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Abstract
The renin-angiotensin system (RAS) has been known 
for more than a century as a cascade that regulates 
body fluid balance and blood pressure. Angiotensin Ⅱ
(Ang Ⅱ) has many functions in different tissues; how-
ever it is on the kidney that this peptide exerts its main 
functions. New enzymes, alternative routes for Ang Ⅱ
formation or even active Ang Ⅱ-derived peptides have 
now been described acting on Ang Ⅱ AT1 or AT2 recep-
tors, or in receptors which have recently been cloned, 
such as Mas and AT4. Another interesting observation 
was that old members of the RAS, such as angioten-
sin converting enzyme (ACE), renin and prorenin, well 
known by its enzymatic activity, can also activate intra-
cellular signaling pathways, acting as an outside-in sig-
nal transduction molecule or on the renin/(Pro)renin re-
ceptor. Moreover, the endocrine RAS, now is also known 
to have paracrine, autocrine and intracrine action on 

different tissues, expressing necessary components for 
local Ang Ⅱ formation. This in situ  formation, especially 
in the kidney, increases Ang Ⅱ levels to regulate blood 
pressure and renal functions. These discoveries, such 
as the ACE2/Ang-(1-7)/Mas axis and its antangonistic 
effect rather than classical deleterious Ang Ⅱ effects, 
improves the development of new drugs for treating 
hypertension and cardiovascular diseases.
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Core tip: Activation of the angiotensin converting en-
zyme (ACE)/ Angiotensin Ⅱ (Ang Ⅱ)/AT1 axis leads to 
vasoconstriction, anti-diuresis, anti-natriuresis, release 
of aldosterone and anti-diuretic hormone, which can re-
sult in hypertension, renal and cardiovascular diseases. 
Inhibition of renin and ACE or blocking AT1 receptor is 
the most used therapies for heart failure and hyperten-
sion. Nevertheless, the discovery of local Ang Ⅱ syn-
thesis, new Ang Ⅱ metabolites, receptors and axis of 
this system, makes possible the development of new 
drugs and strategies for renal and cardiovascular dis-
eases treatment, such as activation of ACE2/Ang-(1-7)/
Mas axis, which presents opposite effects of AT1 activa-
tion by Ang Ⅱ. 
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RAS IS NOT ONLY AN ENDOCRINE 
SYSTEM
The first observation that the arterial blood pressure 
could be regulated was in 1898 after the discovery of  a 
soluble protein extracted from the kidney that increased 
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blood pressure in rabbits, called “renin”[1]. Over 30 years 
later, Goldblatt et al[2] associated the decrease of  blood 
pressure in kidneys with hypertension by using a silver 
clamp to partially constrict dogs renal arteries, resulting 
in reno-vascular hypertension. Using the same methodol-
ogy as Goldblatt, Braun-Menendez et al[3] in 1940 isolated a 
vasoconstrictor substance responsible for the reno-vascular 
hypertension from renal venous blood of  the hypertensive 
kidney dog, calling it “hypertensin”. Page et al[4] indepen-
dently described a vasoconstrictor substance by injecting 
renin into cats, called “angiotonin”. The same group also 
described angiotensinogen, first referred to as a “renin 
activator”[4]. The name “angiotensin” for the vasocon-
strictor substance “hypertensin” by Braun-Menendez and 
“angiotonin” by Page emerged in 1958 after they both 
agreed on this hybrid name, since these 2 substances 
proved to be the same potent vasoactive octapeptide. 
The World Health Organization and the American Heart 
Association in 1987 suggested the abbreviation Ang 
for angiotensin, numbering the amino acids residues of  
angiotensin Ⅰ (Ang Ⅰ) as a reference for all angiotensin-
derived peptides[5]. The decapeptide Ang Ⅰ has no physi-
ological effect, but is hydrolyzed by angiotensin convert-
ing enzyme (ACE) generating angiotensin Ⅱ (Ang Ⅱ), 
which was considered the only peptide in renin-angioten-
sin system (RAS) with biological actions[6]. 

More than a century since the discovery of  renin 
by Robert Tigerstedt and Bergman[1], the RAS, remains 
a fascinating subject for research. Although it is well 
known the distinct roles of  RAS in different tissues, such 
as brain, adipose tissue, gastrointestinal tract and cardio-
vascular system[7-10], it is on the kidney that Ang Ⅱ has 
its main function on regulating body fluid content and 

blood pressure by alterating Na+ and water homeostasis, 
intrarenal hemodynamics and glomerular filtration[11,12]. 
Ang Ⅱ stimulates anti-diuretic hormone secretion in the 
pituitary gland with increased water reabsorption in the 
collecting duct, and also increases aldosterone secretion, 
a steroid hormone synthesized mainly by the adrenal 
cortex, and a downstream effector of  Ang Ⅱ that in-
duces sodium reabsorption and concomitant potassium 
and hydrogen ion excretion by the kidney[13].

