
neuropathy, improving glycemic control as a prophylactic 
therapy and using medications to alleviate pain. First 
line drugs for pain relief include anticonvulsants, such 
as pregabalin and gabapentin and antidepressants, 
especially those that act to inhibit the reuptake of serotonin 
and noradrenaline. In addition, there is experimental and 
clinical evidence that opioids can be helpful in pain control, 
mainly if associated with first line drugs. Other agents, 
including for topical application, such as capsaicin cream 
and lidocaine patches, have also been proposed to be 
useful as adjuvants in the control of diabetic neuropathic 
pain, but the clinical evidence is insufficient to support 
their use. In conclusion, a better understanding of the 
mechanisms underlying diabetic neuropathic pain will 
contribute to the search of new therapies, but also to the 
improvement of the guidelines to optimize pain control 
with the drugs currently available.
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Core tip: Diabetic neuropathic pain is a common 
complication of diabetes and the most common form 
of neuropathic pain. In this review, we will discuss the 
various factors that may contribute to the pathogenesis of 
diabetic neuropathic pain, including metabolic, vascular, 
autoimmune and oxidative stress-related mechanisms. In 
addition, we will review the possibilities of pain treatment, 
taken into consideration the first line drugs clinically used, 
the antidepressants and anticonvulsants, but also other 
options such as opioids, tapentadol and drugs for topical 
use, such as lidocaine and capsaicin cream. 
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Abstract
Diabetic neuropathy is a common complication of both 
type 1 and type 2 diabetes, which affects over 90% of 
the diabetic patients. Although pain is one of the main 
symptoms of diabetic neuropathy, its pathophysiolo
gical mechanisms are not yet fully known. It is widely 
accepted that the toxic effects of hyperglycemia play an 
important role in the development of this complication, 
but several other hypotheses have been postulated. 
The management of diabetic neuropathic pain consists 
basically in excluding other causes of painful peripheral 
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INTRODUCTION
According to the International Diabetes Federation, 
382 million people worldwide are currently affected by 
diabetes[1], one of the leading causes of neuropathy[2]. 
The distal symmetrical polyneuropathy (DSPN) is 
the commonest clinical form of diabetic neuropathy, 
affecting more than 90% of the patients[3]. Generally, 
DSPN affects the toes and distal foot, but slowly 
progresses proximally to involve the feet and legs in 
a stocking distribution. It is also characterized by a 
progressive loss of nerve fibers affecting both the 
autonomic and somatic divisions, thereby diabetic retino­
pathy and nephropathy can occur[3]. Foot ulceration and 
painful neuropathy are the main clinical consequences 
of DSPN, linked with higher morbidity and mortality[4]. 
Frequently, patients look for medical help only when 
pain appears[5], a symptom that affects 10% to 26% of 
this population[6,7]. 

Diabetic neuropathic pain (DNP) is characterized 
by tingling, burning, sharp, shooting, and lancinating 
or even as electric shock sensations[3,8]. It is usually 
considered moderate to severe and often worse at night, 
causing sleeping disturbs. The pain can be constant 
and accompanied of cutaneous allodynia, which 
can substantially affect the quality of life of patients, 
impacting the ability to perform daily activities and 
having a negative influence on mood. The pain may 
also be a reason of withdrawal of recreational and social 
activities and may be associated with depression[3,9,10]. 

The pathogenesis of DNP is not fully understood. 
Several theories have been proposed to explain the pain 
related to the diabetic neuropathy, such as changes in 
the blood vessels that supply the peripheral nerves; 
metabolic and autoimmune disorders accompanied 
by glial cell activation, changes in sodium and calcium 
channels expression and more recently, central pain 
mechanisms, such as increased thalamic vascularity 
and imbalance of the facilitatory/inhibitory descending 
pathways[3]. Additionally, several risk factors are 
associated with DNP including worsening glucose 
tolerance, older age, longer diabetes duration, drinking 
alcohol and cigarette smoking[10].

Currently, only three agents are approved in the 
United States for the treatment of DNP: duloxetine, 
a selective serotonin and norepinephrine reuptake 
inhibitor, pregabalin, an anticonvulsant, and the dual-
effect drug tapentadol, an opioid receptor agonist 
and norepinephrine reuptake inhibitor[11]. However, as 
pain relief is unsatisfactory for most patients, several 
pharmacological interventions have been used based 
on pre-clinical and/or clinical evidence, as well as an 
inference of mechanism of action.

