
Guglielmo Sorci, Francesca Riuzzi, Cataldo Arcuri, Claudia Tubaro, Roberta Bianchi, Ileana Giambanco, 
Rosario Donato

S100B protein in tissue development, repair and regeneration

Guglielmo Sorci, Francesca Riuzzi, Cataldo Arcuri, Claudia 
Tubaro, Roberta Bianchi, Ileana Giambanco, Rosario Do-
nato, Department of Experimental Medicine and Biochemical 
Sciences, University of Perugia, 06122 Perugia, Italy
Guglielmo Sorci, Francesca Riuzzi, Rosario Donato, Inter-
university Institute for Myology, University of Perugia, 06122 
Perugia, Italy
Author contributions: All the authors contributed equally to this 
work.
Supported by Ministero dell’Università e della Ricerca, No. 
PRIN 2007LNKSYS, No. 2007AWZTHH_004 and No. 2009WB-
FZYM_002; Association Française contre les Myopathies, No. 
Project 12992; Associazione Italiana per la Ricerca sul Cancro, No. 
Project 6021; and Fondazione Cassa di Risparmio di Perugia, No. 
2007.0218.020, No. 2009.020.0021 and No. 2012.0241.021
Correspondence to: Rosario Donato, MD, Professor, Depart-
ment of Experimental Medicine and Biochemical Sciences, Uni-
versity of Perugia, 06122 Perugia, Italy. donato@unipg.it
Telephone: +39-75-5857453  Fax: +39-75-5857453
Received: December 5, 2012  Revised: January 26, 2013
Accepted: February 25, 2013
Published online: February 26, 2013

Abstract
The Ca2+-binding protein of the EF-hand type, S100B, 
exerts both intracellular and extracellular regulatory ac-
tivities. As an intracellular regulator, S100B is involved 
in the regulation of energy metabolism, transcription, 
protein phosphorylation, cell proliferation, survival, 
differentiation and motility, and Ca2+ homeostasis, 
by interacting with a wide array of proteins (i.e. , en-
zymes, enzyme substrates, cytoskeletal subunits, scaf-
fold/adaptor proteins, transcription factors, ubiquitin 
E3 ligases, ion channels) in a restricted number of cell 
types. As an extracellular signal, S100B engages the 
pattern recognition receptor, receptor for advanced 
glycation end-products (RAGE), on immune cells as 
well as on neuronal, astrocytic and microglial cells, 
vascular smooth muscle cells, skeletal myoblasts and 
cardiomyocytes. However, RAGE may not be the sole 
receptor activated by S100B, the protein being able 

to enhance bFGF-FGFR1 signaling by interacting with 
FGFR1-bound bFGF in particular cell types. Moreover, 
extracellular effects of S100B vary depending on its lo-
cal concentration. Increasing evidence suggests that at 
the concentration found in extracellular fluids in normal 
physiological conditions and locally upon acute tissue 
injury, which is up to a few nM levels, S100B exerts 
trophic effects in the central and peripheral nervous 
system and in skeletal muscle tissue thus participating 
in tissue homeostasis. The present commentary sum-
marizes results implicating intracellular and extracellular 
S100B in tissue development, repair and regeneration.
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INTRODUCTION
S100B belongs to a multigenic family of  small (mol. wt. 
between 9 kDa and 14 kDa) Ca2+-binding proteins of  the 
EF-hand type comprising more than 20 members exclu-
sively expressed in vertebrates[1,2]. Like other members of  
this protein family, S100B is expressed in a cell-specific 
manner; astrocytes, oligodendrocytes, neural progeni-
tor cells, certain neuronal populations, ependymocytes, 
Schwann cells, enteric glial cells, melanocytes, kidney 
epithelial cells, adipocytes, chondrocytes, skin Langerhans 
cells, a subpopulation of  lymphocytes, muscle satellite 
cells, skeletal myofibers, pituitary folliculo-stellate cells 
and Leydig cells in the testis are the cell types with the 

REVIEW

World J Biol Chem 2013 February 26; 4(1): �-12
 ISSN 1949-8454 (online)

© 2013 Baishideng. All rights reserved.

Online Submissions: http://www.wjgnet.com/esps/
wjbc@wjgnet.com
doi:10.4331/wjbc.v4.i1.�

World Journal of
Biological ChemistryW J B C

� February 26, 2013|Volume 4|Issue 1|WJBC|www.wjgnet.com



Sorci G et al . S100B in tissue homeostasis

highest expression of  S100B. However, at least cardio-
myocytes, which normally do not express the protein, do 
express S100B post-infarction, and in several cell types 
S100B expression is upregulated in pathological condi-
tions.

