxygen (O2) to form superoxide radicals and 
then dismutate to H2O2. Increased ROS causes cellular 
and metabolic impairment through oxidative damage, 
which results in physiological abnormalities and deleteri-
ous chronic disorders. H2O2 is produced during the oxi-
dation of  As(Ⅲ) to As(V) when intermediary arsine species 
are formed such as dimethylarsinic radicals [(CH3)2As•] 
and dimethylarsinic peroxyl [(CH3)2AsOO•] involving 
O2

•−[42]. Arsenic leads to an increase in consumption of  
oxygen by cells, which results in ROS production and 
hence an increase in oxidative stress[43]. Hepatic and re-
nal heme oxygenase isoform-1 (HO-1) are also involved 
in the production of  ROS by iAs which in turn results 
in extra free iron and biliverdin formation[44]. This free 
iron participates in the Fenton reaction resulting in the 
formation of  hydroxyl free radical (•OH) which attacks 
DNA[45]. 

ROS produced intracellularly at the time of  physi-
ological processes, regulate cell functions, for instance en-
docytic pathways, autophagy, gene expression, intracellu-
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Figure 1  Arsenic methylation pathway in the human body[25]. A: Arsenate 
reductase or purine nucleoside phosphorylase (PNP); B: Arsenite methyl trans-
ferase (As3MT); C: Glutathione S-transferase omega 1 or 2 (GSTO1, GSTO2); 
D: Arsenite methyl transferase (As3MT). SAHC: S-adenosylhomocysteine; 
SAM: S-adenosylmethionine; MMAV: Monomethylarsenic acid; MMAIII: Mono-
methylarsonous acid; DMAV: Dimethylarsenic acid; DMAIII: Dimethylarsinous 
acid.



lar Ca2+, glucose homeostasis, hypoxic and inflammatory 
responses[46-49]. ROS function as second messengers due 
to stimulation/suppression of  numerous signaling fea-
tures by the oxidation of  sulfhydryl groups and by chang-
ing the intracellular redox status, therefore inducing cell 
signaling pathways, downstream gene expression and cell 
reproduction or death[13,20]. The signaling molecules af-
fected include protein tyrosine kinases and phosphatases, 
protein serine/threonine kinases and phosphatases, small 
G proteins, lipid signaling, Ca2+ signaling and transcrip-
tion factors[50]. Biochemical reactions such as glycation 
results in the formation of  advanced glycation end-prod-
ucts (AGEs) and protein oxidation causes alterations in 
cells which in turn results in the formation of  disulfides 
between cysteine and methionine residues, cyclization 
of  polyunsaturated fatty acid residues of  phospholipids 
forming malondialdehyde (MDA), lipid peroxidation, 
4-hydroxy-2-nonenal (HNE) and nucleic acid oxida-
tion[7,8,51,52]. Free radicals produced during iAs metabolism 
are the source of  oxidative stress[45]. Low concentrations 
of  MMAⅢ and DMAⅢ are cytotoxic in human and rat 
skin, bladder, lung cells and human hepatocytes[53-56]. 
Cellular offense in response to methylated metabolites 
is involved in genotoxicity with strong proof  of  oxida-
tive stress as a causal factor. Genotoxicity of  MMAⅢ and 

DMAⅢ can be reversed by ROS inhibitors[57]. Moreover, 
methylated metabolites mainly DMAⅢ and trimethylarse-
nic oxide (TMAO), also play a role in arsenic-induced 
genotoxicity[58]. Cells having low methylation capabili-
ties are more prone to cyotoxicity by arsenic specifying 
that other mechanisms are also employed in cytotoxicity 
induced by arsenic. An in vitro study on mammalian cell 
lines showed that there was no clear link between arsenic 
methylation capability by cells and resulting cytotoxicity 
induced by sodium arsenite[59]. The possible mechanism 
of  arsenic toxicity is depicted in Figure 2.

