
Online Submissions: http://www.wjgnet.com/esps/
wjv@wjgnet.com
doi:10.5501/wjv.v2.i2.18

World J Virol  2013 May 12; 2(2): 18-31
ISSN 2220-3249 (online)

© 2013 Baishideng. All rights reserved.

World Journal of 
VirologyW J V

High-throughput RNA interference screens integrative 
analysis: Towards a comprehensive understanding of the 
virus-host interplay

Sandeep Amberkar, Narsis A Kiani, Ralf Bartenschlager, Gualtiero Alvisi, Lars Kaderali

Sandeep Amberkar, Narsis A Kiani, Lars Kaderali, Institute 
for Medical Informatics and Biometry, Medical Faculty Carl 
Gustav Carus, Technische Universität Dresden, 01307 Dresden, 
Germany
Ralf Bartenschlager, Department of Molecular Virology, Uni-
versity of Heidelberg, 69121 Heidelberg, Germany
Gualtiero Alvisi, Department of Molecular Medicine, University 
of Padua, 35121 Padua, Italy
Author contributions: Amberkar S, Kiani NA and Alvisi G 
wrote the paper; Bartenschlager R, Alvisi G and Kaderali L re-
vised the paper; Amberkar S, Kiani NA, Bartenschlager R, Alvisi 
G and Kaderali L approved the final version of the manuscript
Correspondence to: Dr. Gualtiero Alvisi, PhD, Assistant 
Professor, Department of Molecular Medicine, University of 
Padua, Via Aristide Gabelli, 63, 35121 Padua, 
Italy. gualtiero.alvisi@unipd.it
Telephone: +39-49-8272353  Fax: +39-49-8272355
Received: December 5, 2012  Revised: February 15, 2013
Accepted: March 15, 2013
Published online: May 12, 2013

Abstract
Viruses are extremely heterogeneous entities; the size 
and the nature of their genetic information, as well as 
the strategies employed to amplify and propagate their 
genomes, are highly variable. However, as obligatory 
intracellular parasites, replication of all viruses relies on 
the host cell. Having co-evolved with their host for sev-
eral million years, viruses have developed very sophis-
ticated strategies to hijack cellular factors that promote 
virus uptake, replication, and spread. Identification of 
host cell factors (HCFs) required for these processes is 
a major challenge for researchers, but it enables the 
identification of new, highly selective targets for anti 
viral therapeutics. To this end, the establishment of 
platforms enabling genome-wide high-throughput RNA 
interference (HT-RNAi) screens has led to the identi-
fication of several key factors involved in the viral life 

cycle. A number of genome-wide HT-RNAi screens have 
been performed for major human pathogens. These 
studies enable first inter-viral comparisons related to 
HCF requirements. Although several cellular functions 
appear to be uniformly required for the life cycle of 
most viruses tested (such as the proteasome and the 
Golgi-mediated secretory pathways), some factors, like 
the lipid kinase Phosphatidylinositol 4-kinase Ⅲα in the 
case of hepatitis C virus, are selectively required for in-
dividual viruses. However, despite the amount of data 
available, we are still far away from a comprehensive 
understanding of the interplay between viruses and 
host factors. Major limitations towards this goal are the 
low sensitivity and specificity of such screens, resulting 
in limited overlap between different screens performed 
with the same virus. This review focuses on how statis-
tical and bioinformatic analysis methods applied to HT-
RNAi screens can help overcoming these issues thus 
increasing the reliability and impact of such studies.

© 2013 Baishideng. All rights reserved.

Key words: RNA interference; High-throughput; Cell 
population; Dependency factors; Bioinformatics; Hu-
man immunodeficiency virus; Hepatitis C virus; Dengue 
virus; Viral infection; Virus-host interactions

Amberkar S, Kiani NA, Bartenschlager R, Alvisi G, Kaderali L. 
High-throughput RNA interference screens integrative analysis: 
Towards a comprehensive understanding of the virus-host in-
terplay. World J Virol 2013; 2(2): 18-31  Available from: URL: 
http://www.wjgnet.com/2220-3249/full/v2/i2/18.htm  DOI: http://
dx.doi.org/10.5501/wjv.v2.i2.18

INTRODUCTION
Viruses are obligate intracellular parasites causing more 
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than 3 million deaths per year worldwide (http://www.
cdc.gov/). Development of  highly efficient vaccines to 
prevent infection, or antiviral compounds to promote 
viral clearance from infected patients is hindered by their 
high variability and mutation rate[1]. Given the small size 
of  their genome, which can be as small as just a few 
kilobases[2], viruses necessarily rely on host cell factors 
(HCFs) in order to propagate their genetic information. 
Therefore key HCFs required for the viral life cycle might 
represent potential target for the development of  new 
anti-viral compounds[3]. Indeed these factors can be ab-
lated either pharmacologically or genetically, resulting in a 
drop of  viral replication[4,5]. While pharmacological abla-
tion necessarily relies on the availability of  highly specific 
inhibitors, the discovery of  RNA interference (RNAi) 
allows to genetically hinder the expression of  virtually any 
human gene, by reducing its mRNA levels and therefore 
protein expression[6,7]. The availability of  libraries of  small 
interfering RNAs (siRNAs) directed towards almost every 
human gene (genome-wide libraries) enables to perform 
large scale, high-throughput RNAi (HT-RNAi) screens to 
identify key HCF involved in virtually any measurable cel-
lular process. To this end, HT-RNAi technology has been 
extensively used to identify cellular factors involved in cell 
division[8], Wnt signaling[9], Janus kinase/signal transducers 
and activators of  transcription signaling[10], extracellular 
signal-regulated kinases signaling[11], caspase activation[12], 
mitochondrial function[13] and many others. A similar 
approach could also be undertaken to search for HCFs 
required for a certain step of  the life cycle of  any given vi-
rus, which is able to replicate in cell culture. Because viral 
infection is a multi-step process that starts with the interac-
tion between the parasite and the target cell and ends with 
the release of  newly generated infectious particles, any of  
these steps is a potential target of  therapeutic intervention 
through silencing of  the involved HCFs. Therefore, sev-
eral genome-wide HT RNAi screens have been performed 
to identify key factors involved in the life cycle of  a num-
ber of  viruses, including human major pathogens such as 
influenza virus (INF)[14-16], human immunodeficiency vi-
rus-1 (HIV-1)[17-19], and human hepatitis C virus (HCV)[20,21], 
the only constrain being the availability of  a robust cell 
culture system to assay the outcome of  infection. The very 
first genome-wide HT-RNAi screen performed on viruses 
was performed on Drosophila C virus (DCV)[22]. Indeed 
most of  the first genome wide HT-RNAi screens were 
performed in Drosophila cells because of  several reasons, 
including the fact that Drosophila Melanogaster’s genome 
was completely sequenced in 2000[23], allowing for synthe-
sis of  comprehensive Drosophila dsRNA libraries[24,25] and 
that long dsRNAs added to the medium of  Drosophila 
tissue culture cells are rapidly taken up by the cells in the 
absence of  any transfection reagents, mediating efficient 
and specific mRNAs knockdown[26]. The first genome-
wide screen for viral HCFs relied on a very simple experi-
mental set-up: cells were incubated with a single RNAi 
specific for each gene in 384 well plates for 3 d, infected 
with DCV, and 1 d later, processed for immunofluores-