Within cells S100B exists in the form of  a homodi-
mer, sometime as an S100B-S100A1 heterodimer, in 
which the two subunits are arranged in an antiparallel 
fashion[1,3]. Like the majority of  S100 members, S100B is 
a Ca2+ sensor protein that becomes activated by Ca2+ on 
the occasion of  Ca2+ transients. Ca2+ induces a relatively 
large conformational changes in S100B C-terminal half  
resulting in the exposure of  a hydrophobic patch through 
which the protein interacts with a wide array of  target 
proteins (e.g., enzymes, enzyme substrates, cytoskeletal 
proteins, adaptor/scaffold proteins, transcription factors, 
ion channels and ubiquitin E3 ligases) thereby regulating 
their activities. Thus, S100B is involved in the regulation 
of  energy metabolism, transcription, protein phosphory-
lation, cell proliferation, survival, differentiation and lo-
comotion, and Ca2+ homeostasis.

However, S100B can also exert extracellular effects 
being secreted by certain cell types (e.g., astrocytes and ad-
ipocytes) or passively released by several cell types upon 
tissue injury. In this latter context S100B can be viewed as 
a damage-associated molecular pattern (DAMP) or alar-
min, i.e., a danger signal capable of  activating cells of  the 
innate immune system[1,3-6]. Extracellular effects of  S100B 
mostly have been studied in the context of  the central 
nervous system likely because of  its high abundance in 
the brain and the identification of  neurons, astrocytes 
and microglia as its target cells. Indeed, extracellular 
S100B has long been implicated in the pathophysiology 
of  Alzheimer’s disease and neuroinflammation largely via 
engagement of  the receptor for advanced glycation end-
products (RAGE). However, accumulating evidence sug-
gests that effects of  extracellular S100B are not restricted 
to the brain or to cells of  the innate immune system, 
and that RAGE may not be the sole receptor transduc-
ing S100B effects. In the present commentary we shall 
discuss results implicating intracellular and extracellular 
S100B in tissue development, homeostasis, repair and re-
generation.

S100B IN CELL PROLIFERATION AND 
DIFFERENTIATION
S100B is involved in cell proliferation, survival and differ-
entiation both as an intracellular regulator and an extra-
cellular signal. Within cells S100B binds to and activates 
Ndr (nuclear Dbf2-related)[7], a serine/threonine protein 
kinase implicated in the regulation of  cell division and 
morphology[8]. Regulation of  Ndr by S100B involves a 
conformational change in the catalytic domain triggered 
by Ca2+/S100B binding to the junction region[9]. How-
ever, although S100B-dependent activation of  Ndr in 
cell lines has been documented[7] and in non-dividing and 
dividing cells S100B localizes to centrosomes[10], which 

are Ndr targets[8], no evidence has been presented that 
S100B-dependent activation of  Ndr results in stimulation 
of  cell proliferation and/or changes in cell morphology.

S100B also interacts with the tumor suppressor, p53, 
inhibiting its phosphorylation and tetramerization , i.e., 
its activation[11-14]. Also, S100B reduces p53 levels[15], and 
in turn, p53 upregulates S100B expression in melanoma 
cells[15]. In this scenario, p53 would reduce its own abun-
dance by upregulating its inhibitor, S100B, which would 
result in uncontrolled proliferation[15] and reduced apop-
tosis[16] at least in melanoma cells (Figure 1A). However, 
phosphorylation of  specific serine and/or threonine 
residues in p53 reduces the affinity of  the S100B-p53 
interaction by an order of  magnitude, and is important 
for protecting p53 from S100B-dependent downregula-
tion[17]. Thus, the S100B overall effect on p53 is likely to 
reflect a balance between inhibitory cues and intervening 
biochemical events (e.g., p53 phosphorylation). However, 
conflicting conclusions have been reported regarding 
functional implications of  S100B/p53 interactions[15,18,19], 
and it is not known whether these interactions are rel-
evant for tumor progression in other cancers and in 
non-neoplastic cells. In addition, it has been suggested 
that by interacting with the ubiquitin E3 ligases, MDM2 
(HDM2) and MDM4 (HDM4)[17,20], that are central nega-
tive regulators of  p53[21], S100B may actually promote 
p53 activities[20], which adds another layer of  complexity 
to S100B-p53 interactions (Figure 1A). We have shown 
that forced expression of  S100B in neuronal PC12 cells 
has no effects on p53 levels or nuclear translocation, and 
it results in enhanced proliferation and reduced differen-
tiation and oxidative stress-induced apoptosis via activa-
tion of  a PI3K/Akt/p21WAF1/cyclin D1/cdk4/Rb/E2F 
pathway in the absence of  serum mitogens[22] (Figure 1B). 
S100B-dependent reduction of  stress-induced apoptosis 
may also occur via interaction with and activation of  the 
tetratricopeptide repeat protein, PP5, a member of  the 
PPP family of  serine/threonine phosphatases[23].