Arsenic and diabetes mellitus 
Diabetes mellitus is one of  the world’s oldest known dis-
eases. Type 2 diabetes mellitus (T2DM) is a widespread 
global metabolic disorder, distinguished by the unusual 
metabolism of  carbohydrates and lipids, mainly result-
ing either from a fault in insulin secretion and/or insulin 
action, or adipocyte functioning[60]. In T2DM, the entire 
body glucose homeostasis is disrupted due to insulin 
resistance and impaired glucose uptake by peripheral tis-
sues, consisting of  skeletal muscle and adipose tissue. In 
these tissues, glucose homeostasis is regulated by a mech-
anism involving insulin-dependent stimulation of  glucose 
uptake. 
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Figure 2  Mechanism of arsenic toxicity: Arsenic enhances the production of superoxide anion radical which results in a higher oxidant level than antioxi-
dant enzymes involved in the detoxification of superoxide anion radical viz., superoxide dismutase, catalase, glutathione reductase and glucose-6-
phosphate dehydrogenase. SOD: Superoxide dismutase; CAT: Catalase; GPx: Glutathione peroxidase; GR: Glutathione reductase; G-6-PDH: Glucose-6-phosphate 
dehydrogenase; NAD+: Nicotinamide adenine dinucleotide; NADPH: Nicotinamide adenine dinucleotide phosphate reduced.
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ogy of  diabetes mellitus induced by arsenic is more likely 
to be similar to that of  T2DM[6]. According to Wang et 
al[78], there is a relationship between increased risk of  
metabolic syndrome, one of  the most important cardio-
vascular disease risk factors and exposure to iAs in the 
general population[78]. Figure 3 shows the possible way by 
which arsenic causes diabetes mellitus.

Arsenate replaces the phosphate group 
Arsenate (AsV) replaces the phosphate group in various 
biochemical reactions owing to their similar structure and 
properties[79]. Arsenate reacts in vitro with glucose and glu-
conate[80,81] to form glucose-6-arsenate and 6-arsenoglu-
conate, respectively, which are corresponding similar to 
glucose-6-phosphate and 6-phosphogluconate. Arsenate 
also replaces the phosphate group in the sodium pump 
and anion exchange transport system of  human eryth-
rocytes[82]. Arsenate inhibits ATP formation during gly-
colysis by substituting arsenate for the phosphate anion 
in a process known as arsenolysis. In one of  the steps of  
glycolysis, the phosphate group is enzymatically linked to 
D-gylceraldehyde-3-phosphate to form 1,3-diphospho-
D-glycerate. In this reaction, phosphate is replaced by 
arsenate to form an unstable anhydride, 1-arsenato-
3-phospho-D-glycerate, and hydrolyzes into arsenate and 
3-phosphoglycerate. The instability of  arsenic anhydride 
is due to the longer As-O bond length compared with the 
P-O bond length[79]. ATP is not generated during glycoly-
sis in the presence of  arsenate[83,84]. At the mitochondrial 
level, arsenolysis may occur during oxidative phosphory-
lation in the presence of  succinate to form adenosine-5’-
diphosphate (ADP) arsenate[81]. ADP-phosphate formed 
during oxidative phosphorylation is difficult to hydrolyze 
in comparison to ADP-arsenate. During the process of  
cellular respiration, arsenolysis diminished ATP produc-
tion by substituting phosphate with arsenate in respira-
tory pathways. An in vitro study suggested that arsenate 
exposure caused a reduction in ATP in rabbit and human 
erythrocytes[85,86]. The activity of  hexokinase is inhibited 
at higher concentrations of  arsenate[87]. In contrast, the 
two pentavalent forms of  methylated metabolites, mono-
methylarsonate and dimethylarsonate do not disturb the 
metabolism of  phosphate or bind to sulfhydryl groups[88].

Affinity for sulfhydryl group
Arsenic affinity for thiols, especially the vicinal thiols of  
enzymes, is an accepted mechanism for arsenic toxicity, 
thereby inhibits catalytic activity of  an enzyme by binding 
to a thiol-containing active site[84]. Trivalent arsenicals eas-
ily react in vitro with molecules having a sulfhydryl group, 
for instance cysteine and reduced glutathione (GSH)[85]. 
The complex linking vicinal thiols and arsenic is generally 
strong. Three main pathways by which arsenic decreases 
cellular GSH level have been suggested: (1) In the reduc-
tion of  arsenates to arsenites, GSH functions as an elec-
tron donor; (2) Arsenite has a strong affinity for GSH; 
and (3) Arsenic-induced free radicals oxidize GSH. 

As a consequence of  obstruction of  the Kreb’s cycle 

The worldwide incidence of  diabetes among people 
aged 20-79 years was approximately 6.4% in 2010. This 
rate is supposed to rise to 70% in developing countries 
and 20% in developed countries from 2010 to 2030[61]. 
Globally, more than 0.39 million people die every year 
from diabetes which is due to increase in the next de-
cade[62,63]. T2DM is more prevalent than type 1 diabetes 
mellitus. In India, the World Health Organization (WHO) 
reported that about 32 million people suffered from dia-
betes in 2000. According to the International Diabetes 
Federation (IDF), the total number of  diabetic patients is 
nearly 40.9 million which is supposed to increase to 69.9 
million in 2025[64]. Environmental and lifestyle factors are 
the main causes of  this remarkable increase in T2DM 
prevalence[65,66].  

