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Abstract
Recently, growing evidences show that the combina-
tion of epigenetic and genetic abnormalities contribute 
together to the development of liver diseases. DNA 
methylation is a very important epigenetic mechanism 
in human beings. It refers to addition of the methyl 
groups to DNA and mainly occurs at cytosine adjacent 
to guanine. DNA methylation is prevalent across human 
genome and is essential for the normal human devel-
opment, while its dysfunction is associated with many 
human diseases. A deep understanding of DNA meth-
ylation may provide us deep insight into the origination 
of liver diseases. Also, it may provide us new tools for 
diseases diagnosis and prognosis prediction. This re-
view summarized recent progress of DNA methylation 
study and provided an overview of DNA methylation 
and liver diseases. Meanwhile, the association between 
DNA methylation and liver diseases including hepato-
cellular carcinoma, liver fibrosis, nonalcoholic steato-
hepatitis and liver failure were extensively discussed. 
Finally, we discussed the potential of DNA methylation 

therapeutics for liver diseases and the value of DNA 
methylation as biomarkers for liver diseases diagnosis 
and prognosis prediction. This review aimed to provide 
the emerging DNA methylation information about liver 
diseases. It might provide essential information for 
managing and care of these patients.
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Core tip: This review summarized recent progress of 
DNA methylation study and provided an overview of 
DNA methylation and liver diseases. The association 
between DNA methylation and liver diseases including 
hepatocellular carcinoma, liver fibrosis, nonalcoholic 
steatohepatitis or liver failure were extensively dis-
cussed. We also discussed the potential of DNA meth-
ylation as biomarkers and therapeutic targets for liver 
diseases. This review aimed to provide the emerging 
DNA methylation information about liver diseases. It 
might provide essential information for managing and 
care of these patients.
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INTRODUCTION
Because of  the high prevalence, liver diseases have been 
studied systematically during the past few decades. Many 
studies focus on genetic defects[1] and genome-wide as-
sociation studies do provide us great information about 
the pathogenesis of  liver diseases[2]. However, many 
questions which cannot be totally illustrated by genetic 
mechanism still exist, which lead researchers to initiate 
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the study of  epigenetic variation. Recent studies showed 
that the combination of  genetic and epigenetic variants 
contributed together to the susceptibility and progression 
of  liver diseases[3-5]. Epigenetics refers to the heritable 
changes of  gene expression without changes in gene 
sequence[6]. DNA methylation is a very important epi-
genetic mechanism in human and distribute widely across 
human genome. It is of  crucial important for normal de-
velopment, genomic imprinting as well as inactivation of  
X-chromosome[7-9]. Meanwhile, aberrant DNA methyla-
tion usually associates with many human diseases[10]. The 
goal of  this article is to review the studies associated with 
DNA methylation and liver diseases. Finally, we look into 
the future prospect that DNA methylation may bring to 
the detection and treatment of  liver diseases.

DNA METHYLATION AND ITS 
MECHANISM
DNA methylation which refers to addition of  the methyl 
groups to DNA is firstly introduced in 1970s[11,12]. In in-
vertebrates and fungi, DNA methylation only presents in 
small proportion of  genome and varies among different 
clades[13,14]. In vertebrate genome, it presents in almost ev-
erywhere across the genome. Mainly, DNA methylation 
occurs at cytosine adjacent to guanine (CpG dinucleo-
tides)[15]. In human genome, The CpG dinucleotides are 
very rare (approximately 1%). They are nonuniformly dis-
tributed and tend to cluster together to form CpG island 

(CGI). CGI refers to a 200-bp region in DNA which is 
characterized by high G+C content (more than 50%) and 
high observed CpG/expected CpG ratio (at least 0.6)[16]. 
Previous studies showed that CGIs existed in more than 
half  of  the genes in vertebrate genomes. Until now, the 
exact role of  gene methylation in gene regulation remains 
largely unclear[17]. 

DNA methylation in transcriptional start sites
Until now, most of  the studies on DNA methylation 
focus on CGIs in the transcriptional start sites (TSSs) 
of  genes. In human genome, about 60% of  gene TSSs 
contain CGIs and usually remain unmethylated in normal 
cells. Methylation of  these CGIs often result in long-term 
stabilization of  transcriptional silencing and loss of  gene 
function both physically and pathologically[18] (Figure 1A). 
CpG island shore is defined as lower CpG density region 
which is close (approximately 2 kb) to the CGI. Recent 
studies show that most tissue specific methylation occurs 
at CpG island shores[19,20]. Aberrant DNA methylation 
at CpG island shores correlate even more strongly with 
gene expression than CGI[21].