S100B is expressed in proliferating myoblast cell 
lines[24] and quiescent muscle satellite cells[25], the most 
relevant stem cell population in adult skeletal muscle 
tissue[26]. Increasing S100B levels in myoblast cell lines 
results in no effects on the proliferation rate of  asyn-
chronously proliferating myoblasts; however, S100B-
overexpressing myoblasts are more resistant to basal and 
H2O2-induced apoptosis in an IκB kinase β (IKKβ)/ 
nuclear factor κB (NF-κB)-mediated manner[27] (Figure 
1C). Thus, increasing S100B levels in myoblasts results 
in augmented cell numbers in consequence of  their 
increased survival rate in stress conditions. Moreover, 
S100B-overexpressing myoblasts are less prone to acquire 
mitotic quiescence and proliferate faster than control cells 
upon re-exposure to serum mitogens after quiescence[27]. 
Proliferation of  muscle satellite cells and their resistance 
to death-inducing stimuli are critical for efficient muscle 
regeneration as well as for successful cell therapy of  
muscular dystrophy[26,28-30]. Thus, intracellular S100B may 
contribute to muscle regeneration by reducing apoptosis 
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and stimulating the expansion of  activated satellite cells 
(Figure 1C). However, excess expression of  S100B in 
activated satellite cells may be detrimental because its mi-
togenic effect might interfere with the reconstitution of  
the satellite cell reserve pool which normally occurs dur-
ing muscle regeneration and requires that a fraction of  
cells stop proliferating and enter a quiescent state[26,28,29], 
and because myoblast proliferation and differentiation 
are mutually exclusive[26]. Considering that S100B is ex-
pressed in high abundance in several cancers[2,3], enhanced 
expression of  S100B in activated muscle satellite cells, 
from which embryonal rhabdomyosarcomas are thought 

to originate[31], may also contribute to rhabdomyosarco-
magenesis. Preliminary results show that embryonal rhab-
domyosarcoma cells do indeed express elevated S100B 
levels (Riuzzi F, Sorci G, and Donato R, unpublished 
results).

Collectively, these data suggest that intracellular 
S100B may intervene in the regulation of  proliferation, 
survival and apoptosis by mechanisms that vary depend-
ing on the cell type, the context and, probably, the cell’s 
normal or neoplastic condition. Further work is required 
to definitely establish the role of  S100B in cell prolifera-
tion and survival in normal and neoplastic cells and the 
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Figure 1  Effects of intracellular S100B on cell proliferation, differentiation, survival and motility. A: Schematics of S100B-p53 interactions in melanoma cells. 
p53 induces S100B that in turn blunts p53 inhibitory effects on proliferation and stimulatory effects on apoptosis. However, S100B interaction with the ubiquitin E3 
ligases, HMD2 and HMD4, may inhibit HMD2/HMD4-dependent reduction of p53 levels; B: Expression of S100B in PC12 neuronal cells results in stimulation of pro-
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myoblasts against oxidative stress-induced apoptosis and inhibits differentiation via activation of the IκB kinase β/ nuclear factor κB (NF-κB) pathway. Also, early 
after the transfer of myoblasts from growth medium to differentiation medium S100B becomes downregulated by the decrease in serum mitogens and activation of the 
promyogenic p38 MAPK, that likely stimulates S100B proteasomal degradation. However, S100B becomes re-expressed in differentiated myoblasts under the action 
of myogenin; D: S100B is induced in chondroblasts by the SOX trio and inhibits differentiation; E: S100B, induced in astrocytic progenitors by an unidentified mecha-
nism (X), interacts with and activates a Src/PI3K pathway that stimulates RhoA/ROCK thereby promoting stress fiber formation and cell migration and Akt thereby 
inhibiting GSK3β resulting in stimulation of proliferation and inhibition of differentiation. Interaction of S100B with IQGAP1 results in activation of Rac1 responsible for 
lamellipodia formation during migration. The S100B/IQGAP1/Rac1 interaction may also results in an enhancement of cell-cell adhesion as observed in neurospheres 
(see text). EGF represses S100B expression during early phases of astrocyte differentiation, which appears to be permissive for astrocytic terminal differentiation. 
Whether such a mechanism also is operating in cerebellar granule cell progenitors remains to be determined; F: S100B, induced in breast cancer cells by HOXC6 
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molecular mechanism(s) behind S100B overexpression in 
many cancers.

