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Abstract
For several decades, serum levels of alanine (ALT) 
and aspartate (AST) aminotransferases have been 
regarded as markers of liver injury, including a wide 
range of etiologies from viral hepatitis to fatty liver. The 
increasing worldwide prevalence of metabolic syndrome 
and cardiovascular disease revealed that transaminases 
are strong predictors of type 2 diabetes, coronary 
heart disease, atherothrombotic risk profile, and overall 
risk of metabolic disease. Therefore, it is plausible 
to suggest that aminotransferases are surrogate 
biomarkers of “liver metabolic functioning” beyond 
the classical concept of liver cellular damage, as their 
enzymatic activity might actually reflect key aspects 
of the physiology and pathophysiology of the liver 
function. In this study, we summarize the background 
information and recent findings on the biological role 
of ALT and AST, and review the knowledge gained 
from the application of genome-wide approaches and 
“omics” technologies that uncovered new concepts on 
the role of aminotransferases in human diseases and 
systemic regulation of metabolic functions. Prediction 
of biomolecular interactions between the candidate 
genes recently discovered to be associated with plasma 
concentrations of liver enzymes showed interesting 
interconnectivity nodes, which suggest that regulation 
of aminotransferase activity is a complex and highly 
regulated trait. Finally, links between aminotransferase 
genes and metabolites are explored to understand the 
genetic contributions to the metabolic diversity.
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Core tip: Genomic, transcriptomic, proteomic, and 
metabolomic information has changed the classical 
conception of the meaning that serum concentrations of 
alanine- (ALT) and aspartate (AST) aminotransferase are 
merely indicators of hepatocyte membrane disruption. 
It has given way to a more complex and interconnected 
view of the importance of liver transaminases in the 
regulation of systemic metabolic function.

Sookoian S, Pirola CJ. Liver enzymes, metabolomics and genome-
wide association studies: From systems biology to the personalized 
medicine. World J Gastroenterol 2015; 21(3): 711-725  Available 
from: URL: http://www.wjgnet.com/1007-9327/full/v21/i3/711.
htm  DOI: http://dx.doi.org/10.3748/wjg.v21.i3.711

INTRODUCTION
For several decades, serum levels of  alanine (ALT) and 
aspartate (AST) aminotransferases have been regarded as 
markers of  liver injury, including a wide range of  etiologies 
from viral hepatitis to fatty liver[1]. The first report of  
the role of  liver transaminases in the prediction of  liver 
cellular damage was published in 1955 by Molander 
and colleagues, after noticing that the levels of  glutamic 
oxalacetic transaminase (GOT or AST) were elevated after 
acute myocardial infarction[2]. It is noteworthy to mention 
that high serum GOT activity observed in patients with 
myocardial infarction and acute heart failure is mostly 
attributed to the accompanying acute central necrosis of  
the liver associated with circulatory changes, as elegantly 
demonstrated by Killip et al[3].

Although the chemical reaction mediated by a 
transaminase was initially described in 1950[4], measurement 
of  ALT and AST enzymatic activity in circulation is still 
the most commonly used biochemistry test in clinical 
practice, when the aim is to evaluate putative liver injury[5]. 
Notably, while the correlation between the degree of  
hepatocyte injury and amininotransferase levels is poor[1], 
it is accepted that blood levels of  ALT and AST are a 
consequence of  the liver cell membrane damage, with 
the subsequent leakage of  intracellular enzymes into the 
circulation, especially the cytosolic ones[6,7].

The increasing worldwide prevalence of  metabolic 
syndrome (Met Synd) and cardiovascular disease (CVD) 
has revealed that transaminases are reliable predictors of  
the individual components of  this very complex trait, 
including type 2 diabetes[8] and decreased hepatic insulin 
sensitivity[9], coronary heart disease[10], atherothrombotic risk 
profile[11], and overall risk of  cardiovascular[12] and metabolic 
disease[13].

Therefore, routine testing of  aminotransferases ALT 
and AST, initially regarded as markers of  liver injury, is 

increasingly being considered as an indicator of  the “liver 
metabolic function”[14]. Based upon this evidence, it is 
reasonable to speculate that the ALT and AST enzymatic 
activity measured in circulation actually reflects relevant 
aspects of  the physiology and pathophysiology of  the 
liver function beyond hepatocyte membrane disruption.

