
would affect HCV patients who are also obese or 
diabetics. In fact, several genotypes exert metabolic 
effects which overlap with some of those observed in 
the metabolic syndrome. In this review we will analyse 
the pathogenic pathways involved in the development 
of steatosis in HCV patients. Several cytokines and 
adipokines also become activated and are involved in 
“pure” steatosic effects, in addition to inflammation. 
They are probably responsible for the evolution of 
simple steatosis to steatohepatitis, making it difficult to 
explain why such alterations only affect a proportion of 
steatosic patients. 
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Core tip: Chronic hepatitis C virus (HCV) infection 
can lead to steatosis and steatohepatitis. Increased 
liver triglyceride synthesis is mediated by several 
transcription factors such as sterol regulatory element-
binding protein (SREBP) whose expression is enhanced, 
in turn, by HCV core protein. Chronic HCV infection 
is also associated with insulin resistance that seems 
to be selective because although it activates systemic 
lipolysis, it increases triglyceride synthesis within the 
liver. This is due to the stimulatory effect of insulin on 
SREBP. It remains to be answered why not all patients 
with HCV infection and steatosis develop steatohepatitis 
despite early cytokine activation and metabolic 
derangements. 
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Abstract
There is controversy regarding some aspects of 
hepatitis C virus (HCV) infection-associated liver 
steatosis, and their relationship with body fat stores. 
It has classically been found that HCV, especially 
genotype 3, exerts direct metabolic effects which lead 
to liver steatosis. This supports the existence of a so 
called viral steatosis and a metabolic steatosis, which 
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INTRODUCTION
Non-alcoholic steatohepatitis is an increasingly common 
situation, in which fat-laden hepatocytes trigger an 
inflammatory response which may evolve to liver 
cirrhosis[1] and hepatocarcinoma[2]. Diabetes and obesity 
are the most important causes, since insulin deficiency 
and/or resistance alter the mobilization of fatty acids 
from adipose tissue to liver, the oxidative pathways, 
and lipid trafficking between liver and peripheral 
tissues. Steatosis and steatohepatitis are also observed 
in chronic hepatitis C virus (HCV) infection. Although 
HCV by itself-especially genotype 3a- may lead to liver 
steatosis, obesity and concomitant alcohol abuse are 
main factors involved[3]. The “two hit theory” sustains 
that cytokine activation and increased lipid peroxidation 
contribute to the evolution of liver steatosis to more 
advanced stages of steatohepatitis[4]. Throughout this 
manuscript we will show that cytokine activation may 
already exist, at least theoretically, in early stages of 
the disease (simple steatosis), but not all the patients 
showing simple steatosis develop steatohepatitis. 

The outstanding role played by some genotype 
specific HCV viral proteins, which either have a direct 
steatogenic effect or induce insulin resistance, explains 
why some HCV infected individuals show liver steatosis 
in the absence of obesity and has led to the concept 
that there are two main pathogenetic mechanisms of 
steatosis in these patients: the so-called “metabolic” 
steatosis and “viral” steatosis. In the present paper 
we will revise the main pathways leading to steatosis 
in these HCV patients. However, viral and non-viral 
dependent pathways are intermingled, so we will not 
treat them separately. Also, although the objective 
of this review is only to revise mechanisms leading 
to steatosis, and not steatohepatitis, many pathways 
involved in simple steatosis are already able to trigger 
inflammation, which is the hallmark of steatohepatitis, 
so a precise limit between both clinicopathological 
stages is lacking. We will comment only those aspects of 
proinflammatory cytokines involved in the pathogenesis 
of “pure” steatosis. 

As mentioned above, patients infected by genotype 
3a HCV develop liver steatosis even in the absence of 
obesity[5], a finding which supports a direct cytopathic 
and steatogenic effect of this precise genotype[6]. Recent 
research has shown that this viral effect depends on 
several mechanisms which will be commented in this 
review. HCV genotype 3a up-regulates the expression 
of fatty acid synthase[7]. There are also data which 
suggest that in chronic hepatitis secondary to HCV 
there is decreased mitochondrial β-oxidation, possibly 
due to mitochondrial damage[8]. In addition, HCV 
impairs export of very low density lipoprotein (VLDL) 
particles from the liver to peripheral tissues, by several 
mechanisms. Hepatocyte release of HCV particles 
utilises the same pathway used in VLDL export, and 
HCV mediates inhibition of the microsomal triglyceride 
transfer protein (MTP), a molecule involved in export of 