Epidemiological studies suggest that T2DM is one of  
the most familiar non-cancerous metabolic disorders cor-
related with chronic exposure to iAs. Lai et al[67] in 1994 
first established the link between diabetes and iAs. The 
correlation between arsenic toxicity and diabetes mel-
litus is a burning issue. Increased prevalence of  T2DM 
is associated with the use of  drinking water containing 
high levels of  iAs and chronic occupational exposure to 
iAs[68-75]. This is more prevalent in people consuming con-
taminated water in Bangladesh and Taiwan and in those 
working in copper smelters and the art glass industry in 
Sweden[67,70-72,74-76]. According to the American Diabetes 
Association, diabetes due to arsenic toxicity or arsenic-
induced diabetes may be classified under “the other spe-
cific types”[77]. In epidemiologic studies, arsenic exposed 
subjects showed symptoms of  diabetes mellitus similar 
to T2DM[70]. As the symptoms were almost identical to 
those of  T2DM, it is considered that the pathophysiol-
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and disruption of  oxidative phosphorylation by arsenic, 
a reduction in cellular ATP followed by cell death oc-
cur. Due to the interaction of  arsenic with thiol groups, 
methylated trivalent arsenicals such as MMAⅢ inhibits 
GSH reductase and thioredoxin reductase[89,90]. Cellular 
redox conditions are modified by the activities of  methyl-
ated arsenicals, which in turn results in cytotoxicity. GSH 
protects cells from cytotoxins and is also involved in the 
metabolism of  arsenic, through the formation of  GSH 
conjugates. Numerous proteins with regulatory functions 
such as nuclear factor kappa B (NFκB) and adiponectin 
(AP)-1 are susceptible to cellular redox conditions. These 
proteins are regulated by GSH by altering the redox state 
of  particular sulfhydryl groups of  target proteins includ-
ing stress kinases, transcription factors and caspases[91]. 

Arsenic impairs pathways of glucose catabolism 
Insulin-independent diabetes is the common form of  
diabetes mellitus among people chronically exposed to 
iAs[71]. It has been suggested that at the cellular level, iAs 
or its metabolites disturb glucose metabolism and insulin 
signaling. Trivalent arsenicals are moderately effective 
inhibitors of  numerous enzymes involved in glucose me-
tabolism such as succinyl Co-A synthase, α-ketoglutarate 
dehydrogenase and pyruvate dehydrogenase (PDH)[92,93]. 
The PDH complex is the most studied enzyme and is 
considered most sensitive to inhibition by arsenite. Dur-
ing cell respiration, pyruvate is converted into acetyl-CoA 
in the presence of  the pyruvate dehydrogenase enzyme 
complex (dihydrolipoyl transacetylase, dihydrolipoyl 
dehydrogenase, pyruvate decarboxylase, thiamine pyro-
phosphate, lipoic acid, CoASH, FAD, NAD+). Arsenite 
inhibits PDH by binding to the lipoic acid moiety[94]. It 
has been reported that MMAⅢ is a stronger inhibitor of  
PDH than arsenite[93]. The Kreb’s cycle provides reducing 
power in the electron transport chain for ATP genera-
tion. Inhibition of  PDH leads to decreased generation of  
ATP and energy resulting in cell damage and cell death. 

In addition, an organic derivative of  arsenite, pheny-
larsine oxide (PAO) inhibits basal or insulin stimulated 
glucose uptake by canine kidney cells, adipocytes and 
intact skeletal muscle[95-100]. Arsenic interferes with sulfhy-
dryl-containing enzymes such as pyruvate dehydrogenase 
and α-ketoglutarate dehydrogenase, competes with the 
phosphate binding sites on glycolytic enzymes, uncouples 
oxidative phosphorylation and impairs glucose metabo-
lism[101,102]. Arsenic interferes with phosphate binding 
sites in ATP resulting in the formation of  ADP-arsenate 
which inhibits metabolic pathways which require ATP. 
Glucose-6-phosphate is an essential mediator for gly-
colysis, glycogenesis, gluconeogenesis and glycogenolysis, 
and the pentose phosphate pathway (PPP). The PPP 
generates nicotinamide adenine dinucleotide phosphate 
(NADPH), an essential cofactor for glutathione reduc-
tion. Insufficient production of  NADPH from the PPP 
further interrupts the cell’s ability to deal with oxidative 
stress[103]. Glucose-6-phosphate dehydrogenase (G6PDH) 
activity in mice exposed to arsenic, was significantly re-

duced in a time-related manner[104]. G6PDH is an enzyme 
of  the PPP, an alternate metabolic pathway for glucose. 
Reduced blood activity of  G6PDH can lead to oxida-
tive stress-induced diabetes and diminished nitric oxide 
generation[105,106]. Exposure to arsenic also results in an 
increase in glycosylated hemoglobin level which indicates 
high blood glucose level and was reported in Danish 
people working in the wood industry[73]. Thus, individuals 
exposed to iAs both from the environment and occupa-
tionally exposed are prone to diabetes mellitus. 