Many new findings suggest new properties of  this 
system, with new enzymes, different routes for Ang Ⅱ 
formation, new receptors and active Ang Ⅱ-derived 
peptides (Table 1). The classical axis ACE/Ang Ⅱ
/AT1 is not the only signaling pathway within RAS, 
since others such as angiotensin converting enzyme 2 
ACE2/Ang-(1-7)/Mas receptor and Angiotensin IV/
AT4 indicate new activities for this cascade[14,15]. Besides 
the inhibition of  renin and ACE, and also angiotensin 
type 1 receptor (AT1) blockade, activation of  the ACE2/
Ang-(1-7)/Mas axis is a possible alternative target for 
new drugs, since some protective effects on renal and 
cardiovascular function have been reported[14,16-18]. Ang 
Ⅱ is not the only active peptide of  the RAS, there now 
being physiological properties associated with many Ang 
Ⅱ-derived peptides[14,15,19]. Ang Ⅱ can be hydrolyzed 
by > 13 “angiotensinases”, proteolytic enzymes such 
as aminopeptidases, carboxipeptidases, endopeptidases, 
ACE2 and neprilysin, generating angiotensin Ⅲ (Ang Ⅲ), 
angiotensin Ⅳ (Ang Ⅳ), angiotensin-(1-7) [Ang-(1-7)], 
angiotensin-(3-4) [Ang-(3-4)], angiotensin A (Ang A), 
and alamandine, which can bind to specific receptors or 
act on the same receptors as Ang Ⅱ[14,15,19-22]. Although 
AT1 and AT2 receptors are the most studied receptors 
for Ang Ⅱ, two other receptors - Mas receptor for 
Ang-(1-7), and AT4 receptor for Ang Ⅳ - have been 
cloned[14,15]. Ang Ⅱ-derived peptides could have similar 
effects to Ang Ⅱ, or counteract its effects on renal func-
tion. For instance, like Ang Ⅱ, Ang-(1-7) can increase 
intracellular Ca2+ via AT1 receptor, but has the opposite 
effect to Ang Ⅱ, since it can induce antiproliferative and 
protective effect through the Mas receptor[23,24]. New 
functions for well known members of  the RAS have 
been found. For example, ACE, known for its catalytic 
action on Ang Ⅰ, also functions as a signal transduc-
tion molecule, initiating a series of  intracellular events 
when stimulated[25,26]. Besides increasing catalytic activity 
of  renin and prorenin, the renin/(Pro)renin receptor 
(PRR), cloned in 2002[27], can also induce an intracellular 
signaling pathway generating effects in an angiotensin-
independent manner[6,27].

It is now considered that RAS assumes paracrine, au-
tocrine and intracrine mechanisms of  action in hormone 
signaling[6,28]. Many tissues and cells, including kidneys, 
have all the necessary RAS components to form Ang 
Ⅱ in situ[29-31]. Renal levels of  Ang Ⅱ are much higher 
than in the plasma[32], indicating that the source of  Ang 
Ⅱ within the kidney is not only provided by filtered 
plasma Ang Ⅱ. The kidney expresses all the major com-
ponents of  the RAS, such as angiotensinogen, renin and 
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Classic RAS Recent RAS

  Hormone process Endocrine Paracrine
Autocrine
Intracrine

  Bioactive peptide Ang Ⅱ Ang Ⅱ
Ang III
Ang IV

Ang-(1-7)
Ang-(3-4)

Ang A
Alamandine

  Receptor AT1 AT1a

AT2 AT1b

AT2

Mas
Mrg
AT4
PRR
ACE

Table 1  Comparison of the components from classic and re-
cent renin-angiotensin system

Ang: Angiotensin; ACE: Angiotensin converting enzyme; AT1: Angioten-
sin type 1 receptor; AT2: Angiotensin type 2 receptor; AT4: Angiotensin 
type 4 receptor; Mas: Ang-(1-7) Mas receptor; Mrg: Mas-related G-protein-
coupled receptor; PRR: Renin/(Pro)renin receptor; RAS: Renin-angioten-
sin system.



ACE[29-31]. Locally synthesized Ang Ⅱ can act on cell sur-
face, nuclear and cytoplasmic AT1 and AT2 receptors[33-35].

We will describe a novel view of  the classic RAS that 
includes new members, routes, receptors, and new drugs 
and targets for the treatment of  heart failure and hyper-
tension. Due to the high Ang Ⅱ concentration in dif-
ferent compartments of  the kidney, and the importance 
of  Ang Ⅱ effects on renal function in physiological and 
physiopathological conditions, the focus will be on the 
intrarenal RAS, especially its paracrine and intracrine 
functions. This new aspect of  RAS will improve our 
present understanding of  RAS and the role of  its new 
members, which should benefit the development of  new 
treatments for hypertension and kidney diseases.

NEW MEMBERS OF RAS: 
ANG II-DERIVED PEPTIDES
Classically, renin is secreted by juxtaglomerular cells in re-
sponse to 3 stimuli: (1) decreased arterial blood pressure, 
detected by baroreceptors; (2) decreased sodium levels in 
the macula densa ultrafiltrate; and (3) increased sympa-
thetic nervous system activity. Renin is an enzyme with 
only one known substrate, angiotensinogen. The reaction 

catalyzed by renin, generating the decapeptide Ang Ⅰ, is 
the rate-limiting step in Ang Ⅱformation. Ang Ⅰ is then 
converted to Ang Ⅱ by ACE, a monomeric glycoprotein 
that acts as an exopeptidase to cleave dipeptides from the 
C-terminus of  Ang Ⅰ -(1–10) (Asp-Arg-Val-Tyr-Ile-His-
Pro-Phe-His-Leu) into the octapeptide Ang Ⅱ-(1-8)[36] 
(Figure 1). The main Ang Ⅱ effects are mediated by 
the AT1 receptor, such as vasoconstriction, anti-diuresis, 
anti-natriuresis, release of  aldosterone and anti-diuretic 
hormone, whereas AT2 activation counterbalances these 
effects[19,36,37].