intrahepatocytary triglycerides[9].
In addition, several viral proteins of diverse 

genotypes interfere with insulin signalling, leading to 
insulin resistance. Insulin resistance is the hallmark of 
obesity, but in HCV infection, patients do not necessarily 
have to be overweight for them to develop insulin 
resistance: despite the principal role of obesity and 
associated insulin resistance on liver steatosis, this 
lesion may develop in the face of a normal body mass 
index (BMI). Therefore, at any given load of fatty acids, 
HCV infected hepatocytes up-regulate synthesis of more 
fatty acids, impair β-oxidation of the available fatty 
acids, and impede the export of triglycerides (Figure 1).

Increased triglyceride synthesis 
Fat mobilization is a necessary condition to develop liver 
steatosis, and liver steatosis is more intense the greater 
the BMI[10], also in HCV patients (Figure 2). During 
fasting-a situation characterized by low insulin levels-, 
fatty acids are released by the adipocyte and reach 
the liver, where they are taken up by liver cells and are 
destined to be used either as fuel, as a source of ketone 
bodies or they can be combined again with glycerol to 
be re-esterified as triglycerides. Triglycerides coupled 
with apoproteins and cholesterol form the so called 
VLDL which are then exported to peripheral tissues. 

A situation with some features similar to those 
observed during fasting may take place in conditions 
accompanied by insulin resistance: in adipose tissue 
insulin fails to suppress lipolysis, so that an increased 
amount of free fatty acids reaches the liver. But in 
fasting, insulin levels are low, whereas in situations of 
insulin resistance, insulin levels are usually high. High 
insulin levels, even in a situation of insulin resistance and 
not-supressed lipolysis, still enhance liver triglyceride 
synthesis, but not adipocyte synthesis of triglyceride. 
Liver triglyceride synthesis implies esterification of 
glycerol with fatty acids. These fatty acids may derive 
from adipose tissue, from ingested fat, and also from 
ingested carbohydrates, the latter constituting the 
amount synthesized “de novo” by the liver. In insulin-
resistant patients with non-alcoholic fatty liver disease 
the rate of de novo lipid synthesis is increased. Donnelly 
et al[11] showed that 26% of the triglycerides stored in 
the liver of 9 obese subjects with non-alcoholic fatty liver 
disease derived from de novo lipogenesis, in contrast 
with the 5% contribution (in the fasted state) observed 
among normal individuals[12]. This increased de novo liver 
lipogenesis in insulin-resistance situations is accompanied 
by a reduced triglyceride synthesis within the adipocyte, 
due to decreased availability of glycerol 3 phosphate, 
which is in turn due to an insulin-resistance-mediated 
decrease in glucose uptake[13].  

Several transcription factors are involved in increased 
liver lipid synthesis[14]. These are: 

(1) Sterol regulatory element-binding proteins 
(SREBP), especially the SREBP-1c. SREBP-1c enhances 
transcription of genes required for fatty acid synthesis 
and predominates in the liver[15]. When cells become 
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depleted in cholesterol, a protein called SREBP 
cleavage-activating protein (SCAP) binds to SREBP and 
transports it from the endoplasmic reticulum to the 
Golgi apparatus. In the Golgi apparatus there are two 
proteases (site 1 protease or S1P, and site 2 protease 
or S2P) which act sequentially to release the N-terminal 
active form of SREBP, which enters the nucleus and 
binds to a sterol responsive element in the enhancer/
promoter region of the target genes (for instance, fatty 
acid synthase), activating transcription. The movement 
of the SREBP-SCAP complex from the endoplasmic 
reticulum to the Golgi apparatus is supressed by 
high intracellular cholesterol levels; therefore, the 
SRBEP-SCAP system can be viewed as a sensor of 

cholesterol levels in the hepatocyte[16], although this 
inhibitory action affects SREBP-2. Inhibition of SREBP-1 
processing requires the presence of polyunsaturated 
fatty acids in addition to cholesterol[17] (Figure 3). 

SREBP-2 is also present in liver and other organs, 
and is more specifically involved in cholesterol synthesis. 
However, when expressed at higher than normal levels, 
each of the three SREBP isoforms can activate both 
cholesterol and fatty acid synthesis[18]. 