Intracellular S100B also functions as an inhibitor 
of  differentiation. As mentioned above, expression of  
S100B in PC12 neuronal cells results in impaired NGF-
induced differentiation via activation of  a PI3K/Akt/
p21WAF1/cyclin D1/cdk4/Rb/E2F pathway[22] (Figure 
1B). However, induction of  S100B expression in NGF-
differentiated PC12 neuronal cells does not reverse the 
differentiated phenotype[22]. Also, S100B is induced in 
early-stage chondroblast differentiation by the SOX trio 
and negatively regulates chondrocyte terminal differen-
tiation via an as yet undetermined mechanism[32] (Figure 
1D). Interestingly, S100B expression in astrocytic cells is 
developmentally regulated albeit with different charac-
teristics depending on whether subventricular or cortical 
astrocytic cells are considered[33]. These studies[33] have es-
tablished that during the time interval between post-natal 
days 2 and 8 ramified, differentiating (i.e., GFAP filament-
positive) astrocytes are S100B-negative. This suggests 
that during that time interval S100B may be downregu-
lated and that the protein becomes re-expressed during 
the final phase(s) of  astrocytic differentiation. S100B is 
expressed in radial glial precursors[34], in the ventricular 
zone of  embryonic mouse cerebellum and progenitors 
of  cerebellar granule cells[35], the protein being expressed 
in these latter cells as long as they are migrating. S100B 
interacts with the small GTPase Rac1 and Cdc42 effec-
tor, IQGAP1, at the polarized leading edge and areas of  
membrane ruffling in astrocytoma cell lines[36]. Hence, 
S100B has been proposed to regulate IQGAP1 activity 
in relation to cell migration (Figure 1E). In accordance 
with this view, reduction of  S100B levels in astrocyte cell 
lines and primary astrocytes results in decreased prolif-
eration and migration and acquisition of  a differentiated 
phenotype (i.e., stellation) consequent to reduced activity 
of  a Src/PI3K/RhoA/ROCK pathway and increased ac-
tivity of  the GSK3β/Rac1 module[37] (Figure 1E). These 
results are consistent with the possibility that repression 
of  S100B expression at certain phases of  development 
of  astrocytes and certain neuronal populations may be 
functionally linked to their differentiation. Thus, S100B 
may contribute to expand the population of  progeni-
tors of  neural cells and confer migratory capacity on 
undifferentiated astrocytes and neuroblasts, and S100B 
expression has to be repressed for differentiation to take 
place. In this context, S100B may act to avoid premature 
differentiation besides promoting cell migration; how-
ever, deregulated S100B expression may contribute to 
gliomagenesis. Intriguingly, knockdown of  S100B in the 
Müller cell line, MIO-M1, results in remarkably inhibited 
neurosphere formation and differentiation of  these cells 
towards the astrocyte phenotype[37]. Because MIO-M1 
neurospheres have been shown to be made of  neural 
precursor cells differentiating towards a neuronal pheno-
type when cultivated in the presence of  bFGF or retinoic 
acid[38], the results in[37] suggest that S100B may contrib-
ute to confer stem cell-like properties on MIO-M1 cells 

and to reduce their propensity to differentiate into astro-
cytes. The expression of  S100B in the murine cerebel-
lar ventricular zone including the embryonic cerebellar 
rhombic lip and in cells lining cerebral ventricles[33-35] adds 
to the possibility that intracellular S100B may contribute 
to confer pluripotency on precursors of  neural cells. In-
cidentally, the studies in[36,37] highlight S100B’s ability to 
regulate F-actin-based cytoskeleton in an indirect manner, 
i.e., via stimulation of  a Src/PI3K/RhoA/ROCK and an 
IQGAP1/Rac1 pathway, and reduction of  the activity of  
the GSK3β/Rac1 module (Figure 1E), as opposed to the 
protein’s direct effects on microtubule- and intermediate 
filament-based cytoskeleton[39-43].

On the other hand, HOXC6 and HOXC11, members 
of  homeobox genes that encode transcription factors 
driving morphogenesis and cell differentiation dur-
ing embryogenesis[44,45], have been reported to increase 
transcription of  s100b in neuroblastoma cells[46] and this 
was interpreted as indicative of  HOXC6 and HOXC11 
stimulating differentiation of  neuroblastoma cells into 
Schwann cells through the transcriptional activation of  
s100b. However, in the absence of  data on the expres-
sion of  additional markers such as myelin basic protein 
or GFAP, the expression of  s100b may not be itself  a 
proof  of  cell differentiation towards Schwann cells, oli-
godendrocytes or astrocytes[22,35,37]. Also, interactions of  
HOXC11 with the steroid receptor coactivator protein 
SRC-1, which is a strong predictor of  reduced disease-
free survival in breast cancer patients, induce the expres-
sion of  S100B in resistant breast cancer cells[47] (Figure 
1F). This latter study supports the notion that expression 
of  S100B in proliferating and/or tumor cells may inter-
fere with differentiation and/or is mechanistically linked 
to tumor progression. This study[47] also highlights the 
fact that S100B can be induced in precursors of  certain 
cell types (breast cells, in the present case) and becomes 
repressed at completion of  differentiation; differentiated 
breast cells do not express the protein whereas persis-
tence of  S100B in breast cell precursors may concur to 
tumor progression and invasion.