It is widely accepted that small peptides derived from 
Ang Ⅱ have local physiological effects, especially in the 
kidney (Figure 1). ACE2 is a transmembrane glycopro-
tein that shares a 42% of  homology with ACE and con-
tains a single active site domain more closely to the N 
domain of  ACE[16,38]. Unlike ACE, ACE2 is a monocar-
boxypeptidase, generating Ang-(1-7) by the cleavage of  a 
single Phe residue from Ang Ⅱ, and Ang-(1-9), remov-
ing the C-terminal Leu residue from Ang Ⅰ [16,38]. Within 
the renal brush-border vesicles of  the rat, Ang-(1-7) is 
preferentially hydrolyzed by aminopeptidases and ne-
prylisin (NEP) after aminopeptidase blockade, generat-
ing Ang-(1-4)[39]. In the basolateral membrane, brush-
border vesicles of  the pig and purified preparations of  
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Figure 1  Classic view of renin-angiotensin system cascade (blue) and recent view of renin-angiotensin system cascade (green). AP: Aminopeptidase; APA: 
Aminopeptidase A; APN: Aminopeptidase N; CP: Carboxypeptidase; EP: Endopeptidase; ACE: Angiotensin converting enzyme; ACE2: Angiotensin converting enzyme 2; 
CPP: Carboxypeptidase P; PRCP: Prolyl carboxypeptidase; NEP: Neprilysin; PO: Prolyl oligopeptidase; Mas: Ang-(1-7) Mas receptor. Adaptated from Axelband et al[20] 
with permission.
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renal NEP Ang I is hydrolyzed primarily to Ang-(1-7) 
and Ang-(1-4)[40,41]. In sheep proximal tubules, urine and 
serum, Ang Ⅱ is converted to Ang-(1-7) by both mem-
brane-bound and soluble forms of  ACE2[38]. 

The physiological importance of  Ang-(1-7) has be-
come increasingly evident, especially after Santos et al[14] 
found a G protein-coupled receptor for Ang-(1-7), the 
Mas receptor, using a selective Ang-(1-7) antagonist. The 
Mas protooncogene was cloned and sequenced in 1986, 
after being detected by its tumorigenicity in mice[42]. 
This gene encodes a protein with 7 hydrophobic trans-
membrane domains, first considered as an ‘‘orphan’’ G 
protein-coupled receptor[43]. Ang-(1-7) exerts many ef-
fects on renal function, such as diuresis and natriureses, 
and it can be detected in human urine[44]. This peptide is 
of  importance during late gestation in rats, where RAS 
overactivity is associated with increased kidney and urine 
levels of  Ang-(1-7) and enhanced kidney immunostain-
ing of  Ang-(1-7) and ACE2[45].

Diuretic/natriuretic effects of  Ang-(1-7) may also 
be due to the regulation of  Na+ reabsorption within the 
proximal tubule. In vivo and in vitro studies showed that 
Ang-(1-7) is a potent inhibitor of  Na+ reabsorption in 
this nephron segment, acting on different receptors[46-49]. 
Ang-(1-7) can bind to distinct receptors and induces dif-
ferent cellular responses depending on the cell type. For 
instance, in distal tubule cell (MDCK), Ang-(1-7) inhibits 
(Na+ + K+)-ATPase activity through the AT1 recep-
tor to stimulate the PI-PLC/PKC signaling pathway[47], 
whereas in the proximal tubule, it inhibits Na+-ATPase 
via the AT2/G(i/o) protein/cGMP/PKG pathway[48]. 
Moreover, at different concentrations of  Ang-(1-7) (10-12, 
10-9, or 10-6 mol/L) used in intratubular perfusion in 
the absence or presence of  the Mas receptor antagonist 
(A779) of  rat isolated proximal tubules, it was shown 
that Ang-(1-7) has a biphasic dose-dependent effect 
on the Na+/H+ exchanger mediated by Mas receptor 
and gave a moderate increase in intracellular Ca2+ levels 
([Ca2+]i)[49]. Increased [Ca2+]i stimulated by Ang-(1-7) also 
occurred in MDCK cells, but through the AT1 receptor, 
which in turn stimulated Ca2+ release from endoplasmic 
reticulum via the PLC pathway and Ca2+ influx through 
PLA2-dependent store-operated Ca2+ entry[24]. In this 
way, ACE2/Ang-(1-7)/Mas axis can counteract most 
of  the deleterious effects of  ACE/Ang Ⅱ/AT1. It has 
been corroborated that acute intravenous infusion of  
Ang-(1-7) induces diuresis, natriuresis and renal vasodila-
tation[50]. 

Like to Ang-(1-7), there is another heptapeptide de-
rived from Ang Ⅱ having the opposite effect to Ang Ⅱ, 
namely Ang-(2-8), also known as Ang Ⅲ. Ang Ⅱ can be 
hydrolyzed by aminopeptidase A, generating Ang Ⅲ[51] 
(Figure 1). Heretofore there has been no evidence of  a 
specific receptor for Ang Ⅲ, and Ang Ⅲ normally binds 
to AT1 with greater affinity than to the AT2 receptor in-
ducing natriuresis on rats[52,53]. Intrarenal Ang Ⅲ induces 
natriuresis via the AT2 receptor in the proximal tubule by 
a cGMP-dependent mechanism[51].