SREBP-1a is expressed only at low levels in liver, but 
in studies performed on genetically engineered mice, 
overexpression of SRBEP 1a led to a 26-fold increase in 
fatty liver synthesis and a massive liver steatosis[19]. 

SREBP transcription is strongly stimulated by 
insulin[20], whereas glucagon exerts an inhibitory 
effect. Over-expression of SREBP-1c may lead to an 
excessive synthesis of fatty acids (and cholesterol and 
triglycerides) within the liver cell, ultimately leading to 
liver steatosis[14,21]. Liver X-activated receptors (LXR) 
α and β are involved in SREBP-1c transcription. These 
are nuclear receptors that heterodimerize with retinoid 
X receptors after binding to a ligand. In the case of 
SREBP, they bind to a LXR response element in the 
promoter region of the SREBP-1 gene and activate 
SRBP-1c transcription[22]. Thus, glucagon, insulin, and 
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Interestingly, PPAR-γ is related to increased expression 
of genes that regulate the synthesis of adipose differen
tiation related protein[41], which functions to coat lipid 
droplets within liver cells[42]. It has been shown that 
HCV core protein increases the transcriptional activity 
of PPARgamma, although it exerted no effect on 
PPARgamma gene expression[43]. 

Synthesis of triglycerides is a complex process, 
in which several enzymes participate. During fasting, 
the increased flux of fatty acids to the liver increases 
the translocation of lipin-1, a protein with dual activity 
on fatty acid metabolism[44]. Lipin proteins translocate 
from the cytosol to the endoplasmic reticulum where 
they show phosphatidate phosphatase (PAP 1) activity. 
This enzymatic activity transforms diacylglycerol 3 
phosphate into diacylglycerol (DAG), which serves as 
substrate for triglyceride and phopholipid synthesis. 
Fatty acids are added to the DAG molecule through the 
action of acyl coenzyme A:diacylglycerol acyltransferase 
to form triglycerides[45]. 

In addition to its PAP 1 activity, lipin also translocates 
to the nucleus, where it enhances expression of 
genes involved in fatty acid oxidation[46]. This requires 
interaction with PPAR-α and PPAR-γ coactivator 1α, 
forming a physical complex. This leads to decreased 
intracellular levels of fatty acids which defends the cell 
from the damaging effect of these molecules[47,48].

Consistent with its effect on free fatty acids, 
insulin stimulates the activity of lipin-1 by unknown 
mechanisms, and obesity-related insulin resistance 
down-regulates lipin gene expression[49]. PAP 1 activity 
is enhanced in ethanol-induced liver steatosis[50], but 
lipin deficiency may exacerbate ethanol-associated 
liver steatosis-perhaps by impairment of fatty acid 
oxidation[51]. Concordantly, ethanol up-regulates lipin-1 
gene expression[52]. Liver lipin is also regulated by 
SIRT-1[53], a molecule whose activity is inhibited by 
ethanol. However, to our knowledge, the effect of HCV on 
lipin proteins has not been analysed.

Inhibition of fatty acid oxidation 
Fatty acid oxidation takes place mainly in the mito
chondria, although in a small proportion it also includes 
microsomal ω- and peroxisomal β-oxidation. Improper 
fatty acid oxidation may also contribute to liver steatosis. 
As mentioned earlier, AMPK stimulates hepatic fatty acid 
oxidation and ketogenesis, since it lowers malonyl-CoA 
liver content, thereby permitting fatty acid transport 
to the mitochondria, where they suffer oxidation[30]. 
Ethanol exerts an inhibitory effect on AMPK[54] and HCV 
also downregulates AMPK[29]. In a study performed 
on 30 patients infected with HCV it was found that 
mitochondrial β-oxidation of fatty acids was impaired 
and that this impairment was related to serum levels 
of HCV core protein[8]. Therefore, both in alcoholic and 
non alcoholic fatty liver disease impaired fatty acid 
oxidation plays an crucial role, without the need of 
accompanying mechanisms. However, insulin resistance 
and proinflammatory cytokines also exert major effects 

LXR are classical modulators of SREBP-1c transcription. 
The activity of SREBP-1c is increased in several 

situations in which liver steatosis ensues, such as 
alcoholism (acetaldehyde enhances its transcription[23]), 
high tumor necrosis factor alpha (TNF-α) levels[24], or 
HCV infection[25]. HCV core protein enhances both gene 
expression of SRBP and transcriptional activity of this 
molecule[26]. 