cence against the capsid antigen before automated micro-
scopic imaging. By visual inspection, the authors identified 
210 dsRNA species that reduced the relative number of  
infected cells by > 40%. dsRNAs targeting these genes 
were re-synthesized and tested again for their ability to de-
crease DCV infection. This “validation” screening allowed 
identifying 112 host dependency factors (HDFs). Among 
them, 66 proteins were ribosomal proteins, specifically 
required for translation of  DCV polyprotein but not for 
vesicular stomatitis virus, a pathogen whose genome, in 
contrast to that of  DCV, does not contain a ribosomal en-
try site (IRES) mediating RNA translation in the absence 
of  a 5’ cap. The authors therefore concluded that the ribo-
somal genes identified in their study are essential for DVC 
IRES mediated genome translation.

Since this very first example, it became rapidly clear 
that many sources of  errors such as RNAi reagent de-
sign, an inhomogeneous staining, differences in cell 
growing properties as well as in transfection and infec-
tion efficiencies could negatively affect the outcome of  
such HT-RNAi screens. Therefore, HT-RNAi screens 
became more and more sophisticated (Table 1). Authors 
started to worry to strengthen the statistical reliability of  
their studies by including several replicas, and increasing 
the number of  oligos tested per gene. The most popular 
approach so far has been to test four different oligos 
per gene, pooled in a single well in a primary screen, to 
reduce the so called “off  targets effects”[27]. Subsequently 
hit genes from the primary screen are further tested in a 
secondary validation screen, where the four different oli-
gos used in the primary screen are tested individually for 
their ability to reproduce the original phenotype[17,20,21,28]. 
Several studies started to include the possibility to dis-
tinguish genes important early in the viral life cycle (en-
try/replication phases) from those involved later on (as-
sembly/release of  new viral particles), by implementing a 
two-step procedure, according to which cells are incubat-
ed with the siRNA library before infection with the virus 
of  interest. Measurement of  viral replication at a given 
time point enables to identify gene products important 
for early phases of  the viral life cycle such as virus entry 
and genome replication. Simultaneously, supernatants are 
collected from infected cells and used to re-infect naive 
cells, therefore enabling to identify genes important for 
late stages of  viral life cycle such as viral assembly and 
release[14,17,20]. As far as the readout is concerned, some 
authors preferred to utilize reporter viruses carrying 
either the GFP[29]-to avoid issues related to antigen stain-
ing and detection - or the Luciferase (Luc) genes in their 
genome[15,16,18,21], the latter solution enabling an easier and 
more quantitative analysis of  the levels of  viral replica-
tion. Interpretation of  HT-RNAi screening results is also 
complicated by the fact that different screens performed 
with the same virus yielded little overlap between HCFs, 
raising questions concerning the reliability and reproduc-
ibility of  this approach[30]. Hence, several authors have 
implemented interesting bioinformatics and statistical 
approaches (see below) to strengthen the significance and 
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reliability of  their results by integrating RNAi data with 
protein-protein interaction (PPI) databases[18,20]. 

Overall the picture emerging from the above-mentioned 
studies is that different viruses rely on some common 
structures, such as the proteasome proteolytic pathway, 
the spliceosome complex, and the Golgi secretory sys-
tem. Because of  the “housekeeping” nature of  the latter 
processes, these findings, although representing a crucial 
stating point to understand the molecular biology behind 
the virus-host cell interaction, might be of  limited impor-
tance to the identification of  anti-viral targets and to the 
understanding of  how specific viruses differentially ex-
ploit the cell for their own purposes. However, a few virus 
specific HCFs have also been identified. Among them, a 
lipid kinase, the phosphatidylinositol-4-kinase Ⅲα (PI4K-
Ⅲα) has been identified by several HT-RNAi screens as 
a crucial factor for HCV replication, in spite of  differ-
ences in the HCV genotypes used and the experimental 
setup[20,21,31-33]. A recently proposed model hypothesized 
that during HCV infection, a viral protein recruits PI4K-
Ⅲα to the sites of  viral replication to increase local levels 
of  phosphatidylinositol-4-phosphate, necessary for their 
integrity of  the membraneous replication compartment 
and hence viral replication[34]. Importantly, a recent study 
reported that AL-9, a 4-anilino quinazoline specifically 
inhibiting HCV replication[35], acts a selective inhibitor of  
PI4K-Ⅲα[36]. This inhibitor could therefore represent the 
basis for the development of  new-highly needed antiviral 
compounds to combat HCV infection. The next sections 
offer a brief  overview on how bioinformatics and statisti-
cal approaches can overcome most limitations connected 
with HT-RNAi screens applied to the study the virus-host 
interaction, resulting in a simple workflow for the analysis 
of  HT-RNAi screens aimed at identifying key host regula-
tors of  viral life cycles (Figure 1).

FROM EXPERIMENTAL SET-UP TO “HIT 
CALLING”: STATISTICAL ANALYSIS OF 
HT-RNAi SCREENS
Readout systems for HT RNAi screens are extremely het-
erogeneous, ranging from bulk readouts of  fluorescence 
reporters to high-content microscopy based assays. Basi-
cally any phenotype, either directly or indirectly measured 
through a reporter, can be used as readout in HT-RNAi 
screens. However, the main measurement types of  cell-
based screens in use are: Uniform well readouts: these as-
says usually use high throughput plate readers to produce 
their measurements. Absorbance, Luminescence, Fluores-
cence Intensity, Fluorescent Polarization and Resonance 
Energy Transfer are the most usual uniform well detection 
methods[37]; Reporter gene systems: these are mostly high 
throughput assays using Fluorescence-assisted cell sorting. 
They employ high throughput FACS to produce readouts 
of  GFP, Luc, etc.[38]; High-Content Imaging Screens: they 
are designed to identify those genes that alter the cellular 
phenotype in a desired manner (i.e., decreases in the pro-

duction of  cellular products, nuclear and cellular morphol-
ogy, proteins subcellular localization, etc.)[37,39].