PHYSIOPATHOLOGY OF NEUROPATHIC 
PAIN IN DIABETES
Although there is a great advance in understanding 

the pathophysiological mechanisms leading to the 
development of diabetic complications, there is not yet 
a plausible hypothesis to explain why some patients 
develop the painful form of disease while others do not. 
In general, researchers seek to elucidate neuropathy 
underlying mechanisms as a bigger event, and include 
pain and other sensorial manifestations as direct 
consequences of neuropathy. However, interestingly, 
pain intensity normally is not associated with neuropathy 
severity, and can occur even in the absence of nerve 
injuries[12,13]. In this review, it will be addressed the 
pathophysiological mechanisms currently believed to 
promote the DNP. 

In this sense, the mechanisms that lead to DNP are 
not fully understood, although there is a consensus that 
toxic effects of hyperglycemia represent an important 
factor for the development of this complication[14,15]. 
Nonetheless, other factors besides hyperglycemia 
should not be discarded[16], and will be discussed as 
follows. 

Polyol pathway hyperactivity
Metabolic disorders are the primary cause of diabetic 
neuropathy. Hyperglycemia, induced through decreased 
of insulin secretion or insulin resistance, is responsible 
for the enhanced of the polyol pathway activity. The rate-
limiting first enzyme of this pathway aldose reductase 
catalyzes the formation of sorbitol from glucose, with 
the oxidation of nicotinamide adenine dinucleotide 
phosphate (NADPH) to NADP+. Sorbitol is further 
oxidized to fructose by sorbitol dehydrogenase, which 
is coupled with the reduction of nicotinamide adenine 
dinucleotide (NAD+) to NADH. It is described that during 
hyperglycemic states, the affinity of aldose reductase 
for glucose is higher, generating intracellular osmotic 
stress due to accumulation of sorbitol, since sorbitol 
does not cross cell membranes. Interesting, the nerve 
damage following the diabetic state seems not to be due 
to this osmotic stress since it has been reported insignifi­
cant sorbitol concentrations in the nerves of diabetic 
patients[17-19]. However, the current accepted hypothesis 
states that polyol pathway hyperactivity is pathogenic 
primarily by increasing the turnover of cofactors such 
as NADPH and NAD+, which leads to a decrease in the 
reduction and regeneration of glutathione, as well as to 
an increase of advanced glycation end products (AGEs) 
production and activation of diacylglycerol and protein 
kinase C (PKC) isoforms. Depletion of glutathione could 
be the primary cause of oxidative stress and be related 
to the accumulation of toxic species[19]. In fact, aldose 
reductase inhibitors are effective in preventing the 
development of diabetic neuropathy in animal models, 
but they have demonstrated disappointing results and 
dose-limiting toxicity in human trials[20].

Oxidative and nitrosative stress
As already mentioned, the polyol pathway activation 
could be the primary cause of oxidative stress associated 
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with diabetes. However, oxidative stress could be 
also initiated by autoxidation of glucose and their 
metabolites, increased intracellular formation of AGEs, 
increased expression of the receptor for AGEs and 
its activating ligands, altered mitochondrial function, 
activation of PKC isoforms and overactivity of the 
hexosamine pathway[21-23]. Moreover, there is mounting 
evidence that oxidative stress is caused by enhanced 
free radical formation due to glucose metabolism itself 
and/or deficits in antioxidant defense and it may play a 
major role among the putative pathogenic mechanisms 
of diabetic neuropathy. It seems that, in addition to 
oxidative stress, reactive nitrogen species, especially 
the peroxynitrite also play an important role in the 
development of diabetes and its complications[24-26]. 
Although it has been clearly demonstrated significant 
changes in oxidative status in animal models of diabetes[27], 
tissue concentrations of known carbonyl compounds are 
nearly negligible and plasma ET-1, nitric oxide, catalase 
and glutathione levels did not differ in neuropathic 
diabetic patients when compared to non-neuropathic 
diabetic ones[28]. In line with this observation, clinical 
results have been contradictory for antioxidants as alpha 
lipoic acid, ranging from little benefit[29,30] to interesting 
advantages[31,32]. 

Microvascular changes
DNP is frequently associated with microvascular 
impairment[33,34]. In clinical and preclinical studies, it was 
found that peripheral perfusion is reduced, not only in 
the nervous tissue[35,36], but also in the skin[37], being an 
important physiological evidence of microvasculature 
alteration. As a result, nerve ischemia occurs, caused 
by raise in wall thickness and hyalinization of the basal 
lamina of vessels that nurse peripheral nerves[38,39], 
together with luminal reduction[38]. These alterations are 
caused by plasma protein scape of capillary membrane 
to endoneurium, promoting swelling and augmented 
interstitial pressure in the nerves, accompanied by higher 
capillary pressure, deposition of fibrin and thrombus 
development[40]. Hyperglycemia per se can evoke nerve 
hypoxia, especially in sensory nerves, altering their 
electrical stability[41]. Apparently controversial data from 
clinical studies described that diabetic patients suffering 
from the DNP presented higher levels of intravascular 
oxygen and augmented blood flow in the lower limbs 
than painless patients. Nevertheless, authors still 
consider a hypoxic state inside the endoneurium[42]. 
Alternatively, a potential sympathetic dysfunction can be 
the cause of higher blood flow[43].

