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Abstract
Alternative splicing, which is a common phenomenon 
in mammalian genomes, is a fundamental process of 
gene regulation and contributes to great protein diver-
sity. Alternative splicing events not only occur in the 
normal gene regulation process but are also closely 
related to certain diseases including cancer. In this re-
view, we briefly demonstrate the concept of alternative 
splicing and DNA damage and describe the association 
of alternative splicing and cancer pathogenesis, focus-
ing on the potential relationship of alternative splicing, 
DNA damage, and gastrointestinal cancers. We will also 
discuss whether alternative splicing leads to genetic 
instability, which is considered to be a driving force for 
tumorigenesis. Better understanding of the role and 
mechanism of alternative splicing in tumorigenesis may 
provide new directions for future cancer studies.
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Core tip: Alternative splicing is a fundamental process 
of gene regulation in eukaryotes. Alternative splicing 
of DNA damage repair proteins is a significant cause 
of gene mutations, and those mutations in turn affect 
alternative splicing in cancer. Alternative splicing is as-
sociated with tumorigenesis by contributing to genetic 
instability. Therefore, alternative splicing of DNA dam-
age response-related genes has an important role in 
tumorigenesis, survival, and growth of gastrointestinal 
cancers. In summary, the alternative splicing variants 
of these genes could be potential targets for both diag-
nosis and treatment of gastrointestinal cancers.
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INTRODUCTION
Alternative splicing is a fundamental process of  gene 
regulation, which results in a single gene that codes for 
multiple proteins by excluding and/or including particular 
exons from pre-mRNA produced from that gene[1]. The 
process is performed by the spliceosome composed of  
five small nuclear ribonucleoproteins (snRNPs; U1, U2, 
U4, U5, and U6) and more than 100 different polypep-
tides[2]. In this process, many different types of  proteins 
are translated from mRNA of  the same gene origin and 
contribute to protein diversity. For example, at least 60% 
of  human gene products undergo alternative splicing[3], 
approximately 100000 alternative splicing events have 
been identified in the human genome, and up to 95% 
of  human multi-exonic genes have been alternatively 
spliced[4]. There are approximately 20000-35000 protein-



coding genes in a mammalian genome[5], but the number 
of  proteins generated by alternative splicing is much 
higher[6] because many of  these genes have multiple splic-
ing patterns compensate up to thousands[7]. Thus, alter-
native splicing is a common phenomenon in the process 
of  mammalian gene regulation and generation of  protein 
diversity.

DISTURBED ALTERNATIVE SPLICING IN 
HUMAN DISEASES
Alternative splicing events may occur in both normal and 
disease-related gene regulation processes. The frequency 
of  alternative splicing is higher in cancerous tissues than 
in normal tissues[8]. Occasionally, alternative splicing 
variants are expressed in cancer cells but not in normal 
cells. For example, far upstream element-binding protein 
(FBP)-interacting repressor (FIR) splice variants lacking 
or containing exon 2 and/or exon 5 are expressed in the 
majority of  hepatocellular carcinomas (HCCs) but not in 
normal hepatocytes[9]. A well-known tumor suppressor 
gene p53 is alternatively spliced to produce at least twelve 
protein isoforms, which have important roles in cancer 
formation and progression[10]. It has been suggested that 
missense or silent mutations affect splicing[11-15]. Accord-
ing to the human gene mutation database, approximately 
84% of  hereditary diseases are associated with point 
mutations[16]. Teraoka et al[17] suggested that 48% of  these 
mutations result in defective splicing in the ATM gene 
in patients with ataxia-telangiectasia, and ATM has also 
been reported to be alternatively spliced in several types 
of  cancer[18-20]. López-Bigas et al[11] estimated that more 
than 60% of  all human disease-related mutations affect 
splicing. Lim et al[21] suggested that 22% of  disease alleles 
that were originally classified as missense mutations may 
also affect splicing and approximately one third of  all 
disease-causing mutations alter pre-mRNA splicing. Al-
ternative splicing variants of  many genes and some well-
known splicing factors have been reported to be associ-
ated with numerous cancers. For example, Ikaros family 
genes include Ikaros, Helios, and Aiolos. The Ikaros gene 
(ZNFN1A1) is a member of  the Kruppel transcription 
factor family characterized by the presence of  zinc-finger 
domains located at their N- and C-termini and is alterna-
tively spliced to give a number of  variants[22]. Ikaros itself  
acts as a tumor suppressor in the lymphoid lineage[23], but 
alternative splicing variants, such as Ik11, are aberrantly 
expressed in B-cell lymphoproliferative disorders and in-
volved in tumor pathogenesis[24]. Helios was found to be 
abnormally spliced in adult T-cell leukemia, and deregu-
lation of  Helios expression promotes T-cell growth[25]. 
The splicing factor SRSF6 is an oncoprotein reported to 
be over-expressed in lung and colon cancers[26]. Another 
splicing factor hnRNP has been suggested to be an on-
cogenic driver in glioblastoma[27,28]. Recurrent somatic 
mutations of  splicing machinery genes, such as SF3B1, 
U2AF1, ZRSR2, and SRSF2, have been reported in 
numerous malignancies, including myelodysplastic syn-