The selection of  the type of  assay depends on the goal 
of  screen and practical constrains. The analysis of  arrayed 
screens can involve application of  image analysis software 
or custom programs, as well as various methods of  statis-
tical analysis and Bioinformatics (see below). The aim of  
statistical analysis is to identify “hit” genes that are robust 
up- and down-regulators of  viral replication. Overall, 
most of  the methods currently used for statistical analy-
sis of  RNAi screens are reminiscent of  those developed 
in the past for the statistical analysis of  cell-based small-
molecule screens, with considerable improvement having 
been implemented in several aspects - including data nor-
malization, replicate tests, and selection of  cut-off  thresh-
old to determine hits[40]. Cell death and cell clumping are 
among the most serious problems, which can be directly 
or indirectly linked to the silencing effect of  individual 
siRNAs[39]. These phenomena can create background or 
saturation effects in the corresponding wells. In addition, 
viral infection might induce even more data variation 
since it can lead to a different cellular behaviour[41]. Er-
rors of  unknown origin may also occur over the entire 
process. These adverse effects can often be minimized by 
quality control procedures and statistical corrections. Data 
variation caused by stochastic reasons can be minimized 
performing additional experimental replicas.

Successful data analysis heavily depends on careful 
experimental design and assay development prior to the 
primary screen[42]. Therefore, for example, the optimiza-
tion of  transfection conditions is crucial to the success 
of  experiments. Several factors play important roles in 
the development of  a good assay. The nature of  RNAi 
duplexes to be used (different companies offer RNAi 
with specific chemical modifications reducing off-target 
effects), the number of  unique individual RNAi duplexes 
targeting each gene, the number of  replicate tests, the 
number of  “no treatment” controls (negative controls), 
the individual plates layout design (including the place-
ment of  negative controls) are the most important fac-
tors which should be considered during the experimental 
design[38,43,44]. Testing of  two or more non-overlapping 
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Figure 1  A schematic workflow for the analysis of high-throughput RNA 
interference screens to identify host cell regulators of viral life cycle.
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RNAi reagents per gene is nowadays a general standard 
for primary screens[38]. Once RNAi concentration and 
transfection conditions have been established, checking 
the sensitivity to accurately differentiate between positive 
“hits” and negative controls can be very useful[45]. During 
this hit selection process, two kinds of  decision errors 
can occur, leading to “false positives” (FPs), experimental 
findings that cannot be subsequently confirmed, and to 
“false negatives” (FNs), factors which should have been 
identified were not. If  the assay is not sensitive enough, 
a high frequency of  FNs will be obtained. Conversely, 
if  the readout is too sensitive, a significant number of  
FPs will be identified. The best way to ascertain the rates 
of  FNs and FPs is to perform a pilot screen. For this 
purpose, two or more plates fully loaded with positive 
and negative controls should be used to test the outputs 
“robustness”[46]. Three measurements are commonly 
used to this end: signal-to-background ratio, coefficient 
of  variation (CV) and the Z’ factor[45]. As assay variability 
increases, the signal-to-background ratio must increase 
for a screen to be successful.

Some candidates identified through a screen might 
generate the phenotype of  interest; however, this might 
be due to the type of  assay used for the readout or to an 
off-target effect. To overcome such problems, one can 
use an alternative, or orthogonal, screening procedure. 
The selected candidate forms the basis for further in-
vestigations, for example a secondary screen (also called 
validation screen). Secondary screens test a much smaller 
number of  compounds (e.g., the 1% strongest hits from 
the primary screen) and typically use at least duplicate 
measurements. The magnitude of  the statistical artefact 
can be minimized, e.g., by obtaining replicate measure-

ments, and thus improving precision of  the overall es-
timate. The assumptions that RNAi duplexes targeting 
specific genes randomly plated and the most of  them 
do not have an effect on viral replication for secondary 
screens are not valid. Below, we present a sample work-
flow for analyzing RNAi screens.

Quality control
The goal of  HT-RNAi screens is normally to identify 
“hits”. To this aim, it is of  crucial importance to separate 
FPs from bona fide “hits”. This is largely related to the 
quality of  the assay used. It is therefore necessary to mon-
itor each step, checking the quality of  raw and normalized 
data. To increase the probability of  success, quality assess-
ment should be performed while the screen is in progress, 
and also after each step of  the analysis pipeline, thus 
allowing the detection of  potential issues as they occur. 
This will also help with the choice of  analysis methods. 
In case of  a failed quality control for individual wells or 
plates, these should be either removed from further analy-
sis or repeated.

In biological experiments the use of  controls - posi-
tive and negative - helps to assess the quality of  obtained 
data. Negative controls can be used to assess plate-to-
plate variability, and provide a means to measure back-
ground noise levels of  an assay. Positive controls provide 
an estimate of  expected effect strengths, and are used to 
establish if  effects are observed at all, and if  they are of  
the expected strength. Controls allow the calculation of  
several different quality metric such as signal to noise ra-
tios, the dynamic range[47], CV or the Z’ factor. In contrast 
to simple signal/noise ratio, the dynamic range and the Z’ 
factor calculate the separability of  positive and negative 
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Table 1  List of  high-throughput RNA interference screens performed to identify host factors involved in viral life cycle

Family Virus Readout Viral life cycle step(s) studied Partition (primary/validation)

Flaviviridae (ssRNA+) DENV1[100] IF Single step Primary: single oligo; validation, single oligo 
(the same)

Picornavirus (ssRNA+) DCV1[22] IF Single step Primary: single, validation, single (the same)
Flaviviridae (ssRNA+) HCV[21] Luc (reporter virus) Single step (replicon) Primary: pools of 4 oligos; validation: the 4 

oligos forming the pool tested individually
Flaviviridae (ssRNA+) HCV[20] IF Two step (full virus): entry/

replication; assembly/release
Primary: pools of 4 oligos; validation: the 4 
oligos forming the pool tested individually

Retroviridae (dsRNA) HIV-1[17] Part Ⅰ: IF; part Ⅱ: Luc 
(reporter cell line)

Two steps: entry/replication; 
assembly/release

Primary: pools of 4 oligos; validation: the 4 
oligos forming the pool tested individually

Retroviridae (dsRNA) HIV-1[18] Luc (reporter virus) Single step Primary only: 3 pools of 2
Retroviridae (dsRNA) HIV-1[19] Beta-Gal activity Two steps, but without 

distinction between them
Primary: pools of 3; validation; independent 
poools of 3

Orthomixoviridae; 
(ssRNA- segmented)

INF[14] Part Ⅰ: IF; part Ⅱ: Luc 
(reporter cell line)

Two steps: entry/replication; 
assembly/release

Primary: 4 oligoes

Orthomixoviridae; 
(ssRNA- segmented)

INF[15] Luc (reporter virus) Single step Primary only: some genes 2 oligoes, other 
genes only one

Orthomixoviridae; 
(ssRNA- segmented)

INF1[16] Luc (reporter virus) Single step Primary only: a single sirna x gene

Rhabdoviridae (ssRNA-) VSV[29] IF Single step Primary: 2 pools of 2 oligos; validation: pool 
of 4 oligos from different vendor

Flaviviridae (ssRNA+) WNV[28] IF Single step Primary: pools of 4 oligos; validation: the 4 
oligos forming the pool tested individually

1Drosophila cells. HIV: Human immunodeficiency virus; IF: Immunofluorescence; Luc: Luciferase; DENV: Dengue virus; DCV: Drosophila C virus; HCV: 
Hepatitis C virus; VSV: Vesicular stomatitis virus; WNV: West Nile virus.
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controls and use this criterion to evaluate assay quality. 
CV measures the data quality based on the reproducibility 
of  results. In contrast to dynamic range and the Z’ factor, 
CV does not use controls and can be used in case that 
controls are not available or they did not work properly in 
some screens or at least on individual plates. Calculating 
the correlation among replicates by correlation measures 
such as Pearson’s correlation or Spearman’s rank also can 
be used to check the reproducibility and reliability of  the 
data.