As a result of nerve ischemia, both diabetic patients 
and animals have shown a progressive nerve loss in 
proximal and distal segments[44,45], resulting in reduction 
of intraepidermal nerve fiber density[12]. Consequently, 
axonal degeneration and regeneration also occurs, but 
more frequently in patients that do not experience pain. 
Besides axonal retraction and regeneration, another 
structural modification related to hyperglycemia is 
myelin sheath alteration. The observed demyelinization 

can be related to Schwann cells altered capacity to 
support normal myelin sheath[46].

It is also important to point out that endothelial 
function in patients with DNP is also altered. The vaso 
dilatation induced by acetylcholine (i.e., the endothelium-
dependent response) in dermal vessels of diabetic 
patients was reduced in comparison with healthy 
volunteers. In addition, vasoconstriction mediate by the 
sympathetic system (i.e., endothelium-independent 
response) was also defective, what can also be implicated 
in the pathophysiology of diabetic neuropathy and then, 
in the DNP[47]. 

It is believed that one potential cause of the 
microvascular changes described above may be the 
oxidative stress, since the treatment with antioxidant 
agents can maintain regular perfusion, restoring sensory 
transmission in type 1 diabetes model[48].

Channels sprouting 
Damaged nerve endings are believed to contribute to 
pain in DNP[49,50]. The most accepted hypothesis states 
that disturbed action potentials can be produced by 
damaged nerve endings, being interpreted by central 
nervous system (CNS) as pain or dysesthesias[51]. 
Changes in ion channel expression in peripheral fibers 
are direct consequences of nerve injury, leading to 
hyperexcitability[52], that is far linked with neuropathic 
pain[53]. 

In this regard, up-regulation of voltage-gated 
sodium channels (Nav) has been widely demonstrated 
in neuropathic pain models[54,55]. These channels are 
involved in generation and transmission of action 
potential, and can be classified into sensitive (TTX-S) or 
resistant (TTX-R) to tetrodotoxin[56]. There are several 
reports that the TTX-S channels Nav1.3, which primary 
function relays during the embrionary development[57], 
and Nav1.7, that is constitutively expressed in peripheral 
sensory neurons[58], are both up-regulated in the dorsal 
root ganglion (DRG) of diabetic animals[59-61]. Nav1.3 
expression was also found increased in small and large 
diameter DRG neurons of diabetic rats presenting 
allodynia[62]. Considering TTX-R sodium channels, 
Nav1.8 and Nav1.9 are normally expressed in peripheral 
nociceptive neurons[63], playing an important role in the 
generation of electrical activity in DRG[64]. Intriguingly, 
DRGs of allodynic diabetic rats showed a reduction of 
Nav1.8 expression in the following days after diabetes 
induction[62], and this reduction lasted 6 mo post diabetes 
induction[61], indicating that other sodium channels may 
play an important role in DNP. The same reduction was 
detected for Nav1.6, another TTX-S channel, normally 
present at Ranvier nodes[60,62]. 

In addition, an increase of Nav1.6, Nav1.7 and 
Nav1.8 phosphorylation is another feature observed 
in the diabetic state, which leads to augmentation in 
their activity. Thus, both abnormal expression and 
function of TTX-R and TTX-S sodium channels is linked 
to abnormal activity of nociceptive fibers[60]. In this 
way, Sun et al[65] showed that TTX-S and TTX-R sodium 
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and selectively reverses hyperalgesia in a pre-clinical 
model of type 2 diabetes[80].  

 Resting membrane potential can also be altered by 
K+ voltage dependent channels (Kv), also participating 
in the electrical properties of neurons[81]. Regarding the 
currents generated by activation of these Kv channels 
in primary afferents there are two main types: rapidly 
inactivating A-type currents (IA), and slowly inactivating 
currents (IK)[82,83]. It was verified that the total density 
of Kv currents as well as the mRNA of IA subunits of 
KV 1.4, 3.4, 4.2 and 4.3 were reduced in large and 
medium size DRG neurons of diabetic rats[84]. So, this 
down regulation can increase neuronal excitability 
and peptide release[83], which might also participate 
in hyperexcitability of peripheral nerves of diabetic 
subjects.