In this study, we summarize the background information 
and recent findings on the biological function of  ALT 
and AST, and review the knowledge gained from the 
application of  genome-wide approaches and “omics” 
technologies that uncovered new concepts of  the role 
of  aminotransferases in human diseases and systemic 
regulation of  metabolic functions.

BRIEF OVERVIEW OF ALT AND AST 
GENE AND PROTEIN FUNCTION: 
A PIVOTAL ROLE IN GLUCOSE 
METABOLISM
Aminotransferases are enzymes that catalyze the transfer 
of  an alpha-amino group from an amino acid to an alpha-
keto acid. They share certain mechanistic features with 
other pyridoxal-phosphate-dependent enzymes. With 
respect to the domain features, aminotransferases are 
grouped into different classes, including class Ⅰ, Ⅱ, Ⅲ, 
Ⅳ and Ⅴ. ALT and AST belong to the class-Ⅰ pyridoxal-
phosphate-dependent aminotransferase, which comprises 
11 proteins in the human proteome, as shown in Table 1. 
In this review, we will refer to aminotransferase genes as 
to GPT and GOT, including their related isoforms.

While there are two isoforms of  human ALT, namely 
ALT1 and ALT2, when referring to the protein, we 
will use the ALT name. The gene that encodes for the 
cytosolic alanine aminotransaminase 1 protein (ALT1), 
also known as glutamate-pyruvate transaminase 1 (GPT1 
or formally GPT), is located in chromosome 8 (8q24.3) 
and has 11 exons.

This enzyme catalyzes the reversible transamination 
between alanine and 2-oxoglutarate to generate pyruvate 
and glutamate, playing a key role in the intermediary 
metabolism of  glucose and amino acids. ALT1 is 
expressed in liver, kidney, heart, and skeletal muscle, and 
at moderate levels in the adipose tissue[15].

ALT2 is encoded by a different gene (GPT2), located in 
chromosome 16 (16q12.1). The GPT2 mRNA is expressed 
at high levels in muscle, fat, kidney, and brain, and at lower 
levels in liver and breast[16]. As, in some studies, neither liver 
nor kidney showed ALT2 expression[17], this issue clearly 
requires further investigation.

According to available evidence, ALT1 and ALT2 
seem to have not only different tissue source, but cellular 
localization as well, suggesting a dissimilar biological 
meaning in the context of  acute or chronic liver disease 
pathogenesis. Figure 1 depicts a schematic representation 
of  ALT1 and ALT2 protein localization at the cellular 
level. For example, in the liver, ALT1 localizes only in the 
cytosol and endoplasmic reticulum, with no presence in 
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Table 1  List of enzymes of the Class-Ⅰ pyridoxal-phosphate-dependent aminotransferase family: Evidence from the human proteome

mitochondria[18]. Conversely, ALT2 is preferably localized 
in the mitochondrial matrix (Figure 1). Thus, while current 
evidence from human studies is scarce, it is plausible to 
suggest that ALT1 and ALT2 might reflect hepatocyte 
membrane disruption and mitochondrial dysfunction, 
respectively. Unfortunately, current biochemical tests 
aimed at measuring ALT in circulation are incapable of  
identifying the cellular source. Nevertheless, while routine 
assessment of  ALT activity does not discriminate between 
ALT isoforms, a recent study demonstrated that most of  
the activity in circulation is given by ALT1[19].

In addition, supporting the notion that elevation of  
ALT levels does not necessarily denote hepatocellular 
damage, Kechagias et al[20] showed that fast-food-based 
hyper-alimentation in combination with a sedentary 
lifestyle, when followed for four weeks, was associated 
with pathological serum ALT levels. Notably, the authors 
showed that the significant elevation of  aminotransferases 
(up to 447 U/l) associated with the hyper-alimentation 
regimen were not related to the development of  liver 
steatosis[20]. This clinical finding reinforces the hypothesis 
that an increase in the ALT enzymatic activity is an 
adaptive response to the liver metabolic demands[14]. Table 

2 summarizes the main features of  ALT1 and ALT2, 
including novel aspects on their biological function and 
gene regulation, such as modulation of  GPT1 by miR-122 
to enhance ALT enzymatic activity, as recently reported by 
our group[21].

Glutamate-oxalacetate transaminase (GOT) is a pyridoxal 
phosphate-dependent enzyme that exists in cytoplasmic 
and mitochondrial forms, GOT1 and GOT2, respectively. 
As previously noted, the two enzymes belong to the class-
Ⅰ pyridoxal-phosphate-dependent aminotransferase family, 
and are homodimeric, showing close homology.