On the other hand, SRBP-1 is inactivated by sirtuin-1 
(SIRT-1), a molecule whose activity is modulated by 
several variables, including ethanol and HCV core protein, 
among others[27]. Sirtuins are involved in the modulation 
of transcription factor activity by deacetylation of proteins. 
Biological activity of sirtuins depends on nicotinamide 
adenine dinucleotide (NAD) availability[28]. Specifically, 
sirtuin1 deacetylates and inhibitis SREBP-1c activity, 
therefore decreasing fat synthesis. Ethanol inhibitis 
sirtuin-1 activity, therefore increasing the lipogenic effect 
of SREBP 1-c[26]. HCV exerts a similar effect[29]. 

Sirtuin activity is coupled to that of AMP-activated 
kinase (AMPK), an enzyme that phosphorylates and, 
thus, inhibits, acetyl-CoA carboxylase, interrupting the 
formation of malonyl-CoA, a key step for fatty acids 
synthesis, and preserving cellular content in NAD[30]. 
Sirtuin activates AMPK acting on serine/threonine kinase 
11, also known as liver kinase B1, a process which leads 
to an increase in cellular NAD availability, which favours 
SIRT-1 activity[31]. This reciprocally regulated circuit 
leads to inhibition of SREBP activity and fatty acids 
synthesis. It is important to keep in mind that ethanol 
metabolism consumes NAD, theoretically opposing to 
sirtuin activation.

Endocannabinoids are also involved in enhanced 
expression of SREBP-1c[32]. Cannabinoid agonists 
are orexigenic, and animal models support a role of 
endocannabinoids on diet-induced liver steatosis[33]. 
Daily cannabis consumption aggravates steatosis in HCV 
patients[34]. Conversely, HCV infection may up-regulate 
cannabinoid receptor 1 expression[35].  

(2) However, although cholesterol synthesis 
seems to depend almost entirely on SREBP activity, 
suppression of the SREBPs machinery reduces fatty acid 
synthesis by only 30%[36]. Another transcription factor 
involved in liver steatosis is carbohydrate response 
element binding protein (ChREBP), whose activity is 
induced by a high carbohydrate diet, insulin[37] and 
ethanol[38]. It increases the expression of both lipogenic 
enzymes (such as fatty acid synthase) and glycolytic 
ones[39]. The effect of HCV on ChREBP is not known, to 
our knowledge.

(3) Peroxisome proliferator-activated receptor 
(PPAR)-γ is another master transcription factor involved 
in fat metabolism. Increased activity of PPAR-γ is 
associated with an increase in lipid synthesis[40] and 
is seen in patients with liver steatosis. It upregulates 
genes involved in lipid synthesis, increasing the activity 
of mediators such as SREBP-1, fatty acid synthase and 
acetyl coenzyme a carboxylase, all of them leading to 
increased hepatocyte lipid content. 
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on this mechanism. 

Insulin resistance
Normally, insulin activates acetyl CoA-carboxylase, 
leading to the formation of malonyl-CoA, which inhibits 
mitochondrial fatty acid oxidation; it also strongly 
inhibits gluconeogenesis by blocking key enzymes such 
as phosphoenolpyruvate carboxykinase and glucose 
6 phosphatase. Additionally, it inhibits lipolysis and 
promotes glycogen synthesis and de novo fat synthesis 
using carbohydrates as substrate. Finally, it favours 
SREBP and ChREBP transcription, as was mentioned 
above. Therefore, it exerts lipogenic effects on the 
liver cell[55]. Insulin action takes place after binding 
to a specific receptor, which, upon activation, leads 
to the phosphorylation of a series of inactive kinases 
called insulin responsive substrates (IRS), transforming 
them into active ones. Some final effects of this 
complex cascade of kinases include phosphorylation 
of transcription factors, such as forkhead box protein 
(FOX)O1 and FOXA2, among others[56]. Phosphorylated 
FOXO1 is unable to activate transcription of key enzymes 
involved in gluconeogenesis, such as phosphenolpyruvate 
carboxy-kinase or glucose 6 phosphatase, and thus, 
liver production of glucose is blocked[57]. Another 
transcription factor-FOXA2- is involved in hepatic fatty 
acid oxidation[58].  