dromes, leukemias, and ovarian and gastric cancers[29-33]. 
Pre-mRNA processing factor 6 (PRPF6), a member of  
the tri-snRNP spliceosome complex, is required for al-
ternative splicing of  a number of  genes, including ZAK 
kinase, and splicing activity of  PRPF6 is important for 
colon cancer cell growth[34,35]. In addition to the associa-
tions shown in the above examples, many studies have 
suggested that alternative splicing is indeed closely related 
to certain diseases such as gastrointestinal cancers[18,36-48].

ABERRANT SPLICING OF DNA 
DAMAGE REPAIR GENES CAUSES 
GASTROINTESTINAL CANCERS
Impaired DNA damage responses induce genetic insta-
bility. DNA double-stranded breaks represent one of  the 
most severe types of  DNA damage and promote genetic 
instability that is lethal to cells if  left unrepaired[49,50]. 
Genetic instability includes two major categories: one is 
microsatellite instability, which involves subtle changes 
in DNA sequences (faulty DNA repair), and the other is 
chromosomal instability (CIN), which is characterized by 
gains and losses of  whole or parts of  chromosomes, and 
CIN is considered to be a driving force for tumorigen-
esis[51,52]. Single-stranded or double-stranded DNA breaks 
increase the susceptibility of  chromosomal gross struc-
tural alterations that lead to CIN[51]. CIN is closely associ-
ated with the intrinsic multidrug resistance of  cancer[51,53]. 
The possible association of  DNA damage, alternative 
splicing, and genetic instability is schematically shown in 
Figure 1.