The gene that encodes for the soluble GOT1 (GOT1) 
is located in chromosome 10 (10q24.2), while the one that 
encodes for the mitochondrial GOT2 (GOT2) is located in 
chromosome 16 (16q21). GOT1 is an important regulator 
of  glutamate levels, as it is involved in the biosynthesis of  
L-glutamate from L-aspartate or L-cysteine. The catalytic 
unit of  GOT1 is responsible for the following reactions: 
L-aspartate + 2-oxoglutarate = oxaloacetate + L-glutamate 
and L-cysteine + 2-oxoglutarate = mercaptopyruvate + 
L-glutamate. GOT1 aliases are cysteine aminotransferase and 
transaminase A. In addition, the aspartate aminotransferase 
activity is involved in hepatic glucose synthesis during 
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Protein name Gene name Chromosome Number of isoforms

1-aminocyclopropane-1-carboxylate synthase-like protein 1 ACCS 11p11.2 1
Alanine aminotransferase 1 GPT1 8q24.3 1
Alanine aminotransferase 2 GPT2 16q11.2 2
Aspartate aminotransferase, cytoplasmic GOT1 10q24.2 1
Aspartate aminotransferase, mitochondrial GOT2 16q21 2
Kynurenine/alpha-aminoadipate aminotransferase, mitochondrial AADAT 4q33 2
Kynurenine--oxoglutarate transaminase 1 CCBL1 9q34.11 3
Kynurenine--oxoglutarate transaminase 3 CCBL2 1p22.2 3
Probable inactive 1-aminocyclopropane-1-carboxylate synthase-like protein 2 ACCSL 11p11.2 1
Putative aspartate aminotransferase, cytoplasmic 2 GOT1L1 8p11.23 1
Tyrosine aminotransferase TAT 16q22.2 1
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Figure 1  Schematic representation of different localizations of ALT1 (GPT1) and ALT2 (GPT2) proteins at the cellular level. Prediction was performed by the 
open access web resource “COMPARTMENTS” available at http://compartments.jensenlab.org, which predicts protein localization according to information extracted 
from different databases, including UniProtKB, as well as cellular component ontologies visualized by the Gene Ontology Consortium. The program generates unified 
confidence scores of the localization evidence; confidence scale is color coded, ranging from light green (1) indicating low confidence, to dark green (5), corresponding 
to high confidence, with absence of localization evidence depicted in white (0). The evidence score is expressed in %.

GPT1 [ENSP00000378408] 
Glutamic-pyruvate transaminase 

(alanine aminotransferase) 1

GPT2 [ENSP00000345282] 
Glutamic pyruvate transaminase 

(alanine aminotransferase) 2

Cytoplasm and cytosol 
prediction: 91.3%

Mitochondrial matrix 
prediction: 72.1%
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Table 2  Comparison of biological and protein function of ALT1 and ALT2: Background information and recent findings
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Features and function Glutamic-pyruvate transaminase 1 (alanine aminotransferase 
1) GPT1

Glutamic pyruvate transaminase 2 (alanine aminotransferase) 2 
GPT2

Gene and protein Id in 
data-bases

Entrez Gene: 2875 Entrez gene: 84706
Ensembl gene: ENSG00000167701 Ensemble: ENSG00000166123

UniProtKB: P24298 UniProtKB: Q8TD30
Genomic location Entrez Gene cytogenetic band: 8q24.3 Entrez gene cytogenetic band: 16q12.1
Number of gene 
transcripts

7 transcripts (splice variants), 28 exons on the forward 
strand

5 transcripts (splice variants), 26 exons on the forward strand

Variation GPT1 has 210 SNPs GPT2 has 819 SNPs
Orthologues GPT1 has 69 orthologues in Ensembl GPT2 has 63 orthologues in Ensembl
Regulation There are 2 regulatory elements located in the region of 

GPT1 gene
There are 13 regulatory elements located in the region of GPT2

miR-122 may interact with GPT1 at multiple sites of the 
coding region to enhance translation[21]

GPT2 promoter has a putative ATF4 (Activating transcription 
factor 4 binding site[69]

Microsomal triglyceride transfer protein inhibition 
augments plasma ALT/AST levels in response to 

endoplasmic reticulum stress[66]

GPT2 is regulated by androgens in non-hepatic tissues[70]