Modulation of insulin signal transduction pathways
Signal transduction pathways activated by insulin which 
result in glucose uptake have been widely studied. This 
consists of  binding of  the insulin molecule to the 
α-subunit of  the insulin receptor followed by activation 
of  the tyrosine kinase moiety leading to autophosphory-
lation of  the β-subunit of  the insulin receptor, and con-
sequent phosphorylation of   insulin receptor substrate 1 
or 2, phosphorylation and activation of  phosphatidylino-
sitol 3-kinase, and phosphorylation of  phosphatidylino-
sitol-4,5-biphosphate at the cell membrane to phosphati-
dylinositol-3,4,5-triphosphate (PIP3)[107-109]. PIP3 promotes 
phosphorylation of  protein kinase B (PKB/AKt) and 
protein kinase C (PKC) enzymes that is, PKC λ and PKC 
ζ[110,111]. The phosphorylation of  PKB/AKT results in the 
transport of  GLUT4 from the perinuclear space to the 
plasmalemma and the activation of  glucose uptake[112,113]. 

iAsⅢ and methylated arsenicals interfere with the main 
signal transduction pathways in human cells[114]. Arsenic 
exposed cells show inhibition of  the expression or activa-
tion of  PKB/AKT, which is an essential component of  
the insulin stimulated signal transduction pathway. Thus, 
insulin-dependent signal transduction at the PKB/AKT 
level is inhibited, which is responsible for hyperglycemia 
in humans exposed to iAs. An in vitro study showed that 
iAsⅢ interrupts the expression and phosphorylation of  
PKB/AKT and inhibits insulin-stimulated glucose uptake 
and mobilization of  GLUT4[115]. Arsenic is also involved 
in the modulation of  the mitogen-activated protein ki-
nases (MAPK) pathway and related growth factors[114,116]. 
The MAPK signaling pathway regulates stepwise phos-
phorylation of  protein kinases and terminates the activa-
tion of  transcription factors needed for cellular prolifera-
tion, differentiation or apoptosis.

Arsenic specifically inhibits glucose transport
Sulfhydryl groups play an essential role in insulin-depen-
dent and insulin-independent mediated glucose transport 
(GLUT). The thiol component forms a structural bond 
linking the A and B polypeptide chains of  insulin, the α 
and β subunits of  the insulin receptor and the exofacial 
sulfhydryl moiety present on glucose transporters at the 
plasma membrane[6]. PAO forms stable cyclic thio-arse-
nite complexes with vicinal or paired sulfhydryl groups 
of  cellular proteins and inhibits glucose transport in adi-
pocytes[95,117]. Moreover, PAO prevents insulin-stimulated 
glucose transport without affecting insulin binding to its 
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receptor[117]. PAO only affects insulin-dependent GLUT4 
present in adipocytes and myocytes[118]. 

However, the effect of  arsenite on glucose transport is 
dose-dependent.  Studies have shown that arsenite stimu-
lates glucose uptake at higher concentrations, while at low 
level, glucose uptake decreases[119]. Arsenite does not disturb 
regulation of  GLUT4 gene expression, thus overall GLUT4 
quantity does not alter. Walton et al[115] examined the dose-
dependent decrease in insulin-stimulated glucose uptake in 
3T3-L1 adipocytes treated with iAs and its metabolites.

Effect on gene expression 
There are many studies which support that diabetes is in-
duced by arsenic via alteration in gene expression. When 
isolated rat pancreatic β-cells were exposed to 5 µmol/L 
arsenite for 72 h, mRNA expression and insulin secre-
tion decreased[9]. An in vitro study showed that exposure 
to arsenite decreased the gene expression and activity of  
catalase, whereas the production of  ROS increased[120]. 
Peroxisome proliferative-activated receptor-γ (PPAR-γ) 
(a transcription factor) controls the main gene expression 
for insulin sensitivity. When mouse adipocytes from the 
C3H 10T1/2 cell line were exposed to 6 µmol/L arsenite, 
alteration in the expression of  PPAR-γ and AP-2 genes 
occurred which resulted in the inhibition of  mRNA and 
reversal of  adipocyte differentiation[121]. The transcription 
of  cytokines, namely tumor necrosis factor-α (TNF-α) 
and interleukins (IL), required in insulin resistance, are 
regulated by NF-kB[122]. When human bronchial epithe-
lial cell lines were exposed to 18 µmol/L arsenite for 12 
h, NF-kB dependent genes were activated. In contrast, 
exposure to 12.5 µmol/L arsenic in TNF-α stimulated 
HeLa cells for 2 h resulted in inhibition of  NF-kB activa-
tion and IkB degradation[123,124]. When human GM847 fi-
broblast cells were exposed to 0.1 and 5 µmol/L arsenite 
for 24 h, upregulation and expression of  c-fos and c-jun 
genes and DNA binding activity of  AP-1 takes place[125].  