Chromosomal alterations are found in nearly all hu-
man cancers[54]. As mentioned above, severe types of  
DNA damage promote genetic instability and are an inte-
gral component of  human neoplasia[55]. Alternative splic-
ing affects the stability of  transcripts by introducing pre-
mature STOP codons and directing mRNA degradation 
through the nonsense-mediated mRNA decay pathway[56]. 
Alternative splicing of  DNA damage response genes 
promotes genetic instability. Therefore, alternative splic-
ing is closely associated with DNA damage and tumori-
genesis. Previous studies have shown that gastrointestinal 
cancers are closely associated with alternative splicing of  
DNA damage-related genes that cause genetic instability. 
For example, ATM is involved in the homologous re-
combination (HR) pathway of  DNA repair, and MRE11 
is a component of  the DNA damage sensor MRN; these 
genes are found to be alternatively spliced in colon can-
cer cells[18,36]. Germline mutations in the DNA mismatch 
repair genes, MSH2, MLH1, MSH6 and PMS2, are the 
cause of  colon cancer, called Lynch syndrome[44,45] and 
they are reported to be spliced in a number of  gastroin-
testinal cancers[37-39,57]. Splicing factor 3b (SF3b) is a sub-
complex of  the U2 snRNP in the spliceosome[58]. SAP155 
(a subunit of  SF3b) is required for proper FIR expression 
and vice versa, and SAP155 knockdown or SF3b inhibi-
tion disrupts alternative splicing of  FIR pre-mRNA and 
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generates FIRΔexon2[59]. FIR also acts as a molecular sen-
sor for bleomycin-induced DNA damage by potentially 
interacting with DNA-PKcs and Ku-86/XRCC5[60] and 
has been reported to be alternatively spliced in colorectal 
cancer[40] as well as in HCCs[9]. Multifunctional splicing 
factor U2AF65, which has biotinylated triplex DNA af-
finity, has been reported to be associated with colorectal 
cancers[61]. Poly (ADP-ribose) polymerase (PARP)-1 is 
involved in single- stranded DNA damage repair and has 
a control role in the HR pathway[62]. PARP-1 is activated 
by Helicobacter pylori in the development and proliferation 
of  gastric cancer[63]. The tumor suppressor genes, BRCA1 
and BRCA2, are involved in DNA damage repair through 
their association with the HR mediator, RAD51, and 
their mutations are usually known to contribute to the 
tumorigenesis of  hereditary breast and ovarian cancers[64]. 
Recent studies have further suggested that BRCA1 muta-
tions in females below the age of  50 years increase the 
risk of  colorectal cancer[65], and BRCA2 mutations are 
closely associated with pancreatic carcinogenesis[66,67]. 
RING finger protein 43, which is an E3-type ubiquitin 
ligase, has been reported to be mutated in pancreatic can-
cer[46] and gastric cancer[47] and was recently reported to 
act as a regulator of  ATM-ATR DNA damage response; 
its mutation is associated with a high risk of  developing 
sessile-serrated adenomas[48], which are believed to lead to 
colorectal cancer. The genes reported to have alternative 
splicing mutations in gastrointestinal cancers are summa-
rized in Table 1. From the above examples, we can con-
clude that alternative splicing mutations in DNA damage 
response genes are closely associated with gastrointestinal 
carcinogenesis.

OTHER ALTERNATIVELY SPLICED GENES 
THAT RELATE TO GASTROINTESTINAL 
CANCERS
As mentioned above, alternative splicing is closely associ-
ated with gastrointestinal cancers and has an important 
role in their tumorigenesis. Gastrointestinal cancers are 
malignancies of  the gastrointestinal tract and accessory 
organs of  digestion, including the esophagus, stomach, 
biliary system, pancreas, small intestine, large intestine, 
rectum, and anus. They account for a large proportion of  
human malignancies and are a major cause of  morbidity 
and mortality worldwide[68]. Among the gastrointestinal 
cancers, colorectal cancer is the third most frequently 
diagnosed cancer worldwide after lung and breast can-
cers, with 1.23 million diagnosed cases (9.7% of  cancer 
diagnoses) in 2008[69]. There are many genetic and epigen-
etic changes that occur during colorectal carcinogenesis, 
including mutations of  oncogenes, tumor suppressor 
genes, and mismatch repair genes; genetic instability; al-
lelic losses in specific chromosomal arms; and methyla-
tion changes in gene promoters[70]. In addition, alternative 
splicing mutations have an important role in gastroin-
testinal carcinogenesis. In particular, alternatively spliced 
CD44 variants promote intestinal tumorigenesis induced 
by the activation of  Wnt signaling[41]. Osteopontin splice 
variant (OPN-b) is found to be dominantly elevated in 
gastric cancer cell lines, and OPN-b has been shown to 
promote gastric cancer cell survival by regulation of  Bcl-2 
family proteins and CD44v expressions[71]. The cyclin-
dependent kinase inhibitor gene, which encodes P27, has 
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Changes structure, function as dominant negative, loss-of-function, 
gain-of-function, protein-protein interactions etc…