S100B is induced in post-infarction cardiomyocytes 
under the action of  norepinephrine and phenylephrine 
via protein kinase C activation thereby limiting the hyper-
trophic response through the inhibition of  the expres-
sion of  the fetal proteins, skeletal α-actin and β-myosin 
heavy chain[48-50] (Figure 1G). Accordingly, norepineph-
rine-induced cardiac hypertrophy is inhibited in S100B 
transgenic mice[51]. Thus, S100B, which is not expressed 
in cardiomyocytes in normal physiological conditions, 
participates in the regulation of  cardiomyocyte remodel-
ing after infarction. These results appear in line with the 
notion that S100B is expressed in cells exhibiting proper-
ties of  immature cells (post-infarction cardiomyocytes, in 
the present case). However, similarly to the majority of  
neuronal cells, in which S100B becomes stably repressed 
before differentiation, and differently from astrocytes (see 
above) and myoblasts (see below), in which a transient 
downregulation of  S100B occurs at the beginning of  dif-
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ferentiation, full maturation of  cardiomyocytes is accom-
panied by stable repression of  S100B expression.

Intracellular S100B modulates the differentiation of  
myoblasts, the precursors of  skeletal myofibers. Indeed, 
overexpression of  S100B in myoblasts blocks myogenic 
differentiation via IKKβ/NF-κB-mediated inhibition of  
expression of  the muscle-specific transcription factor, 
MyoD, and the MyoD-downstream effectors myogenin 
and p21WAF1, and conversely, reduction of  S100B expres-
sion in myoblasts by siRNA techniques results in reduced 
NF-κB activity and enhanced myogenic differentiation[25] 
(Figure 1C). It is known that NF-κB is a negative regula-
tor of  myogenic differentiation via inhibition of  expres-
sion and/or reduction of  stability of  MyoD[52-54]. Also, 
S100B binds to, and inhibits EAG1 potassium channels 
Ca2+-dependently[55]. Because these channels have been 
reported to play a role in myoblast fusion into myo-
tubes[56] it is possible that S100B may negatively affect 
myoblast differentiation via inhibition of  EAG1 potas-
sium channels as well. Moreover, compared with young 
subjects, muscle satellite cells from aged human subjects, 
which are known to be proliferation and differentia-
tion defective[29,57], express higher levels of  S100B and 
knockdown of  S100B in aged satellite cells rescues their 
myogenic potential in part[58]. Notably, despite their high 
S100B levels, aged muscle satellite cells show a low pro-
liferation rate and a remarkably reduced ability to secrete 
S100B and bFGF[58]. However, treatment of  aged satellite 
cells with S100B or bFGF rescues their proliferative po-
tential in part[58]. These results suggest that physiological 
levels of  S100B in activated satellite cells and the satellite 
cells’ ability to secrete the protein concur to optimize the 
expansion of  activated satellite cells required for satellite 
cell homeostasis, the maintenance of  optimal muscular 
mass and/or efficient skeletal muscle regeneration after 
acute injury. In this context it is noteworthy that aged 
human satellite cells also exhibit altered expression of  
RAGE[58] shown to exert promyogenic effects[59-61] and 
to be required for S100B secretion[62]. Because tran-
sient transfection of  aged satellite cells with full-length 
RAGE rescues their myogenin potential in part[58], one 
may speculate that the combination of  enhanced S100B 
expression and expression of  an altered form of  RAGE 
may contribute significantly to their reduced myogenic 
potential, hence to sarcopenia. The recent demonstra-
tion that levels of  bFGF are high and are responsible for 
disrupted satellite cell quiescence in aged skeletal muscle 
in homeostatic conditions[63] lend support to the possi-
bility that excess S100B in aged satellite cells, potentially 
caused by high bFGF[1,3] may ultimately lead to defective 
muscle regenerative capacity as observed in sarcopenia. 
Interestingly, levels of  S100B decrease in non-fused myo-
blasts early after their transfer to differentiation medium 
and S100B becomes re-expressed in differentiating (i.e., 
myogenin-positive) myocytes[25,27], which supports the 
notion that S100B levels have to decrease transiently in 
certain cell types for they to differentiate. Both differen-
tiation cues (namely the activation of  the promyogenic 

p38 MAPK) and reduction of  mitogens appear to deter-
mine the transient downregulation of  S100B in myoblasts 
in differentiation medium via transcriptional and post-
translational (proteasome-dependent) mechanisms[27] 
(Figure 1C). Collectively, these results suggest that S100B 
in myoblasts contributes to reduce their premature differ-
entiation which would be detrimental to skeletal muscle 
regeneration after acute injury, and that levels of  S100B 
should be kept within a certain range of  abundance in 
order to avoid excessive expansion of  activated satellite 
cells leading to defective reconstitution of  the damaged 
tissue and the pool of  quiescent satellite cells.