Ang Ⅲ can be hydrolyzed by aminopeptidase N gen-

erating Ang-(3-8), also called Ang IV, which can be also 
generated directly from Ang Ⅱ by D-aminopeptidase[20,54]. 
The receptor for Ang IV, AT4, was initially detected in 
the guinea pig hippocampus[15]. Protein purification and 
peptide sequencing showed that the AT4 receptor is an 
insulin-regulated aminopeptidase[54]. AT4 receptor is also 
found in the kidney, where this angiotensin-derived frag-
ment can elicit many responses[55]. Aminopeptidases A 
and N are abundant in the kidney, especially in proximal 
nephron, and Ang Ⅳ is formed in the glomerulus[56,57]. 
Ang Ⅳ increases blood flow in the kidney and decreases 
in Na+ transport in proximal tubules[55]. Ang Ⅳ induces 
Ca2+ mobilization in human proximal tubule cells[58] 
through the AT1 receptor. In AT4 knockout (-/-) mice, 
Ang Ⅳ mediated its renal vasoconstrictor effects through 
AT1a receptors[59].

Ang Ⅱ can also be hydrolyzed to dipeptides that 
are biological active, and we have found an alternative 
pathway for Ang-(1-7) formation from Ang Ⅱ by car-
boxypeptidase N, and posterior generation of  Ang-(3-4) 
with Ang-(1-5) and Ang-(1-4) as intermediate peptides[20] 
(Figure 1), using isolated basolateral membranes from 
sheep proximal tubules and different peptidase inhibi-
tors. Ang-(3-4) could counteract inhibition of  plasma 
membrane Ca2+-ATPase promoted by nanomolar con-
centrations of  Ang Ⅱ through conformational changes 
in the AT2 receptor and the cAMP/PKA pathway[19,20,37]. 

Ang (3-4) is remarkably stable in human blood serum 
and has antihypertensive effects in spontaneously hyper-
tensive rats (SHR)[60,61]. Dias et al[62] showed that oral ad-
ministration of  Ang-(3-4) inhibited Na+-ATPase activity 
in membranes of  SHR and blocked the stimulation of  
Na+-ATPase induced by Ang Ⅱ in normotensive rats via 
the AT2 receptor and the PKA signaling pathway. This 
effect leads to increased urinary Na+ concentration, and 
simultaneous decrease in systolic arterial blood pressure 
in SHR, but not in normotensive rats[62]. 

The presence of  another angiotensin derived frag-
ment, known as Ang A (Ala-Arg-Val-Tyr-Ile-His-Pro-
Phe), occurs in the plasma of  healthy humans and in 
high levels in end-stage patients with renal failure[21,63]. 
Decarboxylation of  Asp1 of  Ang Ⅱ, in the presence 
of  mononuclear leukocytes leads to Ang A generation, 
which has higher affinity for AT2 than Ang Ⅱ and the 
same affinity for the AT1 receptor[21,63]. As the other 
Ang Ⅱ-derived peptides, Ang A exerts its effects on 
the kidney, inducing renal vasoconstrictor responses in 
normotensive and hypertensive rats, and also in geneti-
cally modified mice[64]. Ang A can also be hydrolyzed 
by ECA2 in rats, mice and humans generating the hep-
tapeptide alamandine (Ala-Arg-Val-Tyr-Ile-His-Pro), 
a novel peptide of  the RAS[22]. Alamandine has long-
term antihypertensive effect in SHRs and antifibrotic 
effects in isoproterenol-treated rats via the Mas-related 
G-protein-coupled receptor, member D (MrgD), and 
independent of  Mas and AT2 receptor, the known va-
sodilator receptors of  the RAS, since it is blocked by 
D-Pro7-angiotensin-(1-7) and PD123319, but not by the 
Mas antagonist A-779[22]. Most members of  Mas-related 
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G-protein-coupled receptor (Mrg), a novel class of  RAS-
related receptor, are orphan, with no identified endog-
enous ligand, but MrgD has been identified as a binding 
site for alamandine[22].

NEW MEMBERS OF RAS: RECEPTORS
Classically, there are 2 well described Ang Ⅱ receptors, 
AT1 and AT2 receptors. However, newer work on RAS 
and its effects shows that there are novel members of  
this system. 

Besides the newly described Ang Ⅱ-derived peptides 
and their corresponding receptors, there are enzyme 
members of  RAS whose actions depend on interaction 
with receptors. Nguyen et al[27] in 2002 cloned the PRR, 
which contains a specific binding site for renin and its 
inactive precursor, prorenin; this interaction stimulates 
their catalytic activity, increasing RAS activation. Pro-
renin has a “handle” region that binds to the receptor 
with a 3-4 fold higher affinity than renin and is impor-
tant in enzymatic activation of  prorenin[65].

After binding, renin and prorenin can also act as 
agonists to its receptor, generating effects in an Ang 
Ⅱ-independent manner. In the human kidney, PRR is 
expressed in glomerular mesangial cells, the subendothe-
lium of  renal arteries[27], in the distal nephron[66], collect-
ing ducts, and mostly at the apical surface of  intercalated 
cells, where, due to its high expression it stimulates 
cyclooxygenase-2 (COX-2)-derived prostaglandins to 
attenuate the anti-natriuretic and vasopressor effects of  
Ang Ⅱ[67]. 

However, activation of  PRR in kidney is also associ-
ated with many pathological conditions. Activation of  
human PRR and MAPK through an Ang Ⅱ-indepen-
dent mechanism contributes to the development of  ne-
phropathy in prorenin/renin transgenic rats overexpress-
ing the human receptor[68]. PRR is important through 
the same signaling pathway in diabetic nephropathy by 
its activation of  glomerular ERK. These studies used an 
AT1a receptor-deficient mice[69] and db/db mice to show 
that the receptor-bound prorenin leads to the develop-
ment of  nephropathy in type 2 diabetes[70]. In HEK 
cells, renin and prorenin activate its receptor to promote 
fibrosis in an Ang II-independent manner[71].