Apart from quality metric, plate visualization is one of  
the most effective techniques to find systematic sources 
of  error or identify data with poor reproducibility due to 
suboptimal assay design or implementation[37,39,42,43,48,49]. 
Heat maps and plate-well scatter plots, which allow to 
display the overall screen performance, as well as replicate 
correlation plots to visualize overall reproducibility, are the 
most widely used methods used for plate visualization[43,48]. 
Box Plots of  readouts of  all plates can be used to detect 
systematic errors among the plates.

When RNAi duplexes are randomized between plates 
and experiments are performed under identical conditions, 
the box plots of  raw data should show approximately the 
same location and scale. However, it is possible due to 
systematic variability that some of  the plates have lower 
(higher) median intensities than the others, resulting in 
considerably higher (lower) hit rates on these plates. This 
can be the consequence of  pipetting issues resulting in al-
tered transfection or infection efficiencies: such deviations 
can be adjusted by normalization. For more details about 
the individual plots and their interpretation, please refer 
to[47,48,50,51]. Finally, wells with lowest and highest 1%-5% 
of  cell counts in the entire screen are sometimes excluded 
from further analysis in particular in the case of  image 
based screens, because of  potential interference with vi-
ral replication readout and errors in image segmentation 
when cells are very dens[39].

Data normalization
Readout of  each spot in a plate is a function of  at least 
two factors: the siRNA’s real activity and random error. 
There are many sources of  systematic errors (variations) 
that affect readouts of  HT-RNAi screens. The ability of  
combination and comparison of  all of  the plates in a pro-
duction run to each other is very important. Systematic 
errors can cause a high degree of  intra-plate and plate-
to-plate variability, which does not allow comparison and 
combination of  data from different plates. Data normali-
zation is a process intended to remove such variation 
from the data to allow comparison and combination of  
data from different plates of  the screen. Intra-plate spatial 
effects and correlation between cell numbers and signal 
intensity are the most important sources of  systematic 
errors[40]. A number of  normalization methods have been 
developed to address these issues[42,47]. Normalization 
is generally performed at two levels: per-plate and per-
experiment (intra- and between-plates normalization).

The per-plate (intra-plate) normalization aims at re-
ducing systematic errors on individual plates, such as dif-

fering cell numbers over the plate, or edge-effects affect-
ing the signal intensities. This can be the consequence of  
pipetting issues resulting in altered transfection or infec-
tion efficiencies, as well as of  evaporation of  media from 
the outer wells. The per-experiment (between-plate) nor-
malization removes systematic bias that occurs between 
different plates. This bias might be due to measurements 
performed using diverse microscope settings or under dif-
ferent environmental situations such as different levels of  
humidity. Since data is varying across specific experimental 
setups, a standard normalization strategy that is appropri-
ate for all of  them does not exist. For example, normal-
ization methods for primary and validation screens are 
different, due to the method of  selection and distribution 
of  the RNAi duplexes. Normalization methods can be 
categorized into two main groups: control-based and sam-
ple-based. Control-based normalization methods com-
pare individual experimental sample values to aggregated 
values of  negative controls, while sample-based method 
use the samples themselves as de facto negative controls[42]. 
The latter choice can provide more accurate measure-
ments, because on each plate the number of  experimental 
samples exceeds that of  the negative controls by several 
folds. This approach is based on the assumption that most 
experimental samples will not display a biological effect 
in the assay being analyzed. Obviously, this assumption is 
not valid in the case of  validation screens and therefore 
sample-based normalization methods should not be used 
in the case of  validation screens. In this case, plates are 
made comparable by control-based normalization meth-
od. Additionally, the use of  sample-based normalization 
methods is particularly problematic when dealing with 
statistical measures (such as mean and standard deviation) 
that are strongly sensitive to outliers in the data. 

Controls-based normalization
Including controls on every individual plate can help 
identifying plate-to-plate variability and establishing back-
ground levels of  an assay. One common approach to for 
plate-to-plate normalization is to scale the intensity values 
based on the controls. Whether for the normalization the 
negative or the positive controls shall be chosen, it de-
pends on the type of  experiment. For RNAi data, nega-
tive controls are used in most cases. It should be noted 
that in this approach, any inaccuracies and random mea-
surement errors in controls would lower the accuracy and 
precision of  the normalized values through error propa-
gation. Therefore, it is important to obtain as accurate 
and precise measurements as possible. Using a relatively 
large number of  control measurements and omitting out-
liers among the controls before normalizing can improve 
the quality of  normalized values.

In this approach, the mean or median of  the controls 
of  a plate is subtracted from the readout value of  each spot 
in the same plate and the result is divided by the controls 
standard deviation or median absolute deviation (MAD).

Sample-based normalization
As mentioned before, under the assumption that most 
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siRNAs in plate would not cause an effect, it is possible 
to use experimental samples as controls. Z-score normal-
ization is a well-known data scaling strategy, which uses 
this assumption. For each spot, the Z-score is defined as 
the number of  standard deviations from the mean of  the 
samples on the plate.

The readout of  each spot rescaled relative to intra-
plate variation by subtracting the average of  the plate 
values and dividing the difference by the standard devia-
tion estimated from all measurements of  the plate. In this 
approach, the mean of  all the samples on the plate is used 
instead of  that of  the negative controls, thus limiting the 
need for large numbers of  controls. Z-score gives explicit 
information on the strength of  each siRNA relative to the 
rest of  the sample distribution. An advantage of  Z-score 
is that it integrates information about the variability of  
replicate measurements in the score. The main disadvan-
tage of  this method is its non-robustness to outliers, that 
can strongly affect estimates of  the mean and standard 
deviation used in the Z-score.

A modified version of  it called the robust Z-score, is 
generally considered preferable for the analysis of  HT-
RNAi screens. It uses the median and MAD for mean and 
standard deviation in the Z-score calculation.

B-score normalization
The B-score is known as a robust analogue of  the Z-score. 
It is more robust to the presence of  outliers, and also dif-
ferences in the measurement error distributions of  the dif-
ferent spots on a plate. If  the quality control has identified 
the presence of  within-plate systematic errors, the B-score 
normalization[52] may be applied to remove row and col-
umn effects within a single plate. The systematic measure-
ment offsets for each row and column, row and column ef-
fects, is estimated using the Tukey median polish method. 
The resulting residuals within each plate are then divided 
by their MAD to standardize for plate-to-plate variability. 
This thus allows the comparison of  different plates, since 
it scales the data according to the overall plate median. 
The B-score has three advantages: it is nonparametric (that 
is, it makes minimal distributional assumptions), it mini-
mizes measurement bias due to positional effects, and it is 
resistant to statistical outliers[47].