Microglial activation
It is becoming increasingly recognized that glial cells play 
an important role in the pathogenesis of many diseases 
of the nervous system, including chronic pain states[85]. 
Glia comprises both macroglia (including astrocytes, 
radial cells and oligodendrocytes) and microglia cells, 
which are mainly responsible for maintain homeostasis, 
form myelin, and provide support and protection for 
neurons from both central and peripheral nervous 
system[85]. Normally, microglial cells comprise less than 
20% of spinal glial cells but in response to dorsal root 
ganglia and spinal cord after nerve injury there is a robust 
proliferation at spinal level[86]. Activation of microglia 
occurs right after peripheral nerve injury, lasting for less 
than 3 mo, and is responsible for a production of several 
inflammatory mediators as cytokines, chemokines, 
and cytotoxic substances such as nitric oxide and free 
radicals, prompting to a pro inflammatory milieu[83]. 
Diabetes has impact on all glial cells of the spinal cord 
since persistent microglial activation was observed in 
streptozotocin-induced diabetic rats lasting from 4 wk[87,88] 
to 6 or 8 mo[61,89]. This microglial activation has been 
associated with sensorial changes and up-regulation 
of Nav1.3 sodium channels in the DRG[61], possible 
through p38 mitogen activated protein kinase dependent 
mechanism[90,91]. Conversely, diabetes is associated 
with a reduction in glial fibrillary acidic protein (i.e., glial 
fibrillary acidic protein) immunoreactive astrocytes in 
the spinal cord, which may affect the functional support 
and role of astrocytic cells in the nervous tissue, such as 
the clearance of neurotransmitters within the synaptic 
cleft[92]. Considering the potential of microglial activation in 
driving spinal sensitization, in the near future, drugs that 
target these cells may become an important therapeutic 
alternative in chronic pain control.

Central sensitization 
As already demonstrated in different neuropathic pain 
states, DNP may be a consequence of both peripheral 
and CNS changes[93,94]. It was well described that 
during DNP, primary afferents are sensitized, inducing 
dorsal horn hyperactivity and neuroplastic changes in 

currents are increased in small neurons in the DRG 
of diabetic animals, being this related not only with 
sensory disturbances, but also with the rise of efficiency 
of conductance in polymodal C fibers, which in turn, 
facilitates nociceptive transmission. 

In a recent in vitro study, it has been described 
that hyperglycemia evokes higher TTX-R Na+ currents 
in a time and concentration-dependent manner, 
demonstrating a straight relationship between glucose 
levels and biophysical changes[66]. In DNP patients, it 
was reported an increase in nodal Na+ currents when 
compared to painless diabetic patients, what can also 
contribute to hyperexcitability in peripheral nerves[67].

A new concept proposed by Hoeijmakers et al[68], 
links the beginning of pancreatic beta cells failure and 
DNP with genetic disruptions on Nav1.7 channels. Since
both pancreatic beta cells and peripheral neurons 
express Nav1.7 channels, a susceptible genetic back­
ground could facilitate generation of Nav1.7 mutations, 
leading to gain-of-function that evokes beta cell lesions,
and thereafter, diabetes and hyperexcitability in 
neurons[69]. According to these authors, this theory could 
explain why some patients have neuropathy before 
diabetes onset[68]. 

Another interesting finding related to sodium channels 
modulation is the increased levels of methylglyoxal in 
type 2 diabetes DNP patients, when compared with those 
painless[70,71], and in complication-free type 1 diabetic 
patients[72]. This glycolytic metabolite can activate nerve 
endings through transient receptor potential cation 
channel subfamily A member 1 activation in the DRG[73], 
and also change the Nav1.7 and Nav1.8 function through 
posttranslational changes[70]. In line with this clinical 
observation, in preclinical models methylglyoxal was found 
to reduce nerve conduction velocity, to elevate calcitonin 
gene-related peptide release from sensory nerves and to 
induce thermal and mechanical sensibility[70]. In addition, 
in diabetic states methylglyoxal is also involved in the 
formation of AGEs[74]. 

Calcium channels can also be misregulated in a 
diabetic condition, leading to an enhanced calcium 
influx in sensory neurons[75], what can deflagrate both 
substance P and glutamate release[76]. It was verified in 
two different animal models of insulin dependent diabetes 
that high voltage activated Ca2+ current amplitudes 
were increased in small diameter neurons[75,77] and the 
activity of T-type channels (Cav3.2) is also augmented 
in small diameter fibers[78], what could be normalized 
by molecular knockdown of this calcium channel[79]. 
However, there was no translation of these results to 
patients in clinical trials[80]. A possible future target for 
pharmacological intervention over calcium channels 
has been proposed by Orestes and colleagues (2013), 
which observed that glycosilation of Cav3.2 augments 
the current density, accelerates kinetics, and also 
increases the number of channels on neuron membrane, 
which can be directly involved in DNP. Interestingly, the 
deglycosylation treatment with neuraminidase inhibits 
native calcium currents in nociceptors and completely 
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central sensory neurons[93]. The common occurrence of 
allodynia in DNP patients supports the idea that CNS 
pain processing is altered[95]. 