Kohlstedt et al[25] in 2004 revealed another unexpect-
ed function of  the RAS enzymes. Human ACE, usually 
known by its catalytic action on Ang I in generating Ang 
Ⅱ, could also function as an outside-in signal transduc-
tion molecule. Binding of  ACE substrates or inhibi-
tors to this enzyme can stimulate intracellular signaling 
pathways: ACE inhibitors (perindoprilat and ramiprilat), 
like the ACE substrate (bradykinin), could also increase 
COX-2 expression, ACE phosphorylation at Ser1270 
and activation of  JNK in endothelial cells[25]. The modu-
lation of  gene expression in endothelial cell by ACE 
inhibitors and JNK/c-Jun pathway requires ACE dimer-
ization through the C domain of  the enzyme[26]. This 
indicates that, although ACE is not a cell surface recep-
tor, it is involved in cell functions. Nevertheless, whether 

ACE works only as a catalytic enzyme or as a signaling 
molecule in the kidney remains to be elucidated.

BREAKING PARADIGMS
A newly recognized view of  RAS assumes that Ang Ⅱ
acts beyond cell surface receptors, with endocrine and 
paracrine action of  RAS. Ang Ⅱ also acts through intra-
cellular receptors. Local RAS was first described within 
the kidney over 20 years ago[29-32], where the levels of  Ang 
Ⅱ are much higher than in plasma[32,72]. Intrarenal Ang 
Ⅱ levels and local formation in the kidney have been re-
ported by Navar and colleagues[11,32,73-76]. 

In addition to Ang Ⅱ synthesis in the kidney, there 
are other well-described mechanisms that play a critical 
role in high renal Ang Ⅱ levels, and these occur after 
Ang II endocytosis with the AT1 receptor[77,78]. Since AT1 
receptors are expressed in different parts of  the kidney, 
such as in the mesangial cells, afferent and efferent arteri-
oles, glomerular podocytes, macula densa and both baso-
lateral and luminal membranes of  different nephron seg-
ments[79,80], intracellular Ang Ⅱ accumulation by coupled-
receptor internalization is one of  main sources of  renal 
Ang Ⅱ accumulation.

In Ang Ⅱ-dependent hypertension several groups 
have shown that Ang Ⅱ can positively amplify it, lead-
ing to its high intrarenal levels. Zhuo et al[77] showed in-
creased intracellular Ang Ⅱ levels in cortical endosomes, 
and Ang Ⅱ-infused hypertensive rats mediated by AT1 
receptors. Ang Ⅱ-infused rats through an osmotic mini-
pump also had increased Ang Ⅱ levels in renal intersti-
tial fluid, which is mediated by the AT1 receptor[81]. Ang 
Ⅱ endocytosis with AT1 receptor has been confirmed 
by the absence of  renal Ang Ⅱ accumulation in AT1a 
receptor-deficient mice (Agtr1a-/-)[82,83]. Another pos-
sible pathway for increasing the intrarenal Ang Ⅱ level 
is due to endogenous Ang Ⅱ production, via markedly 
augmentation on angiotensinogen[11,84] and renin expres-
sion in collecting ducts[85,86], the secretion of  renin and 
prorenin by these cells into the luminal fluid, leading to 
its increased urinary levels in Ang Ⅱ-infused hyperten-
sive rats[87]. These results indicating a positive feedback 
by Ang Ⅱ in the kidney contradict the well-established 
view that Ang Ⅱ has a negative feedback mechanism in 
the expression and activity in the RAS, where high Ang 
Ⅱ levels suppress the release of  renin in juxtaglomerular 
cells and Ang Ⅱ production in the kidney[88], demon-
strating the complexity of  the system.

Both Ang Ⅱ receptors (AT1 and AT2) are expressed 
in adult kidneys, although AT2 receptor is less expressed 
than AT1 receptor[79]. This intensely local synthesis of  
high renal levels of  Ang Ⅱ, and the wide expression of  
Ang Ⅱ receptors within the kidney, provides evidence of  
the pivotal role of  Ang Ⅱ in renal physiology, regulating 
water and solute reabsorption and renal hemodynamic 
processes that contribute to Na+ balance and blood 
pressure regulation. AT1 receptors in the kidney are re-
sponsible for the development of  hypertension[89-91]. And 
AT1 receptors within the kidney are necessary for cardiac 
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hypertrophy and hypertension[90,92].
Ang Ⅱ has many effects on different parts of  the 

kidney. As in the systemic circulation, intrarenal Ang 
Ⅱ also is important in renal hemodynamics. Thereby, 
long-term treatment with Ang Ⅱ receptor blockers in-
duced unusual proliferative changes in afferent arteriolar 
smooth muscle cells, narrowing arteriolar lumens and 
reducing glomerular pressure[93]. Administration of  Ang 
Ⅱthrough an osmotic minipump in hypertensive rats 
leads to marked suppression of  Na+ excretion as well as 
renal and medullary blood flow[94]. Peritubular capillary 
Ang Ⅱ infusion enhanced proximal tubular reabsorption 
and reduced single nephron glomerular filtration rate in 
rats[95]. 

Different targets and signaling pathways regulate 
Na+ balance within the kidney; rats infused with Ang Ⅱ 
showed enhanced ENaC expression[96] and activation of  
the renal Na+:Cl- cotransporter[97,98]. In vitro studies using 
isolated basolateral membrane fractions from pig kid-
ney have demonstrated that Ang II stimulates the renal 
proximal tubule Na+-ATPase activity via PI-PLCb/PKC 
pathway[99,100]. 