Lowess normalization
Lowess (locally weighted least squares regression) normal-
ization performs intra-plate corrections. If  RNAi data is 
multi-parametric, different read-outs may depend on each 
other and these can cause a systematic bias. Lowess regres-
sion is a technique for fitting a smoothing curve to a data. 
Data points that are nearer to the estimated fit are weight-
ed higher than more distant points. The degree of  smooth-
ing is determined by the window width parameter. A larger 
window width results in a smoother curve, a smaller win-
dow results in more local variation. The normalized signal 
intensities are the difference of  the signal intensity values 
and the corresponding point on this curve[51]. For example, 
Lowess normalization can be applied to remove the corre-

lation between signal intensities and cell count by adjusting 
the signal intensities for the effect of  unequal cell numbers 
in wells. This should be done for each plate individually, 
since effects may be different from plate to plate[39].

Population context normalization
Very recently it was shown that different cells in a popula-
tion display heterogeneity in their cellular behaviours[53,54]. 
This heterogeneity implies that cellular responses to a 
particular stimulus or perturbation, such as virus uptake, 
may also be variable[41]. For example certain viruses prefer 
to infect cells that are in a less dense region, others prefer-
entially infect densely packed cells[54]. Therefore analyzing 
certain phenotypes at the single-cell level instead of  using 
population averages to measure an effect might com-
pletely change the results. Snijder et al[54-56] showed that the 
population context of  a cell strongly affects its behaviour: 
factors such local cells density, their position within an 
islet, size, distance from cell-colony edges and population 
size are the main determinants of  cell to cell variability in 
HT-RNAi screening. To address this issue they suggested 
normalizing data by considering the population context. 
They corrected population context effects using quantile 
multidimensional bin models[55]. Knapp et al[57] used a 
similar approach in normalizing data but they developed 
a statistical testing procedure that takes into account indi-
vidual cell measurements in hit-scoring. They used gene 
set enrichment analysis (EA) on sets defined not by genes 
but by cells coming from one spot, one siRNA or one 
gene. These approaches suggest that normalization for 
population context can lead to a substantial decrease in 
experimental variability, and may to some extent underlie 
the low gene overlap and lack of  reproducibility of  RNAi 
screens targeting even the same virus.

Hit calling
Once data have been pre-processed with quality control 
checks and normalization procedures, the next critical step 
is the hit identification procedure to decide which siRNAs 
should be further tested in a secondary screen. The iden-
tification of  “hits” or “screening positives” is the goal of  
any primary RNAi screen. Hit identification is, essentially, 
the selection process of  those samples whose measured 
values for a given phenotype differ significantly from that 
of  the negative controls[52]. A wide range of  hit identifica-
tion techniques is available. Hits can be identified as a per-
centage of  the genes that generate the highest measured 
activity (e.g., top 1%), or as those whose activity exceeds 
a fixed “percent of  control” threshold. Alternatively, the 
hit threshold may be defined as a number of  standard 
deviations (typically 2) beyond the mean of  the raw or 
processed data. This approach selects a standard deviation 
threshold relative to the mean or median normalized data 
and defines “hits” the samples that go beyond this thresh-
old. However, hits (outliers) may cause the distribution of  
the siRNAs measurements to be skewed. The use of  the 
median rather than of  the mean is more robust to outliers, 
and has been shown to more effectively enable the identi-
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fication of  weak hits from RNAi data[58].
The threshold methods assume a common magni-

tude of  random error for all measurements, but do not 
capture data variability effectively. To address this issue, 
researchers then turned to the Z-score method or strictly 
standardized mean difference (SSMD)[59], which can cap-
ture data variability in negative controls. According to 
the Z-score method, any compound whose score after 
Z-score normalization deviates from the bulk by a given 
threshold will be considered as hit. The Z-score method 
is based on the assumption that the measured values (usu-
ally fluorescent intensity in log scale) of  all investigated 
siRNAs in a plate have a normal distribution. SSMD also 
works the best under the normality assumption. The 
drawback common to all of  these metrics is that they rely 
on non-robust statistics, which may lead to inferential er-
rors in hit detection. Because of  the potential existence 
of  true hits and strong assay artefacts, outliers are not un-
common in HT screens. The regular versions of  Z-score 
and SSMD are sensitive to outliers[59]. In general, there are 
two major types of  approaches for hit selection: analytic 
metrics and hypothesis testing. The methods belonging 
to the first approach (such as fold change, mean differ-
ence, SSMD, percent activity, percent viability and percent 
inhibition) assess and rank the size of  RNAi effects, 
while the methods belonging to the second group (for 
instance t-test) test the null hypothesis that no difference 
exists among the means of  particular well and negative 
controls or mean of  plate[48,52,59,60]. If  enough replicates 
are available, a statistical approach can be applied to as-
sign a P value to each condition. If  the P value is smaller 
than a given significance level, the null hypothesis can be 
rejected. A common practice is to use the t-test. It is a 
parametric testing method (assuming normally distributed 
data), which assesses the difference of  the means between 
replicates for each condition.

If  siRNA duplexes are randomly distributed on a 
plate and if  it can be assumed that most of  them have 
no effect, replicates in the test can be compared with the 
overall population. If  this assumption is not valid, e.g., in 
a validation screen, the test is carried out against negative 
controls. This approach needs at least three replicates of  
each condition and that data follows a normal distribu-
tion[61]. In case of  non-normal distribution, the Mann-
Whitney test can be used as non-parametric test[39].

The methods for hit selection differ according to the 
experimental setup of  the HT-RNAi screen, depending on 
the fact that replicates have been performed or not. For 
example, the Z-score method is suitable for screens where 
replicates have not been performed, whereas the t-test is 
suitable for screens where three or more replicates have 
been performed. It is not possible to directly estimate the 
data variability for each siRNA in screens without replica-
tion. Instead, it is indirectly possible to estimate data vari-
ability by making the assumption that every siRNA has 
the same variability as a negative reference in a plate in the 
screen. The Z-score, the B-score and the SSMD rely on 
this strong assumption for cases without replicates[62].