Among the factors that can lead to the hyperactivity 
of spinal neurons in diabetic neuropathy is the increased 
glutamate release from primary afferents in the spinal 
cord[96,97]. Moreover, spinal N-Methyl-D-aspartate (NMDA) 
receptor expression is augmented in this condition[98], 
generating increased and more frequent excitatory 
post synaptic currents in the lamina Ⅱ[97]. Additionally, 
it has been described that cAMP response element-
binding protein signaling, which directly regulates 
NMDA receptors activity[99] is enhanced in DNP[98,100]. 
Thus, it is plausible that augmented NMDA expression 
and glutamate release might contribute to spinal cord 
hyperactivity. On the other hand, GABAB receptors 
seem to be downregulated in the spinal cord in diabetic 
neuropathy[98]. Activation of GABAB receptors results 
in inhibition of NMDA receptor activity through a 
direct inhibition of voltage-sensitive Ca2+ channels[101] 
and opening of inwardly rectifying K+ channels[102]. 
Furthermore, GABAB receptor activation also causes 
downregulation of NMDA receptors at the spinal level 
in diabetic rats[98]. Considering the importance of 
central sensitization in the hypersensitivity associated 
with DNP, strategies that aim to control spinal neurons 
hyperexcitability are very useful in pain control in this 
condition, as will be discussed bellow. 

Brain plasticity
Functional changes in pain processing areas in the CNS, 
besides the spinal cord, have been ultimately linked 
with DNP[103], in a tight relation to increased peripheral 
input[93,104]. Among these areas, marked changes in the 
thalamus, cortex and rostroventromedial medulla (RVM) 
have been reported in DNP patients and or experimental 
models. 

The ventral posterolateral nucleus (VPL) of the 
thalamus is the main receiving area of nociceptive stimuli 
that is processed in the spinal cord[105]. Projection neurons 
reach the thalamus trough the spinothalamic tract 
(STT), which represents a major ascending nociceptive 
pathway. It has been demonstrated that in diabetic rats, 
these neurons present increased spontaneous activity, 
enlargement of the receptive field and augmented 
responses to mechanical noxious and innocuous stimuli. 
The hyperexcitability of STT neurons probably accounts 
to hypersensitivity to external stimuli and spontaneous 
pain[93], increased in primary afferents activity[93,104] and 
to plastic changes in spinal neurons[93].

In addition, in studies that assessed brain imaging in 
diabetic rats it was reported increased activity not only 
at VPL, but also in different thalamic nuclei that control 
sensory-motor aspects[106]. In diabetic patients, a recent 
study showed increased activation of diverse brain 
areas, including medial thalamus after application of 
noxious thermal stimuli in feet[107]. Moreover, it has been 
described that DNP patients has a marked reduction 
in the levels of N-acetyl-aspartate (NAA) levels in the 

thalamus compared to painless diabetic individuals[108]. 
It is important to point out that patients with brain 
disorders in which neuronal loss or dysfunction are 
involved have consistently decreases in brain NAA 
concentrations[109]. Other clinical finding related to 
thalamus alterations in diabetic patients is that subjects 
with painful type 1 diabetic neuropathy presented 
increased thalamus blood flow, when compared with 
those without pain, which was considered to reflect 
higher neuronal activity[110]. Taking account the thalamus 
relevance in the nociceptive pathway, it is plausible to 
suggest that the alterations reported in this area might 
contribute to the development and/or maintance of 
DNP[108,110]. 

Likewise, in a model of type 1 diabetes, increased 
glutamate transmission was reported in the anterior 
cingulate cortex a brain area involved in the processing 
of the affective-motivational dimension of pain[111]. 
The consequence of higher stimulation of this area 
by glutamate is suggested to be a sustained negative 
perception of affective component of pain[111].

Changes in the endogenous pain control system 
have also been described in pre-clinical and clinical 
studies of DNP. The RVM is a structure that receives 
direct influences of periaqueductal gray matter, which is, 
in turn, affected by other structures, such as amygdala 
and hypothalamus[112]. Three different populations of 
cells have been describe within the RVM: activation of 
ON cells act in a pronociceptive way, while activation 
of OFF cells has the opposite effect[113] and neural cells 
which activation is still contradictory and remains to 
be better clarified[114,115]. In diabetic animals, there is 
evidence of a reduction on the OFF cells and increase 
on the ON cells population. In addition, basal activity 
is augmented in ON cells, and reduced in OFF cells, in 
a resultant misbalance between pain facilitatory and 
inhibitory descending modulation in diabetic animals[103]. 
After noxious mechanical stimulation in the periphery, 
there was no difference between diabetic and control 
ON cells activity. Thus, the mechanical hyperalgesia 
detected in diabetic rats could be associated with 
OFF cells impairment and consequently reduction on 
descending inhibitory tone[103].