Whereas EGF has been reported to reduce S100B 
expression in developing astrocytes[33] (Figure 1E), the 
extracellular stimuli and intracellular mechanisms causing 
transient or stable downregulation of  S100B expression 
during cell differentiation are not completely defined. 
Also, because mature astrocytes, chondrocytes, myocytes 
(i.e., differentiated myoblasts), skeletal myofibers and 
certain neuronal populations in the adult brain express 
S100B[3,25,64], mechanisms should exist that cause re-
expression of  the protein at later developmental stages 
without determining cell de-differentiation[22,27]. In the 
case of  skeletal muscle cells, the muscle-specific tran-
scription factor, myogenin, that is essential for myogenic 
differentiation[26], has been implicated in the re-expres-
sion of  S100B in myocytes[27] (Figure 1C). Overall, these 
observations suggest that functions of  S100B may be 
different in developing and mature cells and that S100B 
may regulate different signaling pathways and functions 
depending on the cell type and the cell’s status. Future 
work should dissect the molecular mechanism(s) respon-
sible for the regulation of  S100B expression in immature 
(proliferating) and fully differentiated cells.

Extracellular S100B also regulates cell proliferation, 
survival and differentiation. Several factors/conditions 
regulate either positively or negatively S100B secretion by 
astrocytes, among which are interleukin-1β, extracellular 
levels of  Ca2+ and K+, inhibitors of  gap junctions, anti-
oxidants, lipopolysaccharide, apomorphine and certain 
antipsychotic drugs[65-69]. At the low nM concentration 
found in the brain extracellular space in normal physi-
ological conditions[3], S100B exerts pro-survival effects 
on neurons[70-73], stimulate astrocyte proliferation[74] and 
reduce microglial reactivity[75,76], via RAGE engagement in 
most cases (Figure 2). However, at low nM levels S100B 
synergizes with proinflammatory cytokines to activate 
microglia[77] suggesting that S100B may switch from an-
tiinflammatory to proinflammatory at early phases of  
neuroinflammation (i.e., in the presence of  low levels of  
inflammatory cytokines). Yet, attenuation of  microglia 
activity by low concentrations of  S100B may contribute 
to local tumor immunosuppression[76].

S100B has been implicated in the activity of  anti-
depressants. The selective serotonin reuptake inhibitor, 
fluoxetine, increases S100B content in the hippocam-
pus[78] and stimulates S100B secretion from astrocytes[79] 
and serotoninergic neurons[80]. It has been shown that 
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secreted S100B downregulates microRNA-16 in norad-
renergic neurons, which consequently acquire properties 
of  serotoninergic neurons[80]. Although no information 
is available regarding the mechanism whereby fluoxetine 
induces serotoninergic neurons to express and secrete 
S100B, the mechanism whereby secreted S100B reduces 
microRNA-16 levels in noradrenergic neurons or the 
S100B-serotoninergic neuron relationships in S100B-null 
or transgenic mice, these results point to an important 
role of  extracellular S100B in fluoxetine-dependent neu-
rogenesis and neuronal plasticity[81,82].

Serum levels of  S100B increase remarkably following 
an intense physical exercise[83,84], the source of  the protein 
reasonably being skeletal myofibers in these circum-
stances. Indeed, intense physical exercise is associated 
with reversible skeletal muscle tissue damage and release 
of  intracellular proteins[26], and the local concentration 
of  S100B may be even higher than in serum thus allow-
ing paracrine S100B effects on activated muscle stem 
(satellite) cells. In fact, at picomolar to low nanomolar 
concentrations S100B inhibits myoblast differentiation 
and stimulates myoblast proliferation[85-87] raising the pos-
sibility that the protein may participate in the process of  
skeletal muscle regeneration by expanding the myoblast 
population (see below).