GPT1, but not GPT2 promoter is induced by PPAR 
agonists[67]

ALT1 catalytic activity is inhibited by the effect of 
glycation[68]

Protein features Size: 496 amino acids; 54637 Da Size: 523 amino acids; 57904 Da
Cofactor: Pyridoxal phosphate Cofactor: Pyridoxal phosphate

Subunit: Homodimer Subunit: Homodimer (By similarity)
Cellular localization in 
human cells1

Cytosol of hepatocytes[18] ER and mitochondrial fraction[18]

Measurement in plasma 
(catalytic activity)

Represents 90% of total ALT in circulation[17,18] Represents 10% of total ALT in circulation[17,18]

Tissue expression in 
humans

Evidence: WB: Liver and kidney[18] Evidence: WB and IHQ (protein): Pancreas (islets of Langerhans), 
brain, adrenal gland, skeletal muscle, heart (cardiomyocytes)[18]

Evidence: NB: GPT mRNA is moderately expressed in 
kidney, liver, heart, and fat[15]

Evidence: NB: mRNA is expressed at high levels in muscle, fat, 
kidney, and brain, and at lower levels in liver and breast[15]

Tissue expression in 
rodents

Evidence: NB (mRNA): Highly expressed in liver and 
moderately expressed in white adipose tissue (WAT), 

intestine, and colon[71]

Evidence: NB (mRNA): muscle, liver, and white adipose tissue 
(WAT), at moderate levels in brain and kidney, and at a low level 

in heart[71]

Gene expression analysis suggests a sex-dependent difference in 
GPT2-mRNA in the liver and muscle[15]

Hepatic and muscle ALT2 protein activity was higher in males 
than in females; while no sex-dependent difference was noted in 
the liver for ALT1, it appears 20% higher in muscle in females[15]

Biological meaning and 
metabolic function

ALT1 contributes to “basal” serum ALT activity, most likely 
associated with normal cell turnover in liver and other 

tissues that would release ALT1 into the circulation[15,17-19]

Generation of pyruvate for gluconeogenesis under stressful living 
conditions, such as starvation[18]

ALT2 is involved in the metabolic adaptation of the cell to stress[69]

ALT2 is associated with a liver progluconeogenic metabolic 
adaptive response without hepatocellular necrosis after exposure 

to dexamethasone[72]

ALT2 may participate in the generation of pyruvate and 
glyceroneogenesis, contributing to the homeostasis of fatty acid 

metabolism and storage[16]

Biological meaning in 
human disease

NAFLD: ALT1 represented 94% of total ALT levels in 
circulation[19]

NAFLD: ALT2 represented 6% of total ALT levels in circulation[19]

HCV: High levels in circulation of ALT1 (about 5-fold 
increase as compared to the controls)[19]

HCV: Moderate levels in circulation of ALT1 (about 2.5 fold 
increase as compared to the controls)[19]

Ultra-endurance exercise: no significant changes after 
exercise[19]

Ultra-endurance exercise: High levels in circulation of ALT2 (about 
2-fold increase as compared to the baseline conditions)[19]

Biological meaning in 
experimental models of 
disease

NAFLD (ob/ob): Compared to the normal liver of lean mice, 
the expression of GPT1 mRNA remained unchanged[71]

NAFLD (ob/ob): Compared to the normal liver of lean mice, 
the expression of GPT2 mRNA was elevated by about 2-fold, 

suggesting ALT2 induction during fatty liver[71]

Both ALT1 and ALT2 increased in the liver of mice induced 
liver steatosis by a deficient methionine-choline diet[73]

1Cellular localization differs among species. ER: Endoplasmic reticulum; WB: Western blotting; IHQ: Immunohistochemistry; NB: Northern blot analysis; 
HCV: Hepatitis C virus; NAFLD:  Non-alcoholic fatty liver disease.
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Table 3  Evidence from genome-wide association studies on the heritability of circulating levels of alanine-aminotransferase and 
aspartate-aminotransferase
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development and in adipocyte glyceroneogenesis.
GOT2 catalyzes the irreversible transamination of  the 

L-tryptophan metabolite L-kynurenine to form kynurenic 
acid (L-kynurenine + 2-oxoglutarate = 4-(2-aminophenyl)-
2,4-dioxobutanoate + L-glutamate) and the reversible 
transamination of  L-aspartate + 2-oxoglutarate = 
oxaloacetate + L-glutamate. GOT2 plays a key role in 
amino acid metabolism and the metabolite exchange 
between mitochondria and cytosol. It also facilitates 
cellular uptake of  long-chain free fatty acids. Of  note, 
GOT2 is also known by the following aliases: fatty acid-
binding protein, kynurenine aminotransferase 4, plasma 
membrane-associated fatty acid-binding protein and 
kynurenine-oxoglutarate transaminase Ⅳ.