Activation of DDR
Mutations of DDR 
related Genes Genetic instability

DNA damage Tumorigenesis

Figure 1  Schematic view of the possible connection between alternative splicing and DNA damage. When DNA damage occurs, DNA damage response (DDR) 
is activated, which then activates alternative splicing that leads to mutations and splicing alteration of DDR-related genes. This process leads to the accumulation of 
DNA damage. DNA damage is a major cause of genetic instability. On the other hand, alternative splicing directly or indirectly causes genetic instability via mutations 
of related genes including DDR-related genes. Genetic instability is one of the major causes of tumorigenesis. 
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formation and metastasis[76]. Mutations in the bone mor-
phogenetic protein signaling pathway led to the develop-
ment of  juvenile polyposis syndrome, which increases 
the risk of  gastric cancer development[42]. The Raf  kinase 
family member, BRAF, is a proto-oncogene that has 
been reported to be frequently mutated in numerous 
human cancers, such as somatic missense mutations, in 
66% of  malignant melanomas and at lower frequency in 
colorectal cancers[77]. Murine double minute 2, which is 
a negative regulator of  the tumor suppressor gene p53, 
was shown to be alternatively spliced under DNA dam-

been reported to have recurrent somatic mutations in 
small intestinal neuroendocrine tumors[72]. P27 was shown 
to be associated with proliferative activity of  gastric can-
cer[73,74]. Approximately 85%-95% of  gastrointestinal stro-
mal tumors (GIST) have mutations in the c-KIT gene[75]. 
Dystrophin is expressed in the nonneoplastic and benign 
counterparts of  GIST, but inactivation of  dystrophin was 
observed in 96% of  metastatic GIST. Deletion of  the 
dystrophin-encoding and muscular dystrophy-associated 
DMD gene through alternative splicing led to inactivation 
of  larger dystrophin isoforms and contributed to tumor 
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Table 1  List of alternatively spliced genes in gastrointestinal cancers

Genes Role in DDR Gastrointestinal Cancers Reference papers

DDR-related genes in gastrointestinal cancers
   ATM DNA damage response kinase involved in HR pathway of DNA repair Colon cancer cells [18]
   MSH2, MLH1, 
   MHS6, PMS2

Involved in DNA mismatch repair Colorectal cancer and gastric cancers [37-39,44,45,57]

   MRE11 Component of DNA damage sensor complex MRN Colorectal cancer [36]
   PARP-1 Involved in single stranded DNA damage repair Gastric cancer [63]

Plays role in controlling HR pathway
   RNF43 Function as a regulator of ATM/ATR/DNA damage response Pancreatic cancer [46]

Gastric cancer [47]
Sessile serrated adenomas [48]

   AP4 Activation by cellular stresses result in DNA damage inducer of EMT Mediates EMT in colorectal cancer lines 
cancer

[84,85]

   BRCA1 Involved in HR Colorectal cancer [65]
   BRCA2 Involved in HR Pancreatic cancer [66,67]
   U2AF65 With biotinylated triplex DNA affinity Colorectal cancer [61]
   FIR (PUF60) Originally a transcriptional facor, also reported as a molecular Colorectal cancer [40,96,97]

sensor for bleomycin-induced DNA damage pathway Hepatocellular carcinoma [9]
Other genes in gastrointestinal cancers
   P53 Tumor suppressor, guardian of the genome Colon cancer, head and neck cancer [10]
   CD44 Class I transmembrane glycoprotein involved in cell adhesion, cell-cell Intestinal tumorigenesis [41]

interactions, migration and important player in stem cells and cancer
   OPN-b Osteopontin splice variant, contributed to gastric cancer cell survival Gastric cancer [71]

by regulation of Bcl-2 family proteins and CD44v expressions
   p27 (CDKN1B) Cell cycle regulatory gene Small intestine neuroendocrine tumors [72]
   c-KIT Stem cell growth factor receptor, also known as CD117 Gastrointestinal stromal tumors [75]
   Prrx1 Paired related homoeobox 1, a newly reported EMT inducer Pancreatic cancer [94]

Colorectal cancer [95]
   HDM2 Human double minute 2, negative regulator of p53 Colorectal cancer [79]
   PKM2 Pyruvate kinase M2 gene, inactive state is associated with tumor cell 

proliferation, could switch between PKM2 to PKM1
Impaired colorectal cancer growth [82]

   BRAF Raf kinase family member BRAF is a proto-oncogen replays a role in Malignant melanomas [77]
regulating the MAP kinase/ERKs signaling pathway Colorectal cancer

   BMP Bone morphogenetic proteins, are a group of growth factors, function 
in the formation of bone and cartilage,constitute morphogenetic signals 
etc.