Arsenic upregulates inflammatory cytokines from 
mononuclear cells. When human peripheral mononuclear 
cells were exposed to very low arsenite levels, TNF-α pro-
duction increased 2-fold[126]. Studies have shown that when 
blood arsenic level ranged from 0.128 to 0.62 µmol/L, the 
expression of  IL-6 increased 3-fold[127]. Expression and 
phosphorylation of  AKT were suppressed when 3T3-L1 
adipocytes were exposed to trivalent arsenicals[115]. Activa-
tion of  AKT by PDK-1 phosphorylation, is also inhibited 
by arsenite[128]. In adipocyte cells, exposure to arsenite at 
high levels reduced the expression and phosphorylation 
of  AKT genes, while at low levels expression was stimu-
lated[115,129]. In addition, the expression of  phosphoenol 
pyruvate carboxykinase (PEPCK) increased in chick 
embryos after exposure to high dose arsenite, which may 
be due to the interaction of  arsenic with glucocorticoid 
receptor complexes[130,131]. 

EVIDENCE OF ALTERED ARSENIC 
METABOLISM IN DIABETES MELLITUS 
T2DM is hypothetically related to variations in blood ar-

senic concentration and there is evidence to suggest that 
arsenic metabolism is modified in people with T2DM and 
these factors have precise roles in the pathogenesis and 
progression of  this disorder[132]. Many in vivo and in vitro 
studies have shown that iAs induces diabetes, but some 
experiments contradict these reports. There are convinc-
ing reports that diabetes alters the pharmacodynamics 
and pharmacokinetics of  drugs/xenobiotics in humans 
and animals[133,134]. Our previous studies showed that ar-
senic exposure causes the inhibition of  hyperglycemia in 
diabetic rats and mice (Kulshrestha et al, Unpublished ob-
servation). Arsenic exposure in diabetic rat results in the 
promotion of  insulin secretion and decrement of  arsenic 
concentrations[135,136].  

The causal correlation between arsenic exposure and 
diabetes mellitus is still debated. Various epidemiologi-
cal studies performed in arsenic-contaminated regions 
proved the relationship between chronic arsenic exposure 
and diabetes mellitus, however, the exact mechanism is 
not known[137]. Various animal studies on the effects of  
exposure to arsenic on glucose metabolism and insulin 
secretion show inconsistent results due to variations in 
animal species, dose and time of  exposure[128,137]. The 
studies carried out by Wang et al[138] in both humans and 
rats suggested that glucose metabolism is altered by arse-
nic.

ARSENIC AND NUTRITIONAL STATUS 
Hsueh et al[139,140] suggested that arsenic toxicity is associ-
ated with nutritional status in residents living in arsenic-
contaminated areas such as Taiwan. As arsenic causes 
toxicity via oxidative stress, thereby decreasing antioxidant 
enzyme activity, it is possible that there is a link between 
arsenic-induced diabetes mellitus and antioxidant defi-
ciency, and that the individual consuming less antioxidants 
has an increased risk of  diabetes mellitus and cardiovas-
cular disease[141]. Thus, good nutritional status with suf-
ficient antioxidant intake reduces the chance of  arsenic-
induced diseases. As arsenic interferes with GSH, people 
with diabetes have a lower level of  GSH[142]. It was found 
that selenium, which is required for GSH biosynthesis, is 
significantly lower in arsenic exposed subjects than in nor-
mal controls[143,144]. GSH is required for the correct action 
of  insulin and increased uptake of  glucose, and is obliga-
tory for the excretion of  arsenic[145]. Animal studies have 
shown that nutritional status modifies arsenic toxicity. A 
choline or methionine deficient diet (source of  methyl 
donor group) results in a reduction in arsenic methylation, 
which leads to high retention of  arsenic in the body and 
an increase in toxicity[146-148]. Therefore, by consuming me-
thionine rich diets, arsenic toxicity can be alleviated. 

Preventive and therapeutic measures are available 
against arsenic toxicity. The roles of  chelating agents, 
antioxidants, natural/herbal remedies as protective/thera-
peutic agents against arsenic toxicity are discussed below.