Some studies have also addressed the levels of the 
main neurotransmitters of the endogenous pain control 
system in different areas of the CNS in diabetic rats, 
but they have shown discrepant results. While some 
researchers found reduced release of norepinephrine in 
the spinal cord in diabetic rats[116], others have described 
opposite findings[117]. There is also evidence of diminished 
norepinephrine levels in supra spinal areas, such as 
brainstem and thalamus, but higher concentration in 
the cortex of diabetic animals[118]. Additionally, impaired 
spinal opioid-induced release of serotonin (5HT) has 
been demonstrated in diabetic rats, and this finding 
may be related to opioid hyporesponsiveness in 
experimental DNP[119]. Increased norepinephrine and 
5HT levels in the spinal cord, as well as, augmented 
expression of norepinephrine and 5HT in RVM neurons 
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was also demonstrated in diabetic rats[117]. Considering 
the facilitatory role of serotoninergic and noradrenergic 
descending modulation during chronic pain, these 
changes may probably account for enhanced pain during 
diabetic neuropathy[117]. There is also clinical evidence 
for misbalance between excitatory and inhibitory 
neurotransmitters in the CNS of diabetic patients with 
positive symptoms of neuropathy. In this regard, it has 
been found reduced levels of GABA and higher levels 
of glutamate in the posterior insula of diabetic patients, 
as well as a higher glutamate/GABA ratio within the 
thalamus[120]. These changes may contribute to pain 
development in DNP, but further studies are necessary to 
determine their clinical significance. 

TREATMENT OF DNP
DNP continues to represent a therapeutic challenge 
as its pathophysiology is not yet fully understood and 
pain relief is still unsatisfactory. The pharmacological 
treatments, with exception to those targeted to the 
glycemic control, are symptomatic, not focused on 
the pathophysiological mechanisms, limited by side 
effects[3,121] and by the development of tolerance[121]. 

A wide variety of drugs, used alone or in combination, 
has been shown to significantly reduce neuropathic pain 
compared with placebo in randomized controlled trials, 
but pain relief remains inadequate for most patients[122]. 
Generally, in clinical trials, treatment is considered 
successful if patients would obtain 50% of reduction 
in the pain level[123-125] associated with some additional 
beneficial effects on sleep, fatigue, depression and 
quality of life[125]. Thus, the management of this condition 
basically consists of excluding other causes of painful 
peripheral neuropathy, improving glycemic control as a 
prophylactic therapy and using medications to alleviate 
pain[126]. 

Despite of multimodal and multidisciplinary approaches 
to the treatment, the primary pathway is pharmacolo­
gically based[127]. Three different agents have regulatory 
approval in the United States for the treatment of DNP: 
pregabalin, duloxetine and tapentadol[11,128]. However, 
as pain relief is still suboptimal and challenging for 
clinicians[95], drugs from various pharmacological classes 
have been used and some of them are included in this 
review.  

Anticonvulsants
Pregabalin was the first anticonvulsant to receive approval 
from the Food and Drug Administration (FDA) for the 
treatment of postherpetic neuralgia, DNP[129,130] and 
neuropathic pain after spinal cord injury[131]. Pregabalin 
is a GABA analogue that selectively binds to pre-synaptic 
voltage-gated calcium channels containing the α2δ 
subunit in the brain and spinal cord, causing inhibition 
of the release of excitatory neurotransmitters[128,132]. 
Moreover, α2δ1 subunits are responsible for increasing 
the functional expression of these channels, as a 
consequence of increased trafficking. Thus, the analgesic 

action of pregabalin is also proposed to be the result of 
impaired trafficking of α2δ1 subunit with a consequent 
diminished expression of functional calcium channels[133].

Several clinical trials evaluating pregabalin in DNP 
showed efficacy in the management of this condition[3,

134,135] with a number needed to treat (NNT) of 6.3[125]. 
In addition to its analgesic effects, pregabalin presents 
anxiolytic activity[132,135] and it has a beneficial effect 
on sleep and quality of life[132], contributing, therefore, 
to improve the general condition of the patients. The 
side effects include dizziness, somnolence, peripheral 
edema, headache and weight gain[3].

Some guidelines have also recommended gabapentin 
to treat DNP[136]. Besides pregabalin, gabapentin is 
the only other anticonvulsant drug that demonstrated 
efficacy in the treatment of this condition[128] with an 
NNT of 5.8[137]. Gabapentin and pregabalin have a 
similar mechanism of action and the first is licensed for 
neuropathic pain in the United Kingdom, but not in the 
United States[128]. Some clinical trials have suggested 
that gabapentin and pregabalin present better analgesic 
efficacy than tricyclic antidepressants or opioids[138] and 
other important aspects of these drugs include their 
tolerability and lack of serious toxicity[139].