Gastric cancer [42]

   PRPF6 Pre-mRNA processing factor 6, a member of the tri-snRNP spliceosome 
complex

Colon cancer [34,35]

   Dystrophin Cause of Duchenne muscular dystrophy Metastatic GIST [76]
   FGFR2 The fibroblast growth factor receptor 2, encodes for a fibroblast Pancreatic ductal adenocarcinoma [91]

growth factor-activated transmembrane receptor tyrosine kinase Hepatic cancer metastasis
Splicing factors in other cancers
   SRSF6 Splicing facor Lung and colon cancers [26]
   hnRNP Splicing facor Glioblastoma [27,28]
   SF3B1, U2AF1 Splicing factors Associated with numerous malignancies [29-33]
   ZRSR2, SRSF2
   Ik11 (Ikaros) Alternative splicing variant of Ikaros, a member of Ikaros family genes B-cell lympho-proliferative disorders [24]
   Helios A member of Ikaros family genes T-cell leukemia [25]
   PUF60 (FIR) FIR lacks exon5 of PUF60. FIR/PUF60 interacts with SF3B1 Colon cancer, leukemia [40,80,97]
   hnRNPM RNA-binding protein heterogeneous nuclear ribonucleoprotein M Breast cancer metastasis [92]

HR: Homologous recombination; DDR: DNA damage response; EMT: Epithelial-mesenchymal transition; GIST: Gastrointestinal stromal tumors.
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age and contributed to numerous tumorigenesis, and its 
alternative splicing is mediated by FBP1 (FUBP1)[78]. The 
human counterpart is the negative regulator of  p53, hu-
man double minute 2, which is frequently mutated by 
alternative splicing in colorectal cancer[79]. FUBP1 is a 
c-myc transcriptional activator[80]. Coupling of  splicing and 
transcription should be considered and analyzed for bet-
ter understanding of  carcinogenesis. The pyruvate kinase 
muscle (PKM) gene is alternatively spliced to either M1 
(PKM1) or M2 (PKM2) isoforms. PKM2 mostly pro-
motes cancer cell growth, and PKM1 is usually expressed 
in normal differentiated tissues[81,82]. PKM2 itself  is not 
necessary for tumor cell proliferation, and the inactive 
state of  PKM2 has been shown to be associated with 
tumor cell proliferation, whereas nonproliferating tumor 
cells require activation of  PKM[83]. MicroRNAs, such as 
miR-124, miR-137, and miR-340, have been shown to 
regulate alternative splicing of  the PKM gene to switch 
PKM expression from PKM2 to PKM1 and contribute 
to impaired colorectal cancer growth[82]. Studies have sug-
gested many alternative splicing isoforms of  genes, such 
as VEGFA, UGT1A, PXR, cyclin D1, BIRC5 (survivin), 
DPD, K-RAS, SOX9, and SLC39A14, are potential thera-
peutic targets of  colorectal cancers[43]. In brief, alternative 
splicing variants are potential targets for both diagnosis 
and treatment of  gastrointestinal cancers.