BEYOND THE SCREEN: BIOINFORMATICS 
INTEGRATIVE APPROACHES FOR 
RELIABLE HIT IDENTIFICATION
A typical outcome of  any statistical analysis of  a genome- 
wide HT-RNAi knockdown screen is a list of  gene prod-
ucts that significantly differ from other genes in the same 
study, relatively to a given readout. Classically, these lists 
are then subjected to over-representation analysis (ORA) 
or EA over different known pathway datasets such as 
KEGG, Reactome, Wikipathways and gene ontologies 
(GO), in order to facilitate interpretation of  the hits func-
tional importance. A major caveat in such analyses is the 
fact that the datasets used for such analyses are far from 
being complete. Inconsistencies and lack of  concurrency 
between these pathway databases reduces their reliability, 
thus hampering the coverage of  ORA/EA. This problem 
is particularly evident in the case of  HT-RNAi screens 
concerning the same virus[17-19], where the overlaps over 
these ontologies are minimal[30]. In order to overcome this 
problem, network approaches have been implemented to 
analyze HT-RNAi screens. This section describes studies 
that exemplify the usage of  PPI network data for analyz-
ing RNAi screens. 

Integrating network data for analyzing RNAi screens
With the wealth of  public repositories housing PPI data, 
and exponentially growing computational power to ana-
lyze such data, the need to integrate the outcome of  HT-
RNAi screens with PPI data is pressing. Protein interac-
tions between viral and host proteins are a subset of  this 
data type that can be created by combining previously 
published and experimentally newly identified interac-
tions. VirHostNet[63], VirusMINT[64] and the HIV-1 Hu-
man Protein Interaction Database (HHPID) at National 
Institute of  Allergy and Infectious Diseases (NIAID)[65] 
are examples of  such resources.

A host of  analysis pipelines has been developed to 
integrate PPI data with the HT-RNAi screens hits, which 
can be applied to add depth and significance to latter re-
sults. An example is the SinkSource algorithm described 
in a recent study[66]. In the latter, the authors used a semi-
supervised machine learning approach to predict novel 
HIV-1 HDFs using known HDFs. In other words, by 
combining HDFs identified from recent studies[17-19] and 
PPI data, the authors developed a classification algorithm 
that would learn from the known HDFs in a network 
context to then predict novel ones. The host PPI network 
is modeled as a liquid flow network. Each node (protein) 
is a reservoir of  fluid while an edge (connection between 
2 nodes) is a pipe. The weight of  an edge indicates the 
amount of  fluid that can flow through the pipes per unit 
time. When the fluid network attains equilibrium (amount 
of  liquid flowing into each node equals amount flowing 
out), the reservoir height at each node denotes the con-
fidence that the node is a HDF. HDFs identified in three 
previously published HIV screens[17-19] were assigned a 
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reservoir level at of  1 unit while non-HDFs nodes had a 
reservoir level of  0. This algorithm is similar to the one 
formulated in a previous study[67] for functional predic-
tion of  genes, except that SinkSource also accepts nega-
tive values in the form of  non-HDFs which are non-
lethal. These non-lethal, non-HDFs formed the negative 
set while HDFs identified in the three studies and their 
intersection formed the 4 positive datasets used for pre-
diction of  novel HDFs through a two-fold cross valida-
tion. The latter involved splitting of  both the positive 
and negative datasets in halves and each half  was used 
for prediction of  the genes in the other half. SinkSource 
had higher specificity and precision-recall values when 
compared to six similar algorithms (used for functional 
gene prediction). SinkSource predicted 1394 HDFs in 
addition to the 908 from the above three screens, with 
an accuracy > 80% based on two-fold cross validation 
described earlier. After combining the known HDFs 
with those predicted by their algorithm, the authors then 
searched for dense subgraphs in an integrated protein 
network through MCODE[68]. Using this approach, they 
identified cellular processes and components essential for 
HIV replication. These included, as far as the GO cellular 
component are concerned: spliceosome, kinetochore and 
mitochondrion, whereas GTPase mediated signal trans-
duction, DNA replication initiation and MHC protein 
complex were identified as enriched cellular processes.

Another example of  a network based analysis between 
PPI and HT-RNAi data is from MacPherson et al[69]. In 
this study, the authors utilized the HIV-1 HHPID at NI-
AID[65] and applied a bi-clustering algorithm to identify 
clusters of  genes enriched for HIV-1-Human PPIs. In or-
der to establish a hierarchical overview of  functions from 
the clusters, they were further linked to form a cladogram. 
The distance between 2 clusters was based on the number 
of  overlaps between them; clusters with more overlaps 
were closer to each other than the ones with fewer over-
laps. GO enrichment of  these clusters then defined the 
cluster function and in turn allowed identification of  37 
host subsystems potentially important for HIV-1 infec-
tion. Interestingly, hits previously identified in three pub-
lished HIV HT-RNAi screens[17-19] were found in 10 of  
the 27 subsystems identified. These included proteasome 
core complex, regulation of  apoptosis, mRNA transport, 
endosome, RNA polymerase activity, peptidase activity, 
regulation of  transcription, ubiquitin camp-dependent 
protein kinase complex, and v-akt. Classically, the virus-
host interaction dataset used in this study would only 
provide information about how a viral protein interacts 
with a host protein and its mechanism, as extracted from 
literature. In this study, the authors showed how a viral 
protein interacts with host cellular systems in contrast to 
a single protein. A theoretical validation was provided by 
highlighting systems enriched with hits from the 3 HIV-1 
RNAi screens[17-19].

A very important consequence of  viral-based RNAi 
screens could be the discovery of  new potential targets for 
the development of  anti-viral agents. Over the years, re-

positories holding detailed information on various drugs, 
including their cellular targets, have been publicly made 
available. de Chassey et al[70] used the DrugBank database, 
one of  such resources (http://www.drugbank.ca) to iden-
tify potential drug targets for INF. By combining results 
from 6 different IFV HT-RNAi screens, the authors iden-
tified 925 essential host factors (EHFs), required for IFV 
replication[14-16,71-73]. Network analysis performed integrat-
ing these data with the PPI dataset from VirHostNet[63] 
revealed that 17 EHFs are directly targeted by a viral pro-
tein while the neighborhood of  EHFs (proteins physically 
interacting with EHFs) included 204 proteins that were 
targeted by at least one viral protein. 

In parallel, known drug molecules interacting with 
EHFs were further retrieved from DrugBank. This analy-
sis revealed that 100 EHFs could be targeted by 298 dif-
ferent molecules comprised of  204 FDA-approved drugs 
and 94 experimental drugs. These 100 EHFs were further 
filtered down to 33 proteins, based on their ability to ful-
fill at least one of  the following three criteria: the EHF 
was directly targeted by a viral protein, the EHF was con-
nected to at least another EHF, and the EHF was con-
nected to a non-EHF targeted by the virus. Of  these, 32 
EHFs could be targeted by 49 FDA approved molecules 
with an exception of  one target, HSP90AA1, fulfilling the 
first 2 criteria mentioned above, is also directly interact-
ing with a viral protein. Interestingly, the authors found 
that this EHF is the target of  1 FDA-approved molecule 
(Ribafutin) and 5 experimental molecules. Among the lat-
ter, Geldanamycin has already been proved to reduce IFV 
viral replication by 2 logs in cell culture[74]. Therefore the 
authors concluded that combination of  Geldanamycin 
with Ribafutin (which is also used as a first line of  treat-
ment in tuberculosis) could represent a novel strategy to 
identify antiviral drugs to combat IFV infection. 