There are about 40% of  human genes which do not 
contain bona fide CGI at their TSSs[16]. Compared with 
genes that contained CGIs, the role of  methylation in 
genes without CGIs at the TSSs has not been well dem-
onstrated. More studies still need to be performed on 
genes without CGIs. Studies revealed that maspin gene 
had a promoter that did not reach the criteria for CGI 
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Figure 1  DNA methylation pattern in different parts of the genomes. The normal conditions are presented in the left column and aberrant conditions are shown 
on the right. The black dots represent methylated CpG sites and the white circles represent unmethylated CpG sites. A: In normal cells, CpG islands (CGI) in tran-
scriptional start site (TSS) usually remain unmethylated, allowing transcription. Aberrant methylation often links to long-term stabilization of transcriptional silencing 
and loss of gene function both physically and pathologically; B: In normal cells, gene bodies are CpG-poor and extensively methylated, increasing elongation efficacy. 
Aberrant demethylation of gene bodies may facilitates spurious initiations of transcription; C: In normal cells, repetitive sequences of genome are highly methylated, 
preventing chromosomal instability or gene disruption. Aberrant demethylation of repetitive sequences may reactivate endoparasitic sequences.
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and hypermethylation of  this promoter was strongly cor-
related with its tissue specific expression[22]. However, 
MAGE gene was found to be unregulated by methylation 
in the promoters which do not satisfy CGIs.

There are two primary means by which DNA meth-
ylation in TSSs repress transcription. The transcription 
factors[23] control gene expression level. DNA methyla-
tion can directly preclude the transcription factors bind-
ing to its normal sites[24,25] (Figure 2A). For example, tran-
scription factor YY1 which is essential for the imprinting 
of  Peg3 gene can bind to PEG3-DMR sequence in the 
first intron[24]. In vivo, the methylation of  PEG3-DMR 
sequence precludes the binding of  YY1, which result in 
the repression of  maternal allele. In paternal allele, YY1 
can effectively bind to the unmethylated PEG3-DMR 
sequence. Alternatively, DNA methylation can recruit 
specific proteins and induce a repressive chromatin struc-
ture[9] (Figure 2B). In normal condition, unmethylated 
CGIs can recruit CpG binding proteins, which form a 
structure suitable for transcription[26]. When CGIs are 
methylated, they can recruit methyl-CpG-binding domain 

(MBD) proteins[14,27]. Then, MBD proteins could recruit 
the histone modifying as well as chromatin remodeling 
complex to the methylated positions, which result in 
transcriptional silencing by repressing the transcriptional 
permissiveness of  chromatins.

DNA methylation in gene bodies
Although CGIs also exist within gene bodies[28], most 
gene bodies are CpG-poor and extensively methylated. 
Studies showed that high level of  gene body methyla-
tion was positively correlated with transcription, which 
meant it might associate with gene activation[29,30]. Zil-
berman et al[31] found that the methylation of  gene body 
could increase elongation efficiency and prevent spurious 
initiations of  transcription (Figure 1B). Shukla et al[32] il-
lustrated that methylation between exons and introns was 
involved in regulating splicing[33]. Other studies reported 
that the methylation in gene body could be an important 
mechanism for managing promoter usage[34]. The high 
methylation level in gene body was essential for the elon-
gation of  a transcript.

DNA methylation in repetitive sequence
Repetitive elements comprise up to 45% of  human ge-
nome[35], which mainly consist of  interspersed repeats 
and tandem repeats. In normal somatic cells, repetitive 
sequences of  genome are highly methylated. The deeply 
methylated condition is essential for the stability of  chro-
mosome and normal gene expression[36] (Figure 1C). De-
methylation of  repetitive sequences in genome may result 
in different kinds of  diseases[37,38].

The inheritance of DNA methylation
DNA methylation is an important way to store hereditary 
information. Although it does not change gene sequence, 
it can propagate the methylation mark during cell divi-
sions[39]. The DNA methylation inheritance process is 
catalyzed by DNA methyltransferase (DNMT) enzyme 
family. Manly, there are five members in DNMT enzyme 
family, DNMT1, DNMT2, DNMT3a, DNMT3b and 
DNMT3L. DNMT1, DNMT3a, DNMT3b serve as 
methyltransferase. Each of  the three DNMTs is essential 
for normal human development[7,40]. Studies revealed that 
loss of  methylation resulted from the inactivation of  
DNMTs could result in apoptosis of  somatic cell[41] and 
cancer cells[42]. However, it showed that DNMTs were 
not essential for the survival of  embryonic stem cells[43].