S100B IN TISSUE REGENERATION
Since the discovery that a protein factor purified from 
brain and endowed with neurite extension activity was 
a disulfide cross-linked form of  S100B[88] and the dem-
onstration that S100B is found in the brain extracellular 
space[89] and is actively secreted by astrocytes[90], a mess of  
information has been provided over time on the protec-
tive and trophic role of  S100B on neurons[70-73,91-98](Figure 
2). S100B is found expressed in Schwann cells in unin-
jured peripheral nerves as well as in activated Schwann 
cells during the degeneration period of  crushed nerves, 
i.e., up to day 7 post-injury, and in normal Schwann cells 
reappearing during the regeneration period, i.e., after day 

7 post-injury, in the zone of  the crush and proximal and 
distal to it[99]. In similar conditions, RAGE becomes ex-
pressed in axons and in infiltrating mononuclear phago-
cytes and reduction of  RAGE expression and/or activity 
results in suppression of  anatomical regeneration and 
functional recovery[100,101]. Upon acute peripheral nerve 
injury, S100B released from Schwann cells in damaged 
nerves activates RAGE in infiltrating macrophages[100,101] 
and in activated Schwann cells[102]; infiltrating macro-
phages exert beneficial effects by clearing cell debris and 
dead neutrophils and releasing cytokines and trophic fac-
tors, whereas activated Schwann cells release cytokines 
and neurotrophic factors shown to be crucial for the re-
pair of  injured nerves (Figure 3). S100B-activated RAGE 
promotes Schwann cell migration during the course of  
repair of  injured peripheral nerves through the induction 
of  thioredoxin interacting protein and activation of  p38 
MAPK, CREB and NF-κB[102]. S100B also stimulates 
proliferation and differentiation of  neural progenitor cells 
from the subventricular zone of  the adult mouse brain 
via RAGE activation[103]. These results complement the 
long-standing notion that S100B stimulates neuronal cell 
survival and differentiation via RAGE engagement[71,72].

S100B also is expressed in skeletal myofibers[25,64] from 
which it is massively released early upon acute injury with 
declining release during the regeneration phase[104] (Figure 
4A). Released S100B stimulates myoblast proliferation 
and concomitantly activates the myogenic differentiation 
program via RAGE engagement early after injury (Figure 
4B), i.e., at a time when myoblast density and the level of  
released bFGF are low[104], thereby contributing to the 
timely and limited expansion of  the myoblast population 
required for efficient muscle regeneration. Indeed, acutely 
injured Rage−/− muscles show delayed regeneration[61]. 
However, persistence of  extracellular S100B in the dam-
aged tissue is likely to prolong the myoblast proliferation 
phase at the expense of  differentiation and reconstitution 
of  the pool of  quiescent satellite cells via enhancement 
of  bFGF/FGFR1 signaling and blockade of  RAGE 
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signaling[87,104] (Figure 4C). The switch of  S100B from a 
RAGE-activating factor to a bFGF/FGFR1 activating 
factor depends on the S100B concentration, the presence 
of  bFGF and myoblast density[87,104]. Current findings 
indicate that neutralization of  released S100B in acutely 
injured wild-type skeletal muscles results in defective 
regeneration as a consequence of  reduced expansion of  
the population of  activated satellite cells, reduced infiltra-
tion of  the injured tissue with macrophages and delayed 
transition of  macrophages from the M1 (proinflamma-
tory) to the M2 (antiinflammatory) phase (Riuzzi F, Sorci 
G, Beccafico S and Donato R, in preparation). These 
results indicate that released S100B participates in the 
regeneration of  acutely injured muscles by stimulating 
myoblast proliferation, macrophage infiltration and mac-
rophage transition from a proinflammatory phenotype 
to an antiinflammatory phenotype. Our ongoing results 
also show that these effects of  S100B are strictly RAGE-
dependent, because neutralization of  released S100B in 
acutely injured Rage−/− muscles does not change the mus-
cle regeneration pattern described in[61]. However, one 
may anticipate that chronic release of  S100B from skel-
etal myofibers in, e.g., muscular dystrophies and chronic 
inflammatory muscle diseases may translate into high 
local S100B concentrations amplifying or perpetuating 
muscle damage, a situation reminiscent of  what occurs in 
the brain where low S100B levels are beneficial whereas 
chronically high S100B levels are detrimental, via RAGE 
engagement in both cases[1,3,71,72].

Also, cell/tissue identity appears to profoundly condi-
tion S100B’s extracellular effects. For example, whereas 
at concentrations ≤ 50 nmol/L S100B exerts trophic 
effects on neuronal and astrocytic cells and skeletal myo-
blasts[3,105,106], at doses ≥ 50 nmol/L the protein causes 
RAGE-dependent cardiomyocyte apoptosis[107]. However, 
a short-term (1 h) treatment of  cardiomyocytes with 
S100B (100 nmol/L) (a condition insufficient to cause 
apoptosis) results in a RAGE-dependent secretion of  vas-
cular endothelial growth factor (VEGF) which in turn in-
duces myofibroblast proliferation[108]. By this mechanism 

S100B might contribute to post-infarction scar forma-
tion, a kind of  tissue reparative process. Whether S100B 
also causes VEGF-dependent post-infarction neoangio-
genesis remains to be investigated. Intriguingly, whereas 
S100B is induced in the heart of  diabetic mice as well, 
S100B mRNA and protein expression levels decrease in 
diabetes post-infarction by a mechanism that remains to 
be identified, and deletion of  s100b has a deleterious ef-
fect on cardiac function in this condition partly attributed 
to increased ventricular dilation associated with increased 
AGE formation and reduced GLUT4 expression, i.e., 
reduced cardiac glucose metabolism[109]. Whether these 
changes are due to reduced intracellular or extracellular 
effects of  S100B is not known. Yet, these results point to 
a protective role of  S100B in post-infarction heart.