Antidepressants
Antidepressants represent the first line drugs in DNP 
management. Duloxetine, a serotonin and norep­
inephrine reuptake inhibitor, is rated level A for efficacy 
and is approved in the United States for the treatment 
of this condition. Additionally, some clinical trials have 
pointed out the effectiveness of duloxetine in other 
chronic pain conditions, such as fibromyalgia and chronic 
musculoskeletal pain[140,141].

Results from a meta-analysis that included randomized, 
double blind, placebo controlled studies in patients with 
DNP showed the superiority of duloxetine over placebo 
in reduction of pain severity and in Patient Global 
Impression of Improvement/Change, as well as efficacy 
similar to gabapentin and pregabalin[142]. Moreover, in 
a 2-wk open-label randomized trial in diabetic patients 
poorly responsive to gabapentin, duloxetine was able to 
reduce the pain score to levels similar to those achieved 
with pregabalin[143,144]. Furthermore, analgesic efficacy of 
duloxetine in the treatment of DNP is maintained over a 
6-mo period[145], reinforcing its importance as a treatment 
option for this condition. The NNT for duloxetine varies 
from 1.3 to 5.1 in DNP patients[146,147], which experience 
more frequently nausea, somnolence and dizziness as 
side effects[146]. 

Venlafaxine is also a selective serotonin and nora­
drenaline reuptake inhibitor, that predominantly inhibits 
serotonin reuptake at low doses and noradrenaline at 
higher doses[148]. Venlafaxine was also shown to be 
effective in reducing pain intensity in diabetic neuropathic 
patients[149], with an NNT between 2.2 and 5.1 and a 
number needed to harm (NNH) of 9.6, to minor adverse 
effects, and of 16.2, for major adverse effects[150]. 

Tricyclic antidepressants can also be an alternative to 
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treat DNP[151]. Amitriptyline was shown to be as effective 
as gabapentin in a direct meta-analysis study[152] and 
as duloxetine in a randomized, double-blind, crossover 
trial[153]. Likewise, nortriptyline was reported as being 
as effective as gabapentin in attenuating neuropathic 
pain in a double-blind crossover trial enrolling diabetic 
patients[154]. 

Tricyclic antidepressants are estimated to have an 
NNT of 1.3[151,155], and an NNH from 4.2 to 10.7[151] in 
DNP. The most common side effects related to the use 
of these drugs are dry mouth, postural hypotension, 
arrhythmias, cognitive impairment, constipation and 
urinary retention, which are more frequently observed 
after amitriptyline than nortriptyline treatment[155]. 

Opioids
Opioids are recommended to be used as second or 
third line treatment for DNP[3,151]. One multicenter, 
randomized, placebo-controlled study reported the 
tramadol effectiveness to significantly improve scores 
on physical and social functioning ratings in patients 
with DNP, but beneath some side effects such as 
nausea, constipation, headache and somnolence[156]. 
Morphine was also shown to be effective in reducing 
mean daily pain scores related to diabetic neuropathy 
and postherpetic neuralgia[128,157]. Moreover, results 
of clinical trials indicated that diabetic neuropathic 
patients experienced a significant reduction in pain 
intensity and an improvement on quality of life during 
oxycodone treatment, compared to placebo-exposed 
group[158,159]. Besides, oxycodone improved gabapentin 
but not the pregabalin effectiveness in promoting DNP 
relief[160,161].

The clinical evidence for the effectiveness of opioids 
in the control of DNP is corroborated by some pre-
clinical data, which have reported the effectiveness 
of morphine[162,163] and buprenorphine[164] in reducing 
thermal or mechanical hypersensitivity in DNP animal 
models. 

There is also evidence that the anti-hyperalgesic 
effect of opioids is improved by the association with 
some drugs, such as the antidepressants amitriptyline, 
moclobemide and reboxetine[165]. In line with this idea, 
new molecules that integrate additional mechanisms to 
the opioid receptor agonism have been shown efficacy 
in reducing nociceptive behavior in animal models of 
DNP, such as the cebranopadol, a nociceptin/orphanin 
FQ peptide and opioid receptor agonist[166], and the mu-
opioid receptor agonist and norepinephrine reuptake 
inhibitor, tapentadol[162,167]. The latter was approved 
by FDA for DNP treatment since 2012[11]. Tapentadol 
has been shown to be effective in the management of 
different types of chronic pain, including osteoarthritis 
knee pain, low back pain and DNP, with a tolerable 
safety profile[168,169]. Specifically concerning DNP, a 
randomized-withdrawal, placebo-controlled trial reported 
reduction of at least 30% in pain intensity in about 50% 
of the patients that received tapentadol[170]. Similar 
data were obtained in a recent clinical trial in diabetic 

neuropathic patients with moderate to severe pain, which 
experienced nausea (21.1%) and vomiting (12.7%) as 
side effects[171].