Bestor et al[44] firstly cloned DNMT1 in 1988 from 
mouse cells. Later studies revealed that DNMT1 ex-
pressed mostly at S phase of  cell cycle[45] and mainly 
acted as maintenance DNMT. Interacting with the DNA 
polymerase processing factor proliferating cell nuclear 
antigen and ubiquitin-like plant homeodomain and RiNG 
finger domain containing protein 1 (UHRF1), DNMT1 
methylated the hemimethylated sites during DNA semi-
reserved replication[46,47]. Soon after replication, DNMT3a 
and DNMT3b bound to methylated DNA and corrected 
methylation sites missed by DNMT1 and completed the 
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Figure 2  Transcriptional suppression mechanisms of DNA methylation in 
TSSs. The normal conditions are presented in the left column and aberrant con-
ditions are shown on the right. The black dots represent methylated CpG sites 
and the white circles represent unmethylated CpG sites. A: In normal cells, tran-
scription factors (TF) bind to unmethylated binding site, allowing transcription. 
Aberrant methylated binding site prevent TF binding to its normal sites; B: In 
normal cells, unmethylated CpG island can recruit CpG binding proteins (Cfp1) 
and trigger histone modifications characterized by high levels of acetylation and 
trimethylated H3K4, H3K36 and H3K79. Finally, it forms a structure suitable for 
transcription. Aberrant methylated recruit methyl-CpG-binding domain (MBD) 
proteins and trigger histone modifications characterized by high levels of H3K9, 
H3K27 and H4K20 methylation and low levels of acetylation. It represses the 
transcriptional permissiveness of chromatins and results in gene silencing.
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of  hypomethylated tumor-promoting genes, including 
HPA[60], MAT2A[61], VIM[62] and SNCG[63] have been 
identified in primary human HCC.

Hypermethylation
In tumor suppressor gene, the hypermethylation of  CGIs 
in TSSs result in the loss of  gene function, which is cru-
cial for the origin of  cancer[64]. The inactivation of  tumor 
suppressor genes caused by hypermethylation of  CGI 
in TSS exist in almost every type of  human cancers[65]. 
Hypermethylation may affect the process of  cell cycle 
regulation, DNA repair, angiogenesis, programmed cell 
death and tumor cell invasion. The genes silenced by hy-
permethylation in human cancers are often those who are 
essential for the maintenance of  stem cell characteristics 
and/or the maturation of  adult cells during cell renew-
al[65,66]. Silencing of  these genes may result in the initiation 
of  tumors through distribution of  abnormal stem cells 
and/or abnormal of  normal cell differentiation.

Until now, many tumor suppressor genes have been 
identified to be hypermethylated in HCC. Table 1 pres-
ents a group of  frequently methylated genes in HCC.

DNA METHYLATION AND LIVER 
FIBROSIS
In liver fibrosis, aberrant DNA methylation has been 
studied for a few years. Until now, a number of  aber-
rantly methylated genes have already been recognized. 
Through direct or indirect examination methods (treated 
with demethylating agents such as 5-aza-2’-deoxycytidine), 
these genes were identified to be aberrantly methylated. 
In activated hepatic stellate cell (HSC), transcriptional 
repression of  some genes was indentified to be due to 
promoter hypermethylation of  them.

Until now, genome-wide studies of  DNA methylation 
associated with HSC activation were limited. Aberrant 

process[48,49] (Figure 3). DNMT1 was essential for both 
normal somatic cells and cancer cells and a knockout of  
DNMT1 could cause their death[41,42].

After the cloning of  DNMT1, studies found that em-
bryonic stem cells could still methylate retroviral DNA de 
novo even without DNMT1[50]. DNMT3a and DNMT3b 
were found in later studies[40]. They were regarded as de 
novo DNMT and functioned to set up normal methyla-
tion pattern during embryonic development. They were 
abundant in embryonic stem cell and less expressed in 
differentiated cells[51]. Other DNMTs like DNMT3L pos-
sessed no methylation catalytical activities. But Bourc’his 
et al[52] found that DNMT3L was crucial for establishment 
of  maternal genomic imprinting. 

DNA METHYLATION AND 
HEPATOCELLULAR CARCINOMA
In hepatocellular carcinoma (HCC), DNA methylation is 
characterized by a genome wide hypomethylation and a 
site specific hypermethylation[53]. Until now, many studies 
for presenting the DNA methylation patterns in HCC 
have been published. 

Hypomethylation
Compared with normal liver tissue, DNA methylation 
in HCC is characterized by global hypomethylation. The 
hypomethylation of  intergenic areas, repetitive DNA se-
quences[54], introns[55] and promoter CGI of  specific on-
cogene[56] are responsible for the global hypomethylation. 
Global hypomethylation mainly result in chromosomal 
instability, loss of  genomic imprinting[57,58] and reactiva-
tion of  transposable elements, which may contribute to 
the development of  cancer. 