In states of insulin resistance, insulin fails to 
phosphorylate FOXO1 and therefore, it fails to block 
gluconeogenesis. Therefore, fasting hyperglycaemia is 
observed despite hyperinsulinism and lipolysis is also 
activated, leading to an increase in the fatty acid load 
to the liver. However, the expected decrease in liver 
triglyceride synthesis is not observed. This is interpreted 
as a result of the stimulatory effect of insulin on SREBP-
1c, favouring triglyceride synthesis. Therefore, insulin 
resistance is selective[59]: the lack of inhibition of 
gluconeogenesis leads to hyperglycaemia and in turn 
hyperglycaemia leads to increased insulin secretion, 
but SREBP activity is enhanced, leading to increased 
triglyceride synthesis. Other factors that are mentioned 
below may possibly aid in explaining this paradox. 

In normal conditions, insulin not only has an adi
pogenic effect on the hepatocyte but it also limits VLDL 
secretion[60]. This effect is mainly dependent on an insulin-
derived increased rate of degradation of apoprotein 
(apo) B but it is also due to the inhibition of apo B 100 
synthesis. This preserves the triglycerides stored in the 
hepatocytes from utilization in the postprandrial state, 
so that they do not compete with the exogenous fatty 
acids. Apo B synthesis is a necessary step for VLDL 
formation. Newly synthesized apo B translocates into the 
endoplasmic reticulum and encounters MTP, among other 
chaperone proteins[61]. Importantly, FOXO1 enhances 
MTP expression[62]. This may explain why in conditions 
associated with insulin resistance the postprandrial 
decrease in VLDL secretion does not take place, and 
why hypertriglyceridemia constitutes a feature of the 

metabolic syndrome. As mentioned earlier, HCV is able to 
modulate MTP activation, directly promoting steatosis[9,63]. 
A recently described orphan receptor protein (orphan 
receptor small heterodimer partner) also plays an 
important role in the development of liver steatosis, 
although precise mechanisms are still unknown[64]. It 
possibly represses transcriptional activation of MTP; HCV 
increases its expression[65]. 

HCV also directly provokes insulin resistance. In 
HCV infection, insulin resistance is more closely related 
to viral load than to obesity, supporting a direct effect 
of HCV on insulin metabolism[66]. In fact, diabetes is 
more frequently observed among HCV patients[67]. The 
mechanisms involved in insulin resistance seem to be 
genotype-specific. It has been shown that HCV non-
structural protein 5A (NS5A) is able to phosphorylate 
serine residues of IRS-1, thereby interfering with the 
post receptor downstream cascade of insulin action[68]. 
In accordance with this fact, treatment of HCV patients 
with pegylated interferon and ribavirin reduces insulin 
resistance assessed by homeostasis model for assess
ment[69]. Moreover, NS5A protein also exerts direct 
lipogenic effect through activation of LXRs[70]. 

In addition to the effect of non-structural proteins, 
it has been recently shown that HCV 1 and 4 core 
proteins are able to alter the degradation of IRS-1 
and IRS-2 in a pathway dependent on suppressor 
of cytokine signalling 3 (SOCS3), thus also altering 
insulin signalling[71,72] by stimulating ubiquitination and 
subsequent degradation of IRS. Moreover, Pazienza et 
al[73], in 2007, showed that core protein of genotype 3a 
promoted IRS degradation by down-regulation of PPAR 
γ and up-regulation of SOCS7, whereas the core protein 
of genotype 1b activated the mammalian target of 
rapamycin (mTOR). Activation of mTOR leads to insulin 
resistance[74], but also exerts a direct effect on SREBP-1, 
leading to increased lipid synthesis. Some authors 
believe that the main mediator of increased lipogenesis 
in conditions characterized by insulin resistance is 
mTOR, acting on SREBP[75]. 

Fat as an endocrine organ: Cytokines
We have seen that steatosis ultimately depends upon 
the fatty acids pool, mainly derived from adipose tissue. 
It is also important to keep in mind that fat is not only 
a source of free fatty acids, but also a source of pro-
inflammatory and anti-inflammatory cytokines which 
are able to modulate the circulation of free fatty acids 
from fat tissue to liver and again from liver to peripheral 
tissues[76]. These cytokines are also involved in some 
key steps of the progressive liver damage observed 
in individuals affected by steatohepatitis. To add 
more complexity to this scenario, recent research has 
shown that fat tissue is not homogeneous. Trunk fat is 
associated with increased insulin resistance and vascular 
risk[77], whereas leg fat exerts opposite effects[78]. 
These differences probably reflect the secretion of a 
different cytokine profile. In general, trunk fat has a 
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“negative” cytokine profile: it secretes less adiponectin, 
a “protective” cytokine, but more TNF and interleukin 
(IL)-6 than in the gynoid profile of fat distribution (fat 
around the hips and legs which is associated with 
increased production of adiponectin)[79]. Therefore, it 
is important to analyse the diverse fat compartments 
when studying the influence of these cytokines on 
liver steatosis. The cytokine profile associated with 
hepatitis C-liver steatosis, and the potential role of these 
cytokines on liver fat deposition is controversial[80-82] as 
well as their relationships with histological changes in 
chronic HCV infection. 