GENETIC HERITABILITY ON 
THE SERUM LEVELS OF LIVER 
AMINOTRANSFERASES: EVIDENCE 
FROM GENOME-WIDE ASSOCIATION 
STUDIES
The serum level of  transaminases is highly variable and 
is affected by a myriad of  factors, including demographic 
ones, such as sex, age and ethnicity; anthropometric features, 
such as waist circumference and body mass index; and 
environmental factors, such as alcohol consumption[22]. 
Serum level of  transaminases is also subject to diurnal 
variation[23,24].

In addition, it is known that ALT and AST concentrations 
in circulation are heritable[25]. In fact, studies have shown 
that ALT and AST levels are highly heritable, with additive 

genetic effects accounting for 48% and 32% of  the variation, 
respectively[26]. Furthermore, results from a population-
based study in twins showed that the heritability for ALT 
and AST is not gender specific[27].

To examine the genetic influence on plasma/serum 
levels of  aminotransferases, four genome-wide association 
studies (GWAS) exploring a large number of  SNPs were 
conducted in different populations around the world, as 
summarized in Table 3. Findings of  these studies have 
shed light on new interesting candidate genes associated 
with liver enzymes, including the largely replicated 
PNPLA3 (patatin-like phospholipase domain containing 
3) gene that is not only associated with nonalcoholic fatty 
liver disease (NAFLD)[28] and nonalcoholic steatohepatitis 
(NASH)[29,30], but also a wide spectrum of  chronic liver 
diseases, as recently highlighted[31], including alcoholic liver 
disease[32], viral hepatitis C[33] and B[34] and hepatocellular 
carcinoma[35]. Interestingly, the rs738409 located in PNPLA3 
reached the most significant p value for association with liver 
enzyme levels (1.2 × 10-45) in the larger GWAS performed 
in Caucasians[36]. As expected, most of  the associated 
variants with liver enzyme levels are either intergenic or 
intronic single nucleotide polymorphisms (SNPs), and the 
loci or nearest gene in which they are located has either an 
unknown function or a biological role not known to be 
associated with liver enzymes. Moreover, with the exception 
of  the rs738409[37-39], there is presently no evidence 
supporting a putative pathogenic, damaging or deleterious 
effect of  the discovered variants, either on the protein 
function or in the regulation of  the related gene.

A detailed overview of  the associated variants with 
aminotransaminase levels, their main features, and the 
biological role of  the gene where are they located is 
shown in Table 4.

Ref. Number of participants/
study design

GWAS strategy (genotyping) Number of variants Phenotype Identified locus

Chambers et al[36] n = 61089 Affymetrix, Illumina and 
perlegen sciences arrays

About 2.6 million directly 
genotyped or imputed 

autosomal SNPs

Plasma levels 
of ALT

HSD17B13, MAPK10, TRIB1, 
CPN1, PNPLA3, SAMM50Population-based

Adults
Yuan et al[74] Initial study n = 7715 Affymetrix - Plasma levels 

of ALT
CHUK, PNPLA3, SAMM50, 

CPN1Replication n = 704
Population-based

Adults
Park et al[75] n = 532 Illumina HumanOmni1-Quad 

BeadChip
747076 SNPs Plasma levels 

of ALT
ST6GALNAC3, MMADHC, 
CCDC102B, RGS5, BRD7, 
GALNT13, SIRPA, CD93, 

SLC39A11, ADAMTS9, CELF2
Population-based 

Children
Plasma levels 

of AST
CYB5APS, CELF2, GOT1, 

ST6GALNAC3, ADAMTS9, 
THSD7B, EIF4A1P1, ROBO1, 

THSD7B
Shen et al[76] n = 866 Affymetrix GeneChip Human 

Mapping 500 K Array set 
500568 SNPs Plasma levels 

of AST
GOT1

Population-based
adults

GWAS: Genome-wide association studies; SNPs: Single nucleotide polymorphisms; ALT: Alanine-aminotransferase; AST: Aspartate-aminotransferase.
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Table 4  Summary of the variants associated with alanine-aminotransferase and aspartate-aminotransferase levels in population-based 
genome-wide association studies: Biological function and variants characteristics
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Variant ID Variant features Significant P  
value for GWAS 