Chelating agents 
The formation of  a metal ion complex is known as che-
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lation in which two or more separate coordinate bonds 
are formed between monodentate or polydentate ligands 
and metal ions. These ligands are referred to as chela-
tors or chelating agents and are organic compounds able 
to link together metal ions to form a complex structure 
called chelates. In chelation therapy, chelating agents are 
used to detoxify toxic heavy metals such as arsenic, and 
convert them to a chemically inert form with greater 
water solubility, which increases their excretion by the 
kidney without further interaction within the body. Vari-
ous chelating agents are used to treat arsenic toxicity[149]. 
The first chelating agent used was British Anti Lewisite 
(BAL) which was used during World War Ⅱ. This is a di-
thiol compound used as a therapeutic agent against heavy 
metal toxicity. Despite its capacity to treat metal toxicity, 
its use is limited due to a low therapeutic index[150]. Other 
metal chelators such as meso-2,3-dimercaptosuccinic acid 
(DMSA) and 2,3-dimercapto-1-propanesulphonic acid 
(DMPS) can be administered for a much longer time due 
to their very low toxicity[151]. DMSA decreases the arsenic 
burden in cells by inhibiting the constant formation of  
ROS[152]. Subsequently, numerous esters of  DMSA have 
been produced to achieve more advantageous chela-
tion. Flora et al[153] found that administration of  dimethyl 
DMSA (DMDMSA), diethyl DMSA (DEDMSA), diiso-
amyl DMSA and diisopropyl DMSA (DiPDMSA) led to 
a decrease in arsenic content in blood and soft tissues, 
but was less effective in recovering biochemical altera-
tions following sub-chronic arsenic exposure in rats[153]. 
Kreppel et al[154] observed that administration of  the 
monoesters, mono isoamyl DMSA (MiADMSA), mono 
n-amyl DMSA (MnDMSA), mono n-butyl DMSA (MnB-
DMSA) and mono i-butyl DMSA (MiBDMSA) were able 
to reduce the arsenic concentration in tissues, of  which 
MiADMSA and MnADMSA were found to be most ef-
fective in mice[154]. Administration of  MiADMSA (Figure 
4) and mono methyl DMSA (MmDMSA) (Figure 5) 
resulted in a reduction in arsenic concentration in blood 
and soft tissues in experimental animals[155,156]. Despite the 
beneficial effects of  chelating agents against arsenic tox-
icity, they have some drawbacks, such as non-specificity, 
low therapeutic index, failure to permeate the plasma 
membrane and metal redeployment, and induce side ef-
fects including headache, nausea, and vomiting, thus their 
use has been limited[157]. Although these chelating agents 
enhance arsenic excretion, these agents have numerous 

drawbacks. Therefore, the identification of  novel thera-
pies without side-effects and complete medical recovery 
in terms of  altered biochemical variables such as com-
plete removal of  metals are necessary.

Antioxidants 
Arsenic exposure results in the production of  ROS, thus 
cellular antioxidants are reduced. To prevent the increased 
production of  ROS and their deleterious effects, the 
body’s antioxidant system which consists of  superoxide 
dismutase (SOD), glutathione reductase (GR), catalase, 
glutathione peroxidase (GPx), and reduced glutathione 
(GSH) scavenge ROS. In addition to this endogenous 
system, antioxidant status is improved by the administra-
tion of  exogenous antioxidants such as vitamin C and E, 
quercetin, N-acetylcysteine (NAC), and α-lipoic acid.  

N-acetylcysteine (NAC), the thiol-based antioxidant, 
is an originator of  L-cysteine and GSH and stimulates 
glutathione synthesis (Figure 6). It protects cellular com-
ponents against oxidative stress[6,158]. It stimulates the 
production of  GSH, hence retaining intracellular GSH 
level[159]. NAC plays an essential role in the chelation of  
toxic metals[160,161]. Co-administration of  NAC and zinc 
alleviates arsenic-induced hepatic and renal toxicity[162]. 
Flora et al[163] developed a new treatment strategy consist-
ing of  combination therapy with DMSA and NAC, to 
achieve better results against arsenic toxicity in rats. NAC 
is effective against arsenic toxicity and recovered the level 
of  hepatic malondialdehyde[164]. The protective effect of  
NAC against arsenic toxicity in animals has been sug-
gested by Hemalatha et al[165] and Reddy et al[158]. 

Quercetin (3,3’,4’,5,7-pentahydroxyflavon) is a bio-
flavonoid found in fruits, vegetables, seeds and flowers 
(Figure 7). It has very strong antioxidant properties and 
prevents cell apoptosis caused by oxidative stress[166]. 
Quercetin scavenges superoxide radicals and protects 
against lipid peroxidation and chelates metal ions. An in 
vitro study showed that quercetin prevented cytotoxic-
ity due to low-density lipoproteins[167]. Quercetin co-
administration with a thiol chelator was found to be more 
efficient in reducing body arsenic burden[168].