Although cytokines are definitely involved in the 
inflammatory process which marks the evolution from 
steatosis to steatohepatitis, they also play a role in 
simple steatosis, both by aggravating it directly, or by 
affecting the metabolic axis which controls fatty acid 
trafficking. For instance, TNF-α is involved in SREBP 
activation[24]. On the contrary adiponectin activates fatty 
acid oxidation[83,84], but decreases the activity of fatty 
acid synthase and acetylcoenzyme A carboxylase[85]. 
Moreover, it inhibits liver production of TNF[86]. By 
upregulation of AMP activated protein kinase activity 
it also influences other pathways involved in lipid 
metabolism decreasing SREBP-1 and up-regulating 
PPAR-α in several tissues[87], an effect which is shared 
by IL-6[88]. PPAR-α is a transcription factor for several 
genes involved in the transport, oxidation, and export 
of free fatty acids[89,90]. It can be viewed as a sensor of 
intracellular free fatty acids, since it becomes activated 
by intracellular free fatty acids. PPAR-α deficiency 
promotes the development of fatty liver, and its activity 
is altered by classic factors involved in liver steatosis, 
such as ethanol consumption and HCV infection. 
Chronic ethanol feeding inhibits PPAR-α function due to 
the effect of acetaldehyde, which inhibits transcriptional 
activation of PPAR-α[91]. HCV causes down-regulation of 
PPAR-α[92], and is able to inhibit its activity by inducing 
repression of PPAR-α signaling by micro RNA-27b[93]. 

Leptin, another fat-derived cytokine, may promote 
fibrogenesis through up-regulation of transforming 
growth factor-β[94], but it also protects the liver from fat 
accumulation by lowering the expression of SREBP-1[95]. 
These nearly opposite effects may explain, perhaps, 
disparate findings in relation to leptin levels in chronic 
HCV infection[96]. Increased leptin levels, but also 
normal[97] or even decreased ones[98] have been reported 
in chronic HCV infection and leptin may[99] or may not be 
related to liver steatosis[96,100] in chronic HCV infection.

Increased trunk fat is not the only factor responsible 
for increased cytokine secretion in HCV infection. 
Increased reactive oxygen species (ROS)-which also 
directly impair mitochondrial oxidation of fatty acids[101] 
activate nuclear factor kappa B (NFκB), a key trans
cription factor for the expression of cytokines[102] such as 
TNF-α or IL-6, among others. In addition to the many 
proinflammatory effects of TNF-α, it also causes insulin 
resistance and liver steatosis by inhibiting IRS[103]. 
Excessive ROS production depends on the intracellular 

effect of HCV. NS3 and 5A are able to activate 
mitochondrial ROS production by altering calcium 
trafficking at the endoplasmic reticulum membrane[104]. 
This altered calcium influx also triggers increased 
transcription of STAT-3 and NFκB, leading to increased 
cytokine production which closes a positive feed-back 
loop. In addition, NS3 and NS 5A are also able to 
stimulate toll-like receptor-4, in a way similarly to that 
caused by the lipopolysaccharide in the initial stages of 
alcoholic hepatitis[105]. Furthermore, LXR, which can be 
directly activated by HCV, regulates a set of genes that 
encode proinflammatory mediators[43]. 

CONCLUSION
Liver steatosis is a very complex process, in which 
many proteins and enzymes are involved. As shown, 
viral proteins may affect several of the metabolic 
pathways leading to simple steatosis, including cytokine 
activation. Indeed, cytokine production takes place 
even at early stages, and, among many other questions 
outlined in this review, it remains to be answered why, 
despite early cytokine activation, only some patients 
evolve to steatohepatitis, a key step in the progression 
of HCV-induced liver damage. 
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