It is widely known that intracellular Ca2+ mobilization 
in proximal tubule cells leads to the activation of  many 
Ca2+-dependent intracellular signaling pathways, includ-
ing those associated with Na+ reabsorption[101]. Ang Ⅱ 
microperfusion techniques in rabbit superficial segment 
of  proximal tubules in vitro regulated Na+ reabsorption 
via PKC and intracellular Ca2+[102]; low concentrations of  
Ang Ⅱ inhibited membrane Ca2+-ATPase via AT1/AT2 
receptors heterodimers and PKC in isolated fractions of  
basolateral membranes of  proximal tubule, increasing cy-
tosolic Ca2+ concentration in proximal tubule cells[37,103]. 
Luminal Ang Ⅱ stimulates AT1/AT2 receptors heterodi-
merization that increases sarco/endoplasmic reticulum 
Ca2+-ATPase activity and promotes Ca2+ mobilization in 
proximal tubule cells[101]. 

The intracrine/intracellular system is new paradigm. 
Cells that express all the necessary components for syn-
thesis can generate Ang Ⅱ internally[28,29]. Ang Ⅱ can be 
secreted and exert autocrine effects, or remain inside the 
cell and have its effects[6,35]. An alternative way for the in-
tracellular source of  Ang Ⅱ is the internalization of  ex-
tracellular Ang Ⅱ after binding to the AT1 surface recep-
tor[82,83]. Not all internalized Ang Ⅱ-AT1 complex is de-
graded in lysosomes, thereby increasing its concentration 
within the cell, and the AT1 receptor may be relocated to 
other organelles, including the nucleus[101,104-108]. Indeed, 
subcellular localization of  125I-labeled Ang Ⅱ in the pig 
kidney indicates that Ang Ⅱ generation is predominantly 
extracellular, followed by AT1 receptor-mediated endo-
cytosis leading to higher intracellular Ang Ⅱ levels[109]. In 
accord with this, internalization is seen to be important 
for AT1a receptor function in polarized proximal tubule 
epithelial cells, where apical AT1a receptor internalize be-
fore interaction with G proteins, which stimulates phos-
pholipase C and cAMP to increase proximal tubule Na+ 
reabsorption[110,111].

Within the kidney, cells from different segments can 

generate Ang Ⅱ or internalize Ang Ⅱ through the AT1 
receptor[109-111]. In vitro and in vivo studies showed that ex-
tracellular Ang Ⅱ accumulates within the kidney via AT1a 

receptor-mediated endocytosis[82,83,107]. Although many 
have demonstrated different Ang Ⅱ intracellular effects, 
the precise role of  intracellular Ang Ⅱ in nephron seg-
ments remains poorly understood. Renal intracellular 
Ang Ⅱ increases blood pressure and decreases 24 h 
urinary Na+ excretion in rats and mices[89,105], suggesting 
that, like intrarenal Ang Ⅱ, intracellular Ang Ⅱ within 
the kidney also increases Na+ reabsorption and blood 
pressure. 

Endocytosis of  Ang Ⅱ through the AT1 receptor with-
in proximal tubule cells occurs through 2 main pathways: 
the clathrin-dependent and the microtubule-associated 
pathway[106]. The canonical clathrin-dependent endocytosis 
pathway for Ang Ⅱ occurs in different cell types, such as 
vascular smooth muscle and human embryonic kidney 
(HEK-293) cells through the AT1 receptor, c-Src and clath-
rin Adapter Protein 2[112]. In rabbit proximal tubule cells, 
the alternative microtubule-associated endocytic pathway 
rather than the clathrin-dependent pathway participates in 
the AT1 receptor-mediated uptake of  Ang Ⅱ[113]. 

Another alternative endocytic pathway for Ang Ⅱ in-
ternalization in proximal tubule cells has been described 
by Gonzalez-Villalobos et al[114], where anti-megalin anti-
sera interferes with Ang Ⅱ binding in cell brush-border 
membrane vesicles extracted from mice, indicating that 
Ang Ⅱ internalization is a megalin-dependent process.

Angiotensin receptors are present in the intracellular 
organelles, including the sarco/endoplasmic reticulum, 
Golgi apparatus and the nucleus, indicating that Ang Ⅱ 
can have many intracellular effects, including modulation 
of  gene expression[33-35]. Proximal tubule cells express 
angiotensinogen, renin, and ACE mRNAs, suggesting 
high levels of  intracellular Ang Ⅱ[28,32,73]. Thus, micro-
injection of  Ang Ⅱ directly in single rabbit proximal 
tubule cells increased intracellular Ca2+ mobilization 
through its intracellular AT1 receptors and Ca2+ release 
from intracellular stores[115]. Ang Ⅱ induced transcrip-
tional responses of  mRNAs for MCP-1, NHE-3 and 
TGF-β1 stimulating the AT1a receptor in freshly isolated 
intact rat renal cortical nuclei, indicating that internalized 
and/or intracellular Ang Ⅱ acts on nuclear receptors to 
mediate growth, proinflammatory responses and Na+-
retaining effects[108]. Furthermore, in isolated nuclei from 
kidney cortex from sheep in the absence of  cytoplasm, 
all RAS components (angiotensinogen, ACE and renin) 
have been identified[116], showing that Ang Ⅱ can indeed 
be synthesized within the nucleus. 