S100B IN RESOLUTION OF 
INFLAMMATION
The role of  extracellular S100B as a DAMP involved 
in inflammation is an accepted notion (see Refs.[1,3-6,106] 
for pertinent literature). However, for S100B to sustain 
inflammation via activation of  macrophages/microglia it 
has to be present at relatively high concentration at injury 
sites[1,3-6,106,110], as it reasonably occurs during the course of  
chronic tissue damage as a result of  a continuous release 
of  the protein from injured cells, cell necrosis and/or 
defective clearance. However, recent evidence points to a 
novel role of  S100B in resolution of  inflammation in As-
pergillus fumigatus infection in lung[111]. TLR2 activation on 
bronchial epithelial cells by the fungus results in upregu-
lation of  expression and release of  S100B, that paracrin-
ally binds to RAGE on polymorphonuclear neutrophils 
and mediates its association with TLR2 for subsequent 
inhibition. In addition, S100B upon binding to nucleic 
acids in bronchial epithelial cells, also activates an intra-
cellular TLR3/TLR9/TRIF-dependent pathway leading 
to repression of  s100b transcription. The transcriptional 
repression of  s100b by the sequential action of  down-
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Figure 4  Effects of S100B in skeletal muscle regeneration. A: S100B is passively released from acutely injured skeletal muscle tissue early after injury. Whether 
S100B activates quiescent muscle satellite cells (SCs) is not known (?); B: Released S100B may stimulate myoblast proliferation and simultaneously activate the 
myogenic program via receptor for advanced glycation end-products (RAGE) engagement, during the next few days post-injury (early regeneration phase); C: How-
ever, during the intermediate regeneration phase (i.e., from day 3 to day 7 post-injury, in coincidence with the peak of released bFGF and the myoblast proliferation 
phase), S100B may enhance bFGF-FGFR1 mitogenic signaling thereby contributing to expand the myoblast population while simultaneously inactivating its canonical 
receptor, RAGE. RAGE: Receptor for advanced glycation end-products.
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stream MyD88- and TRIF-dependent NF-κB signaling 
pathways[111] thus provides the molecular basis for a brak-
ing circuit in infection whereby the endogenous danger 
protects the host against pathogen-induced inflammation 
and a nucleic acid-sensing mechanism resolves danger-
induced chronic inflammation. Whether this is a general 
mechanism of  action of  the S100B/RAGE axis in the 
course of  infections remains to be determined. However, 
high local S100B concentrations exacerbates Aspergillus 
fumigatus-induced pulmonary inflammation[111] likely via 
sustained stimulation of  RAGE signaling. Interestingly, 
the S100B (+427C/T) polymorphism results in S100B 
overexpression which associates with susceptibility to in-
vasive aspergillosis in patients undergoing hematopoietic 
stem cell transplantation whenever the recipients show 
RAGE (-374T/A) polymorphism resulting in RAGE 
overexpression[112].

CONCLUDING REMARKS
During the last decade there has been a burst of  interest 
in S100B functions[3,6,106] following the seminal demon-
stration that S100B engages RAGE in immune cells and 
behaves like a DAMP[113]. Evidence has been provided 
shortly after that both the neurotrophic and neurotoxic 
effects of  low and high S100B levels, respectively, on 
neuronal cells[1,3], are mediated by RAGE engagement[71]. 
However, S100B mostly has been viewed as a DAMP 
involved in the inflammatory response and S100B often 
has been used as a generic RAGE activator in the context 
of  the inflammatory response[3,6,113].

Yet, a large body of  information indicates that S100B 
protein is involved in cell proliferation, survival, motility 
and differentiation by acting as an intracellular regulator 
and an extracellular signal in normal physiological condi-
tions and during the acute phase of  tissue damage. In so 
doing, S100B may play a role in tissue development and 
repair after acute injury, through the refinement or fine 
tuning of  enzyme activities, the dynamics of  the cyto-
skeleton and cell-specific gene expression, and responses 
to external stimuli. Moreover, S100B exerts anti-infection 
effects in the bronchial epithelium where a tight regula-
tion of  its expression and release is mechanistically linked 
to the resolution of  inflammation after fungal infection. 
Future work should assess the molecular mechanism(s) 
regulating S100B expression in developing and mature 
cells and during tissue repair/regeneration.
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