α-lipoic acid (LA, 1,2-dithiolane-3-pentanoic acid) is 
a dithiol antioxidant produced from octanoic acid in the 
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mitochondria. LA is an essential cofactor for α-ketoacid 
dehydrogenase in mitochondria. In addition to produc-
tion, LA is also consumed in the diet from wheat germ, 
beer, yeast, and red meat[169]. After consumption, it is tak-
en up into the circulatory system and traverses the blood-
brain barrier, where it is reduced to dihydrolipoate[170]. LA 
and dihydrolipoic acid (DHLA) are able to scavenge free 
radicals and chelate metals (Figure 8). LA treatment re-
duces arsenic-induced oxidative damage in vivo due to its 
chelation and free radical scavenging properties[171,172].  

A range of  vitamins possess antioxidant properties 
against arsenic poisoning. The consumption of  vitamins 
A, C and E plays a protective role against arsenic toxic-
ity[173]. Vitamin C is hydrophilic and is an intracellular and 
extracellular antioxidant capable of  scavenging ROS in 
vivo and in vitro by electron transfer to inhibit lipid peroxi-
dation. It traps free radicals and protects biomembranes 
from oxidative damage. Vitamin C alleviates arsenic-in-
duced oxidative stress in mouse liver[174]. Its advantageous 
effect is due to its capability to form a complex with arse-
nic[6]. 

Vitamin E is a lipid soluble vitamin and its active 
form is α-tocopherol. It is assembled in lipophilic sites 
of  the cell membrane and protects the membrane against 
oxidative damage. It donates an electron to the peroxyl 
radical, which is produced during lipid peroxidation[175]. 
Vitamin E has the ability to scavenge free radicals, hence 

protects against arsenic toxicity. An in vivo study showed 
that vitamin E treatment is effective against hepatotoxic-
ity, nephrotoxicity and regulates altered variables of  the 
heme synthesis pathway[6].  

Co-administration of  vitamin C and E in combina-
tion with a chelator was found to be more effective than 
chelator alone in sub-chronically arsenic-exposed rats[39]. 
Administration of  vitamin C and E reduced the rate of  
DNA fragmentation in arsenic exposed rats[176]. Some 
other vitamins such as A and B have also been reported 
to be effective against arsenic poisoning. Therapy with 
folic acid and vitamin B12 alleviated oxidative damage 
induced by arsenic in cardiac tissue[177]. A cross-sectional 
study performed in Bangladesh, reported that the intake 
of  B-vitamins and antioxidants may reduce the risk of  
arsenic-related skin lesions[178]. Other antioxidants such 
as taurine can be very useful in reducing oxidative stress 
induced by arsenic[179]. 

Herbal/Natural remedies 
For several years, herbal/natural remedies have been used 
all over the world as therapeutic and prophylactic agents. 
The synergistic action of  a broad range of  antioxidants 
from natural sources is better than the activity of  a single 
or synthetic antioxidant[180]. The use of  conventional 
remedies, obtained from plants has been very important 
in managing arsenic toxicity. Numerous plants/spices or 
their extracts possess antioxidant effects. The adminis-
tration of  various plant/spice extracts, such as Spirulina, 
Curcumin, Moringa oleifera, Hippophae rhamnoides, Centella 
asiatica, Allium sativum, Mentha piperita, and Aloe vera bar-
badensis, has shown preventive and therapeutic effects 
against arsenic exposure in animals[179,181]. 

With regard to natural and bio-available sources of  
antioxidants, we explored the beneficial effects of  Spiru-
lina in arsenic exposed diabetic rats. Spirulina administra-
tion was found to be associated with the alleviation of  
various metabolic disorders such as diabetes mellitus and 
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drug-metal-induced toxicities[181-183]. Our studies on arse-
nic toxicity showed that the administration of  Spirulina 
suspension for one week resulted in a reduction in arse-
nic burden, restoration of  blood glucose and insulin level 
in rats (Kulshrestha et al; Unpublished observations). 
Spirulina has significant antioxidant activity due to the 
presence of  an enormous amount of  phycobiliproteins, 
phycocyanin and allophycocyanin, phenolic compounds, 
γ-linoleic acid, minerals, tocopherols, β-carotenes, vitamin 
E & C and selenium[184,185]. Spirulina possesses free radical 
scavenging properties in addition to its biosorption effect 
against heavy metal toxicity[186-189]. Rahman et al[190] and 
Karkos et al[191] studied the efficacy of  Spirulina in patients 
with chronic arsenicosis and found that Spirulina reversed 
the changes caused by arsenic[190,191].  