Another interesting role for intracellular Ang Ⅱ is 
encountered in pathological situations. It is thought that 
intracellular Ang Ⅱ levels could be altered in different 
diseases, such as diabetic nephropathy and cardiomy-
opathy, where hyperglycemia might induce intracellular 
Ang Ⅱ production. Indeed, a high glucose concentration 
induced an increase of  ACE mRNA, synthesis and secre-
tion of  renin and Ang Ⅱ in an immortalized murine me-
sangial cell line[117-119]. Interestingly, an alternative pathway 
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was found for the synthesis of  intracellular Ang Ⅱ in 
the presence of  high glucose in vascular smooth muscle 
cells. Under normal glucose levels, Ang Ⅱ is generated by 
cathepsin D and ACE; however, Ang Ⅱ is obtained by 
cathepsin D and chymase action in the presence of  high 
glucose[120,121]. 

NEW TARGETS FOR HYPERTENSION 
TREATMENT
RAS is important in the development of  hypertension 
and cardiovascular diseases[1-4,90]; one of  the most com-
mon treatments for these diseases is pharmacological in-
hibition of  enzymes and blockade receptors of  RAS[122]. 
Inhibition of  renin, the enzyme that initiates RAS, pres-
ents a strategy for hypertension therapy (Table 2). Aliski-
ren is a more selective and potent inhibitor of  human 
renin than other orally active renin inhibitors, remikiren 
and enalkiren[123]; it can block the generation of  active 
renin in both normotensive and hypertensive human sub-
jects[124]. Aliskiren is as effective as losartan, valsartan and 
ibesartan (AT1 receptor blockers), atenolol (b blocker) 
and amlodipine (Ca2+ channel blocker), and has an anti-
hypertensive effect comparable to other major classes of  
antihypertensive drugs[124,125]. Besides decreasing blood 
pressure, aliskiren is also renoprotective in diabetic and 
nondiabetic models of  chronic kidney disease, preventing 
albuminuria in rats[126]. In humans, aliskiren significantly 
decreases blood pressure, and also the urinary albumin 
and creatinine ratio in 15 patients with type 2 diabetes 
mellitus[127].

ACE is another enzyme of  the RAS that can be 
pharmacology inhibited so as to decrease hypertension 
(Table 2). A total of  17 small orally active ACE inhibi-

tors have recently been synthesized for clinical use, all 
binding to the active site of  the enzyme and interfering 
with ACE’s ability to bind and cleave its substrates (Ang 
I and bradykinin, among others)[128,129]. Many ACE in-
hibitors were approved for hypertension treatment, heart 
failure and left ventricular dysfunction (e.g., captopril, 
lisinopril, trandolapril), as also captopril for diabetic ne-
phropathy[129]. 

Ang Ⅱ promotes cardiovascular disorders and hy-
pertension via the AT1 receptor, which can be blocked to 
treat these pathological conditions (Table 2). A total of  8 
non-peptide angiotensin-receptor blockers (ARBs) orally 
active are used clinically for hypertension and cardio-
vascular diseases (namely losartan, azilsartan, valsartan, 
ibesartan, candesartan, telmisartan, eprosartan, omesar-
tan), which are all well-tolerated[129,130]. Telmisartan seems 
more efficacious in decreasing blood pressure than the 
other ARBs[131,132].  

Many patients with hypertension require combination 
regimens to achieve a significant decrease in blood pres-
sure. In this case, the most commonly used drugs are 
ARBs and ACE inhibitors, Ca2+ channel blockers (CCB) 
and diuretics[130]. Long-term treatment triple therapy 
with olmesartan medoxomil (ARB), amlodipine besylate 
(CCB) and hydrochlorothiazide (diuretic) in 2112 hyper-
tensive patients with moderate to severe hypertension 
resulted in 44.5%-79.8% of  participants having a de-
creased the mean blood pressure from 168.6/100.7 mm 
Hg to 125.0-136.8/77.8-82.5 mmHg, reaching the blood 
pressure goal[133]. The same triple therapy also proved to 
be efficient in hypertensive Hispanic/Latin patients[134]. 

However, even with the successful results obtained 
by inhibiting the enzymes and receptors of  the RAS, 
many patients do not respond as expected, and cardio-
vascular disease risks have not decreased to those in nor-
motensive people. Due to the high death rates by heart 
diseases in the world, which are higher than from many 
cancers[135], it is important to devise new strategies for the 
treatment of  cardiovascular diseases and hypertension. 

Because of  the discovery of  new components in 
the RAS that have herein been described, novel Ang Ⅱ
-derived peptides have emerged as excellent target for 
heart diseases. Since the ACE2/Ang-(1-7)/Mas axis 
has an opposite and protective effect from the deleteri-
ous ACE/Ang Ⅱ/AT1 axis, it is now the main target 
for these drugs[14]. Besides inhibiting ACE activity and 
blocking AT1 receptors responsible for the inhibition 
of  ACE/Ang Ⅱ/AT1 axis, activation of  the ACE2/
Ang-(1-7)/Mas axis is a promising alternative means for 
the treatment of  the heart diseases. Nevertheless, this 
new strategy presents certain problems. First, as a pep-
tide, Ang-(1-7) is proteolytically degraded in the gastro-
intestinal tract[18]; and second, Ang-(1-7) has a short half-
life, complicating its use as an oral pharmacotherapy for 
hypertension and cardiovascular disease. 