Others agents 
The drugs discussed below are currently associated to the 
pharmacological treatments already described according 
to the patients’ symptoms and needs in order to achieve 
a better relief of pain in DNP conditions. However, further 
studies are necessary, specially controlled clinical trials, 
to determine the more efficacious, safe and successful 
combinations to be applied in the management of 
DNP[128].

Capsaicin topical cream: Topical agents may be 
associated with fewer and less clinically significant 
adverse events than systemic agents[172]. In addition, the 
possibilities of drug interactions are markedly reduced 
with the use of local treatments, which represent good 
options for patients with multiple medical problems[128]. 
The capsaicin cream has been shown to be effective in the 
treatment of neuropathic conditions[150] and is approved 
for topical relief of neuropathic pain[128]. Capsaicin is 
the pungent component of hot chilli peppers[11] and 
an agonist of the transient receptor potential vanilloid 
1. This receptor is a ligand-gated, nonselective cation 
channel, predominantly expressed on unmyelinated C 
nerve fibers[173], which, after repeated exposure to topical 
capsaicin, are depleted of their content of substance P 
and other neurotransmitters[173,174]. The C fibers depletion 
and desensitization reduce painful stimuli transmission 
from peripheral nerves to the central nervous system[173]. 
Some clinical trials have demonstrated the effectiveness 
of low-concentration (from 0.025% to 0.075%) capsaicin 
cream in DNP[11,174,175]. Higher concentrations are not 
indicated because of desensitization of nociceptive 
sensory nerve endings, which may increase the risk 
of skin injuries in DNP patients[173,174]. Some adverse 
effects include itching, stinging, erythema, transient 
burning sensation and initial pain at the application site, 
that diminishes with repeated use[132,175], leading many 
patients to withdraw from the treatment[128,173].

Lidocaine patch: Lidocaine patches act as peripheral 
analgesics with minimal systemic absorption and are 
used in combination with other analgesic drugs[132,172]. 
Lidocaine blocks sodium channels and counteracts the 
hyperexcitability of peripheral nociceptors that contributes 
to neuropathic pain[132,176]. The blockade reduces ectopic 
discharges and raises the peripheral sensory neuron 
discharge threshold[176]. The few DNP clinical trials 
that compared topical lidocaine with other relevant 
interventions suggested that the effects in pain reduction 
are comparable to other drugs, such as capsaicin, gaba­
pentin, amitriptyline[172] and pregabalin[172,174]. Adverse 
events include local irritation[172], contact dermatitis and 
itching[132]. 

Alpha lipoic acid: The benefit provided by alpha 
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lipoic acid (ALA) in the treatment of DNP possibly is 
due to its direct effects on the neuropathy, by reducing 
the oxidative stress, which has been defined as an 
important factor in the physiopatology of the diabetic 
neuropathy[122]. Its antioxidant and anti-inflammatory 
actions may contribute to an all-round improvement of 
diabetic neuropathy symptoms[135]. In some clinical trials 
that evaluated ALA effect in diabetic patients, pain was 
not a primary end point. However, they have shown a 
moderate benefit in terms of pain reduction[132]. In a 
randomized double-blinded trial, ALA-treated patients 
reported a greater reduction in neuropathic pain when 
compared to placebo-treated subjects[122]. Compared to 
several drugs currently in use for DNP treatment, ALA 
has fewer side effects[30], being nausea and vomiting 
the most common[132].

Isosorbide dinitrate spray: Isosorbide dinitrate 
is a nitric oxide-dependent vasodilator with effects 
on both arteries and veins[177]. The improvement of 
pain and burning sensation could be associated with 
the increased generation of nitric oxide, improving 
microvascular blood flow[178]. In a clinical trial with 
diabetic patients, the isosorbide dinitrate spray reduced 
overall neuropathic pain and burning sensation in about 
50% of the patients, which also reported improvement 
in their quality of life, with improvements in sleep, 
mobility and mood[178,179].

Final considerations about DNP treatment: 
Besides the fact of many diabetic complications can be 
reduced with improved blood glucose control and other 
lifestyle interventions[132,150], such as quit smoking and 
reducing alcohol consumption[150], the efficacy of these 
measures, as well as the pharmacological treatments 
on DNP are not predictable. The medications rated as 
level A based on their efficacy are able to reduce pain 
and improve some aspects of patients’ quality of life, 
but are not able to fully eliminate pain or prevent/revert 
the neuropathy. Even their combination does not result 
in satisfactory pain control, being the best improvement 
in pain, restricted to 50% of relief for the majority of 
the patients. Considering the available pharmacological 
options, DNP treatment has to be based mainly on 
patients’ symptoms, pain level and tolerance of side 
effects.
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