Centella or Indian Pennywort, Centella asiatica (L.) 
Urban Syn. and Hydrocotyle asiatica L. belong to the family 
Apiaceae. C. asiatica is useful for restoring biochemical 
alterations in arsenic-induced toxicity. It depletes tissue 
arsenic concentrations, to some extent, in rats[192]. Sea 
buckthorn (Hippophae rhamnoides L.) Elaeagnaceae, is a ni-
trogen fixing shrub found in Europe and Asia. It is now 
cultivated in various parts of  the world for nutritional and 
remedial purposes. The whole plant is an excellent source 
of  various bioactive compounds such as carotenoids (α, 
β, δ-carotene, lycopene), vitamins (A, C, E, K, riboflavin, 
folic acid), organic acids (malic acid, oxalic acid), phytos-
terols (ergosterol, stigmasterol, lanosterol, amyrins), and a 
few vital amino acids[193-195]. In vitro and in vivo studies have 
shown the antioxidant and immunomodulatory proper-
ties of  Sea buckthorn[196]. The antioxidant activities of  H. 
rhamnoides extract is due to the presence of  flavanoids and 
phenolic compounds which exhibit free radical scaveng-
ing properties[197]. Gupta and Flora evaluated the protec-
tive role of  the aqueous extract of  H. rhamnoides fruit 
against arsenic toxicity. However, this extract does not 
have the ability to chelate arsenic, and it is recommended 
that it should be administered along with an effective 
chelating agent to achieve the best possible outcome in 
chelation treatment[198]. 

Garlic, Allium sativum L. belongs to the family Al-
liaceae, and contains a high concentration of  sulfur 
compounds. Some biologically active sulfur-containing 
lipophilic compounds are allicin (diallyl thiosulfinate or 
diallyl disulfide, DADS), S-allylycysteine (SAC), and di-
allylsulfide (DAS) and hydrophilic compounds include 
s-ethyl cysteine (SEC) and N-acetylcysteine (NAC), which 
are responsible for antioxidant activities due to the stimu-
lation and modification of  enzymes such as 3-hydroxy-3 
methylglutaryl-CoA reductase, glutathione-s-transferase 
and catalase[199,200]. In vitro and in vivo studies demonstrated 
that administration of  the aqueous extract of  garlic 
resulted in the reduction of  tissue arsenic burden and 
enhanced urinary arsenic excretion, which was due to the 
chelating properties of  thiosulfur components such as al-
licin[165,201].  

Moringa oleifera is another plant belonging to the Mor-
ingaceae family, which exhibits antioxidant and chelating 

properties. The seed powder of  M. oleifera protected ani-
mals from arsenic-induced oxidative damage and reduced 
arsenic concentrations[202]. This protection may be due to 
the presence of  ascorbic acid, and cysteine and methio-
nine rich proteins in the seed powder[203,204]. Curcumin, a 
polyphenolic compound, is another herbal product which 
is a major constituent of  Curcuma longa (Zingiberacea 
family). It possesses numerous pharmacological activities 
including antioxidant and anti-inflammatory. Curcumin 
protects the hepatic tissues from arsenic-induced imbal-
ance in antioxidants and oxidants. It also reduces hepatic 
arsenic burden[205]. Curcumin prevents arsenic-induced 
neurotoxicity and hepatotoxicity during embryonic de-
velopment[206,207]. Other herbal products including Mentha 
piperita leaf  extract and Aloe vera barbadensis also showed 
protective effects against arsenic toxicity[208,209]. 

CONCLUSION 
Arsenic is omnipresent in the environment, however, 
drinking water, including both groundwater and surface 
water supplies, is regarded as a major route of  human 
exposure to iAs in arsenic-contaminated regions. Arsenic 
ingestion through the food chain may affect physiological 
and biochemical processes in the body. Although human 
exposure to arsenic is known to induce adverse health 
effects, the level and time of  exposure as well as genetic 
susceptibility are important factors in outcome. Arsenic 
exposure plays an etiological role in diabetes develop-
ment. Low or moderate arsenic exposure plays a positive 
role, while a high level of  arsenic is associated with the 
risk of  developing type-2 diabetes. Studies associated 
with the biochemical mechanism(s) in relation to arsenic 
exposure and risk of  developing diabetes are still conten-
tious and need to be delineated further. Although various 
therapeutic and nutritional strategies are available to al-
leviate arsenic toxicity, more preventive and therapeutic 
measures against arsenic toxicity are required. 
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