The difficulty was overcome after the synthesis of  
the first nonpeptide compound able to mimic Ang-(1-7) 
and bind selectively to the Mas receptor[136], the AVE 
0991 5-formyl-4-methoxy-2-phenyl-1-{[4-(2-ethyl-ami-
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  Target Drug Therapy Clinical use

  Renin Aliskiren HTN, RF +
Remikiren, enalkiren HTN +

  ACE Captopril, lisinopril, trandolapril HTN, HF, 
LVD, DN

+

Enalapril, enalaprilat, fosinopril, 
ramipril 

HTN, HF +

Moexipril, quinapril, perindopril, 
benazepril

HTN +

  AT1 Losartan, azilsartan, valsartan, 
ibesartan, candesartan, telmisartan, 

eprosartan, omesartan 

HTN, HF +

  Mas AVE 0991 HTN -
Ang-(1-7)-CyD HF -

  ACE2 Xanthenone HTN, RF, HF -

Table 2  Most common drugs already established for clinical 
use and emerging drugs and new targets for the treatment of 
hypertension, cardiovascular and renal diseases

+: Already used in clinic; –: Not used in clinic yet. ACE: Angiotensin 
converting enzyme; ACE2:Angiotensin converting enzyme 2; AT1: Angio-
tensintype 1 receptor; Mas: Ang-(1-7) Mas receptor; RF: Renal failure; HF: 
Heart failure; HTN: Hypertension; LVD: Left ventricular dysfunction; DN: 
Diabetic nephropathy.
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nocarbonylsulfonamido-5-isobutyl-3-thienyl)-phenyl]-me
thyl}-imidazole (Table 2)[137]. Although this molecule is 
an antihypertensive candidate because it stimulates NO 
release in endothelial cells[137], promotes vasorelaxation in 
mouse and rat aortic rings[138], and attenuates hyperten-
sion in SHR[139], clinical trials are needed to see its effects 
in humans. 

Another important achievement has been the inclu-
sion of  the heptapeptide in hydroxypropyl-β-cyclodextrin 
[Ang-(1-7)-CyD], avoiding its proteolytic degradation in 
the gastrointestinal tract and permitting its oral adminis-
tration (Table 2)[18]. Cyclodextrins are amphiphilic oligo-
saccharides that increase drug stability and absorption[140]; 
after oral administration, they are split up into small sac-
charides in the colon, leaving Ang-(1-7) to be absorbed[18]. 
Chronic oral administration of  Ang-(1-7)-CyD in iso-
proterenol-treated rats increases plasma Ang-(1-7) levels, 
with attenuation of  myocardial infarction associated with 
cardioprotective effects[141]. 

Another option for the treatment of  the deleterious 
effects of  Ang Ⅱ is activation of  ACE2, which, besides 
increasing Ang Ⅱ degradation, enhances Ang-(1-7) pro-
duction; ACE2 activators are an alternative source for 
controlling hypertension (Table 2). Acute intravenous 
administration of  xanthenone (XNT), which interact 
with ACE2 in specific sites, promotes conformational 
changes and increases ACE2 activity. Consequently, it 
decreases blood pressure, improves cardiac function and 
decreases renal fibrosis in SHR[142]. It also has antihyper-
tensive effects in rats with pulmonary hypertension[143].

These results together suggest that, besides inhibition 
of  renin and ACE, associated or not with the blocking 
of  AT1 receptor, activation of  the ACE2/Ang-(1-7)/Mas 
axis and its protective effects is emerging as an excellent 
alternative therapy for the treatment of  hypertension 
and cardiovascular diseases.

CONCLUSION
The data presented herein show that RAS has passed 
from being simply an endocrine system to one with para-
crine, autocrine and intracrine functions, increasing Ang 
Ⅱ concentration in different tissues including the kidney. 
After years of  research, the RAS - previously seen as a 
simple system with only 2 receptors (AT1 and AT2), and 
one active peptide (Ang Ⅱ), turns out to be a complex 
system, with many new members continuing to be de-
scribed. In addition to (ACE)/Ang Ⅱ/AT1 and AT2 axis, 
other signaling pathways in the RAS, such as ACE2/an-
giotensin-(1-7)/Mas and Ang IV/AT4, and other active 
peptide of  the RAS, with physiological relevance as Ang 
Ⅲ, Ang-(3-4), Ang A and alamandine, are now widely 
recognized. These newly discovered fragments derived 
from Ang Ⅱ can act on the same classic Ang Ⅱ recep-
tors, AT1 and AT2, or on specific receptors (Mas and 
AT4) having the same or the opposite effects of  Ang 
Ⅱ depending on the triggered signaling pathway, in the 
kidney and other tissues, with many roles seen in physi-
ological and physiopathological conditions. The discov-

ery of  renin and prorenin as agonists of  PRR receptor, 
stimulating intracellular pathways and having effects on 
different cells types in an Ang Ⅱ-independent manner, 
raised another axis for this system, namely the prorenin/
PRR/MAPK ERK1/2 axis.

Finally, activation of  the new ACE2/Ang-(1-7)/Mas 
axis with opposite and protective effects, compared 
with ACE/Ang Ⅱ/AT1 axis, with different drugs such 
as AVE 0991, the nonpeptide compound mimicking 
Ang-(1-7) effects, the Ang-(1-7)-CyD, and the XNT, the 
activator of  ACE2 activity, now leading to improved and 
greater fall in blood pressure creates new possibilities 
for patients who do not respond as expected to conven-
tional antihypertensive drugs.

A thorough understanding of  RAS and all the new 
possibilities described on this review will certainly 
contribute to the development of  pharmacological ap-
proaches, discovery of  new drugs and alternative treat-
ments for hypertension, cardiovascular and kidney dis-
eases.
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