As with any high-throughput study, the issue of  false-
positives and false-negatives also exist for HT-RNAi 
screens. FPs due to off-target effect of  RNAi are com-
mon in genome-wide screens and confer ambiguity to the 
final hit-list selected from a screen. Hence, it is recom-
mended to perform a multi-level validation and a func-
tional analysis for hit genes. Even more critical and tricky 
is the issue of  FNsof  a screen. These are typically genes 
that have an effect but are missed due to the statistical 
selection criteria. Wang et al[75] addressed these problems 
by developing an algorithm based on machine learning 
principles, utilizing protein interaction data and network 
topology. Considering network centralities such as direct 
neighbour, shortest path, diffusion kernel and association 
analysis-based transformation[76] along with gene simi-
larities, they developed a set of  scoring functions called 
Network RNAi Phenotype (NePhe). Utilizing the guilt-
by-association principle, Wang et al[75], reasoned that FNs 
would be scored higher by a scoring function over false-
positives FPs, as they would be linked by a greater num-
ber of  true hits. Thus, a near-ideal gene classifier would 
always rank FNs with a higher rank compared to a non-
hit. When this methodology was applied over the Wnt 
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and the Hedgehog signaling pathways, the NePhe scor-
ing system was able to identify all regulators, which were 
missed even by the follow-up validation screens. This 
algorithm was tested on 24 screens to study different 
molecular aspects of  the fruit fly, Drosophila. Its efficacy 
in recovering FN in screens devoted to identifying viral 
HDFs in human systems is yet to be determined.

In general, these studies highlighted how using virus-
host PPI databases to integrate the outcome of  HT-
RNAi data can maximize the relevance of  the latter 
results, reducing FPs and FNs, increasing number of  
HDFs identified and eventually lead to identification of  
new drugs to combat viral infection.

A minor shortcoming of  these studies has been that 
they have been largely biased towards a particular virus. 
For instance, all studies from[66,77-79] have been based on 
HIV screens while there has been only one meta-analysis 
on IFV screens[70]. It would be worthwhile and interest-
ing for the community to see these approaches applied to 
other viruses. With the availability of  several HT-RNAi 
screens for different viruses, a multi species meta-analysis 
can highlight similarities and differences between host-
virus interactions, based on RNAi screen hits. Therefore, 
much effort still needs to be done to perform reliable 
HT-RNAi hits for a large number of  viruses, including 
those such as hepatitis B virus, for which a reliable cell 
culture system is still not available.

Network properties of RNAi hits identified as viral HDFs
A complementary approach to integrate HT-RNAi with 
PPI datasets is to perform Network analyses. Particularly 
it is possible to characterize viral HDFs by computing 
several topological measures (network centralities) in ad-
dition to their biological function. These properties form 
the basis for interpreting the role of  such hits from a net-
work perspective. Furthermore, these scores also allow 
for a different level of  hit prioritization for subsequent 
analysis. As mentioned earlier, specialized repositories 
host-pathogen interaction databases such as Virus-
Mint, HIV-1-human protein interaction database, Host-
Pathogen Interaction Database, VirHostNet, PHIDIAS, 
etc.[63-65,70,80,81] have fuelled these studies and shed new light 
on host-pathogen interactions. This section summarizes 
results from such studies and provides an overview of  
topological properties of  viral HDFs. 

In this context, the most comprehensive study has 
been recently published by Dyer et al[82]. The authors 
highlighted properties of  host factors involved in the life 
cycle of  190 different pathogens from a network perspec-
tive. To this end, they collated experimentally identified 
human PPIs for 190 pathogen strains partitioned into 54 
groups (35 viral, 17 bacterial, and two protozoan) pooled 
from 7 public databases[62,68,83-87], to determine properties 
of  proteins targeted by most pathogens, including viruses. 
The main conclusion from this study was that pathogens 
preferentially target bottlenecks and hubs, implying that 
targeting central proteins is a common strategy shared 
by different pathogens. This study revealed that viral 

targeted host proteins also play a major role in different 
cancers of  which some are induced by a viral infection 
itself  (e.g., Herpesvirus and Papillomavirus). Gulbahce et 
al[88] showed that the neighborhood of  HDFs is as impor-
tant as the HDFs themselves. They formulated what they 
term as “local impact hypothesis” wherein they propose 
that genes associated with virally implicated diseases are 
located in the neighborhood of  viral targets. They tested 
their hypothesis by calculating the mean shortest path be-
tween genes that are viral targets and the ones implicated 
in a viral disease. This mean value was significantly shorter 
than between random samples. Scanning for genes within 
these path lengths, and subsequent experimental valida-
tion in human keratinocyte populations for HPV16 ex-
pressing E6, E7 proteins revealed 104 genes regulated by 
the 15 targets of  E6 and E7 (these genes were 2 connec-
tions or paths away from these 15 targets). Of  these 104 
genes, 22 were also differentially expressed in IMR90 cells 
expressing HPV16 E6 or E7 proteins. A novel link was 
predicted between HPV and Fanconi anemia, through the 
E6->TP53->FANCC pathway through the FANCC gene 
which was one of  the 22 genes described above.

Similar studies have been conducted recently with a 
specific focus towards HIV-1 host protein interactions. 
van Dijk et al[78] analyzed the HIV-1-Human protein inter-
action data and also highlighted the fact that viral products 
preferentially interact with host proteins that represent 
hubs or bottlenecks. Furthermore, they also determined 
enriched network motifs, statistically significant patterns 
of  interacting proteins, from this network that allowed dy-
namic interpretation of  interactions. For example, one of  
the enriched motifs included the 2 nodes feedback loop 
found in the HIV-host activation/inhibition network. This 
suggests the inhibitory nature of  HIV proteins on human 
proteins that in turn inhibit the HIV protein. This motif  
occurred mostly for HIV Tat and Gp120 proteins with 
the human interferon γ. GO enrichment of  the observed 
network motif  indicated that it is involved in immune re-
sponse. 

Another independent study, performed using the 
same HIV-1-Human protein interaction dataset, reiterat-
ed that HIV-1 proteins attack hubs and bottlenecks over 
others[77]. By implementing an ascertainment bias, that 
normalizes weightage given to the genes based on publi-
cation count in order to avoid false interpretations[89], the 
authors came to two striking conclusions. First, HIV-1 
interacting proteins and gene essentiality didn’t have a 
strong correlation. Secondly, HIV-1 interacting proteins 
didn’t tend to be disease-associated. Still, GO enrichment 
analyses of  HIV-1 interacting proteins suggested that 
proviral and antiviral interactions are highly complex. 

These studies thus have further enhanced our knowl-
edge of  the intricacies involved in HIV-1 infection, and 
opened new doors for the development of  novel hypoth-
eses. 