ALTERNATIVE SPLICING IS CLOSELY 
ASSOCIATED WITH CANCER 
METASTASIS
Alternative splicing variants of  certain genes not only 
have important roles in tumorigenesis but also signifi-
cantly contribute to cancer metastasis. For example, the 
transcription factor, AP4, is encoded by the p53 tumor-
suppressor gene and activated by numerous cellular 
stresses, which generally result in DNA damage[84]. AP4 
is an inducer of  epithelial-mesenchymal transition (EMT) 
and mediates c-MYC-induced EMT in colorectal cancer 
cell lines[85]. EMT of  tumor cells contributes to metasta-
sis[86,87]. Mesenchymal-epithelial transition (MET), which 
presumably contributes to tumor suppression[88], has 
been shown to be induced by p53 activation. Most re-
cently, Peng et al[89] summarized the role of  EMT in gas-
tric cancer and suggested that loss of  E-cadherin via its 
transcriptional repressors, such as Snail, ZEB, and Twist, 
is a key step in EMT activation, which significantly con-
tributes to gastric carcinogenesis. Fibroblast growth fac-
tor receptor 2 (FGFR2) encodes for a fibroblast growth 
factor-activated transmembrane receptor tyrosine kinase 
and has been shown to be associated with EMT-related 
alternative splicing[90]; its alternative splicing generates 
the Ⅲb and Ⅲc isoforms. FGFR-2 Ⅲb expression cor-
relates with venous invasion of  pancreatic ductal adeno-
carcinoma, whereas FGFR-2 Ⅲc expression correlates 
with faster development of  liver metastasis[91]. RNA-
binding protein heterogeneous nuclear ribonucleoprotein 

M promotes breast cancer metastasis by activating the 
switch of  alternative splicing that occurs during EMT[92]. 
Recently, splicing of  paired related homoeobox 1 (Prrx1) 
has been reported to be a novel EMT-MET switch. Al-
ternative splicing of  Prrx1 results in two variants, Prrx1a 
and Prrx1b, and the ratio of  Prrx1a (with inhibition 
domain)/Prrx1b (lack of  inhibition domain)[93] switches 
EMT-MET of  cells and controls migration and invasion 
of  pancreatic cancer[94]. Notably, Prrx1 is involved in me-
tastasis and poor prognosis in colorectal cancer[95]. 

CLINICAL APPLICATION OF 
ALTERNATIVE SPLICING TO CANCER 
DIAGNOSIS AND TREATMENT
Alternative splicing variants can be potential targets for 
the diagnosis and treatment of  many cancers, including 
gastrointestinal cancers (Figure 2)[43,96]. Novel splicing vari-
ants of  FIR were generated by SAP155 siRNA, and these 
variants were also found to be activated in human colorec-
tal cancer tissues[97]. Circulating FIR and FIRΔexon2 
mRNAs are potential novel screening markers for colorec-
tal cancer testing with conventional carcino-embryonic 
antigen and carbohydrate antigen 19-9. Given the central 
role of  c-Myc in the development of  many cancers, one 
direction toward the development of  cancer gene thera-
pies directed against c-Myc may go through FIR and its 
variants. The Sendai virus vector of  FIR has shown strong 
tumor growth suppression with no significant side effects 
in an animal xenograft model and is potentially applicable 
to future clinical cancer treatment[98]. 

CONCLUSION
Alternative splicing is a fundamental process of  gene 
regulation in eukaryotes. It is a common phenomenon 
in mammalian genomes because most human genes un-
dergo this process[4]. Alternative splicing leads to genetic 
instability, such as CIN, which drives tumorigenesis. 
DNA damage is one of  the major reasons for genetic 
instabilities, and major components of  the DNA damage 
repair pathway are alternatively spliced in certain cancers. 
Therefore, alternative splicing is closely associated with 
tumorigenesis by contributing to genetic instability. Al-
ternative splicing of  DNA damage repair proteins is a 
significant cause of  gene mutations, which reciprocally 
affects alternative splicing in cancer. DNA damage pro-
motes genetic instability, and genetic instability further 
promotes tumorigenesis (Figure 1). Genetic instability 
caused by certain types of  DNA damage may be critical 
for the development of  all colorectal cancers[55]. Many 
genes involved in the DNA damage repair pathway are 
alternatively spliced in gastrointestinal cancers (Table 1). 
Thus, the alternative splicing in DNA damage response-
related genes has an important role in the tumorigenesis, 
survival, and growth of  gastrointestinal cancers. Estab-
lishing a well-organized database of  alternative splicing 
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would be helpful for facilitation of  the process of  con-
sidering a set of  splice isoforms or their common regula-
tory network as targets of  diagnostic or therapeutic strat-
egies. Better understanding of  the role and mechanism 
of  alternative splicing in tumorigenesis may lead to novel 
directions for future cancer studies.
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