Previous studies revealed that the demethylation of  
chromosome 1 heterochromatin DNA was associated 
with the q-arm copy gain[59] in HCC. Also, a number 
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Figure 3  The maintenance of DNA methylation 
pattern. A: In somatic cells, DNA methyltransferase 
(DNMT) 3 (DNMT 3a and DNMT 3b) are bound to 
nucleosomes containing methylated DNA; B: During 
DNA semi-reserved replication, DNMT1 interact with 
the DNA polymerase processing factor proliferating 
cell nuclear antigen (PCNA) and ubiquitin-like plant 
homeodomain and RiNG finger domain containing 
protein 1 (UHRF1) and methylate the hemimethylated 
sites; C: Soon after DNA semi-reserved replication, 
DNMT3 correct methylation sites missed by DNMT1 
and complete the process.



methylation associated with HSC activation had been re-
ported at specific loci such as the phosphatase and tensin 
homologue (PTEN) and patched1 (PTCH1) genes. These 
genes were aberrantly methylated in the myofibroblast 
and associated with the decreased of  gene expression[67,68]. 
Our previous study revealed that aberrant promoter 
methylation of  PPAR gamma gene was significantly asso-
ciated with liver fibrosis in patients with chronic hepatitis 
B[69]. Other genes like Ras GTPase activating-like protein 
1 (RASAL1) gene were also found to be aberrantly hy-
permethylated in liver fibrosis[70].

DNA METHYLATION AND 
NONALCOHOLIC STEATOHEPATITIS 
So far, the relationship between DNA methylation and 
metabolic diseases was firmly established. Ahrens et al[71] 
used array-based DNA methylation and mRNA expres-
sion profiling to analyze the liver tissues from patients 
with non-alcoholic fatty liver disease (NAFLD) (n = 45) 
and health controls (n = 18). Aberrant methylation and 
decreased mRNA expression were seen for nine genes, 
which included genes for key enzymes in intermedi-
ate metabolism (ACLY, PC and PLCG1) and insulin or 
insulin-like signaling (IGFBP2, IGF1 and PRKCE)[71]. 
Studies showed that supplementation of  diets lack of  
methyl donors could induce DNA hypomethylation and 
the development of  steatosis in mice. However, supple-
mentation of  diets with methyl donors could prevent the 
development of  NAFLD, suggesting that differences in 
the DNA methylation status might be a potential factor 
for individual susceptibilities to hepatic steatosis[72,73]. The 
supplementation of  the maternal diet with methyl donors 
could induce aberrant methylation in adulthood and pro-
tect offspring from suffering obesity[74].
 
DNA METHYLATION AND LIVER FAILURE
Recent studies found that the aberrant methylation of  
several genes might participate in the development of  
liver failure. The aberrant promoter methylation of  
some anti-inflammatory genes might result in the down-
regulate gene expression and inhibit their protective role 
in liver injury. Our previous study found that glutathione-

S-transferase P1 (GSTP1) promoter hypermethylation 
occurred in patients with acute on chronic hepatitis B 
liver failure (ACHBLF) which might facilitate oxidative 
stress associated liver damage[75]. A study performed by 
Fan et al[76] showed that hypomethylation of  IFN-γ gene 
promoter in peripheral blood mononuclear cells might 
be associated with the onset of  ACHBLF. Qi et al[77] 
found that the aberrant hypermethylation of  glutathione-
S-transferase P1 (GSTM3) gene occurred in ACHBLF, 
which was correlated with their disease severity.

FURTHER PROSPECTS AND SUMMARY
The development of  liver diseases is a multifactorial pro-
cess characterized by the combination and integration of  
a multitude of  alterations including genetic and epigen-
etic changes. In the past decades, there were exponential 
increases in the interest and progress of  DNA methyla-
tion. Studies already revealed the potential role that DNA 
methylation played in the normal human development 
and initiation of  diseases. DNA methylation-based bio-
markers were proposed for disease risk assessment[78], 
early detection[79,80], prognostic prediction[81] and treat-
ment outcome prediction of  liver diseases[82]. Meanwhile, 
there was hope for developing therapeutic agents to ma-
nipulate aberrant DNA methylation patterns and to treat 
malignancies[6]. In 1970s, Constantinides et al[83] reported 
5-azacytidine had remarkable effects on differentiated 
states of  cells. In 2005, Brueckner et al[84] reported the 
drug RG101 could also reactivate tumor suppressor gene 
by inhibiting human DNA methyltransferase. Therefore, 
combined genetic and epigenetic information may help 
clinicians to prevent liver diseases developing in at-risk 
individuals and from passing on unhealthy DNA meth-
ylation characteristics to offsprings.
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