Similar studies have been performed to experimentally 
determine the virus-host interactome of  HCV, DENV 
and HTLV-1/2[90-92]. More recently a comprehensive study 
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focused on determining the interactome of  70 viral mod-
ulators of  the innate immune response from 30 different 
viruses[93].

The common outcome of  these studies is that viral 
proteins have the remarkable tendency to have signifi-
cantly more targets, to be more central to the networks, to 
participate in more cellular pathways and are more likely 
to hold key positions in these pathways, as compared 
to an average human protein. On the same lines, both 
experimental and computational approaches helped iden-
tifying some common features of  HDFs. These proteins 
have higher values of  degree and of  betweenness, which 
imply that viral proteins preferentially target proteins 
that are “central” to a given network. Smaller mean path 
length values of  the HDFs, relative to the whole network 
also indicate that viral proteins target subnetworks that 
are “closely bound”. Future studies in this direction might 
delve a bit deeper to uncover more topological features 
beyond what is already known. 

Indeed, given the limited size of  their genomes, vi-
ral products are required to interact with a high number 
of  host proteins, which usually represent key factors 
regulating several biological processes. Morever these ap-
proaches can also help us to identify new HDFs: using 
these topological features, computational algorithms can 
be formulated to predict potential “generic” HDFs. For 
e.g., PageRank centrality is one such feature. It is utilized 
by Google in order to decide the rank of  the search hits. 
In the simplest sense, a node’s importance is determined 
by the importance of  its neighbors. Thus, the more “im-
portant” a node is topologically, the more it might also be 
biologically important, and therefore likely to be the target 
of  viruses to overtake cellular functions. Jaeger et al[79], 
used this centrality measure to identify 21 surface mem-
brane proteins critical for HIV-1 infection of  which 11 are 
novel predictions, 3 are confirmed hits (chemokine recep-
tor CCR1, chemokine binding protein 2 and duffy antigen 
chemokine receptor) and 7 have been confirmed in other 
studies. These receptors are potentially involved in differ-
ent phases of  HIV infection and influence progression of  
AIDS. 

Degree, betweenness, pagerank and shortest-paths 
are just few of  the many network centralities that have 
been defined to date for HDFs. It would be interesting to 
compute some additional measures to characterize HDFs. 
Quantifying structural properties of  viral HDFs can help 
researchers in developing efficient machine learning al-
gorithms to predict novel HDFs with greater accuracy. 
In addition to such predictions, a further, crucial layer of  
analysis would be to check for mouse orthologs of  such 
predicted HDFs and verify if  they are lethal for mouse. 
This step allows filtering of  candidate HDFs, to be used 
for secondary validation, which can produce a lethal phe-
notype. Specificity and tissue localization of  these HDFs 
can then be determined by utilizing tissue specific expres-
sion data from Protein Atlas (http://www.proteinatlas.
org/)[94]. These steps would give a comprehensive over-
view of  all HDFs beyond function and thus would aid 

in hypothesizing regulatory mechanisms and interactions 
between viral proteins and HDFs. Moreover, this would 
also reduce time, effort and cost of  experimentalists and 
would serve as a guide to a more directed approach for hit 
validation.

All the above mentioned studies, both those consider-
ing RNAi hits and those which do not, strongly under-
lined the importance of  inclusion of  PPI network infor-
mation to propose better hypotheses as well as therapeutic 
targets. They also highlighted the fact that for increasing 
reliability and confidence in HT-RNAi screens, validation 
by computational approaches via multiple data-types and 
sources is as important as verification with biological as-
says. Indeed, combination of  data generated by different 
screens performed using the same virus, has evidently 
shown to strengthen the statistical significance of  hits 
and reduce FP. The upcoming virus-host interaction data-
bases, together with the availability of  expression data and 
powerful, public tools for integrating and analyzing HT-
RNAi screens will undoubtedly provide a comprehensive 
understanding of  virus-host interactions at a cellular level.

CONCLUSION
Despite the remarkable efforts done so far to apply the 
use of  HT-RNAi screening approaches to the study of  
the host cell-virus relationship, a great body of  work 
is still required before we reach a comprehensive over-
view of  how different viruses selectively exploit the host 
cell. This will finally lead to the design of  specific anti-
viral compounds targeting host cell functions, which are 
therefore less prone to the selection of  drug resistant 
viral strains. This process is strongly limited by the high 
number of  different human pathogenic viruses, and that 
identification of  HCFs required for viral replication nec-
essarily relies on the availability of  robust in vitro systems 
to propagate such viruses. Unfortunately, despite the 
tremendous advances made in the field, for example with 
the development of  systems to propagate HCV[95-97], we 
are still lacking a system to efficiently propagate in vitro 
other important human pathogens (the most striking ex-
ample being exemplified by Hepatitis B Virus, responsible 
for approximately 600 thousand causalities each year[98]. 

Beside this crucial shortcoming, it seems that the ini-
tial concerns related to the specificity and sensitivity of  
the HT-RNAi technology can be solved by combining 
data from different independent screens performed for 
the same virus, and by implementing sophisticated statis-
tical algorithms that take into account differences within 
a cell population - an approach that have been proposed 
to strongly limit variance[54-56], as well as integrating HT-
RNAi data with PPI datasets. In particular, the latter ap-
proach has been successfully used to reduce the number 
of  FNs and FPs[75], to identify new HDFs[66], and also to 
identify new potential drug targets for treatment of  viral 
infection[70]. Another major benefit of  such integrative 
approaches relies in the possibility to perform network 
analysis of  host factors and PPI datasets[77,82], thus en-
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abling study the connections of  viral products and the 
cellular effectors that are directly targeted by their action.

A third crucial point which needs to be considered is 
the growing need for in depth biochemical and biological 
characterization of  the newly described hits. Indeed it is 
important not only to know the name and the molecular 
function of  HDFs, but also the reason why exactly these 
factors are required for the life cycle of  a given virus, 
for example, by enabling the formation of  its replication 
compartments, or by being incorporated into the mature 
virion to mediate later on the recognition of  a cellular 
receptor, to cite just a couple of  examples of  two well 
characterized viral HDFs for HCV, namely PIK4α and 
ApoE[34,60,99]. This knowledge enables at the same time 
to understand more in detail the mechanisms behind the 
usurpation of  the host cell by viruses and to devise strat-
egies to prevent this process. 

In summary, progress still needs to be done in three 
directions before a complete understanding of  the virus-
host interplay: Development of  appropriate cell culture 
systems to enable in vitro culture of  human pathogenic 
viruses and their use to perform HT-RNAi screens, 
which should be rigorously analyzed by statistical analy-
sis methods. Integration of  data generated in different 
studies using the same virus, with other datasets, such as 
those deposited in PPI databases, to maximize sensitivity 
and specificity of  the results. In depth characterization 
of  identified hits of  major relevance, including potential 
targets for the development of  anti-viral drugs.
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