association

Gene or 
nearest gene

Reported biological function of the associated locus

ALT
   rs6834314 Intergenic   3.1 × 10-9 HSD17B13/

MAPK10
Oxidoreductase involved in the metabolism of steroid hormones, prostaglandins, 

retinoids, lipids and xenobiotics
A member of the MAP kinase family

   rs2954021 Intron variant   5.3 × 10-9 TRIB1 Involved in protein amino acid phosphorylation and controlling mitogen-activated 
protein kinase cascades. Potent negative regulator of MAPK pathways influencing 

apoptosis. Regulates hepatic lipogenesis and very low density lipoprotein production
   rs10883437 Intergenic   4.0 × 10-9 CPN1 A plasma metallo-protease that cleaves basic amino acids from the C terminal of 

peptides and proteins   rs11597390 intergenic   2.9 × 10-8

   rs738409 Missense    1.2 × 10-45 PNPLA3 Acylglycerol O-acyltransferase and triacylglycerol lipase that mediates triacylglycerol 
hydrolysisp.Ile148Met

   rs2281135 Intron variant    8.2 × 10-12

   rs3761472 Missense    3.7 × 10-29 SAMM50 Component of the sorting and assembly machinery (SAM) of the mitochondrial outer 
membranep.Asp110Gly

   rs2143571 Intron variant   9.4 × 10-7

   rs11597086 Non coding 
exon variant

  3.6 × 10-7 CHUK Member of the serine/threonine protein kinase family; a component of a cytokine-
activated protein complex that is an inhibitor of the essential transcription factor NF-

kappa-B complex
   rs11591741 Intron variant   4.5 × 10-7

   rs4949718 Intron variant 1.87 × 10-7 ST6GALNAC3 Transfer sialic acids from CMP-sialic acid to terminal positions of carbohydrate groups 
in glycoproteins and glycolipids

   rs17801127 Intergenic 2.37 × 10-7 MMADHC Mitochondrial protein that is involved in an early step of vitamin B12 metabolism
   rs1539893 Intron variant 3.40 × 10-6 CCDC102B

RGS5
Unknown

Member of the regulators of G protein signaling (RGS) family   rs12035879 Intron variant 3.97 × 10-6

   rs9941219 Intergenic 4.06 × 10-6 BRD7 Member of the bromodomain-containing protein family
   rs731660 Intergenic
   rs12621256 Intron variant 4.36 × 10-6 GALNT13 Member of the glycosyltransferase 2 family; catalyzes the initial reaction in 

oligosaccharide biosynthesis; neurons cell biogenesis
   rs6035126 Intergenic 4.94 × 10-6 SIRPA Receptor-type transmembrane glycoproteins involved in the negative regulation of 

receptor tyrosine kinase-coupled signaling processes   rs13433286 Intergenic
   rs844917 Intergenic 5.64 × 10-6 CD93 Cell-surface glycoprotein and type Ⅰ membrane protein
   rs844914 Intergenic 5.98 × 10-6

   rs903107 Intron variant 6.11 × 10-6 SLC39A11 Mediates zinc uptake
   rs80311637 Missense 

p.Val653Met
7.18 × 10-6 ADAMTS9 Disintegrin and metalloproteinase with thrombospondin motifs

   rs596406 Intron variant 9.18 × 10-6 CELF2 RNA-binding protein implicated in the regulation of several post-transcriptional events
AST
   rs11597390 Intergenic 0.0009 CHUK Explained previously
   rs2281135 Intron variant   5.7 × 10-6 PNPLA3 Explained previously
   rs862946 Intergenic 2.41 × 10-7 CYB5AP5 Pseudogene
   rs596406 Intron variant 3.69 × 10-7 CELF2 Explained previously
   rs76850691 Missense 

p.Gln349Glu
8.55 × 10-7 GOT1 Biosynthesis of L-glutamate from L-aspartate or L-cysteine

   rs17109512 Intergenic  2.80 × 10-14

   rs4949718 Intron variant 1.49 × 10-6 ST6GALNAC3 Explained previously
   rs80311637 Missense 

p.Val1597Met
1.85 × 10-6 ADAMTS9 Explained previously

   rs892877 Intron variant 3.75 × 10-6 THSD7B Unknown
   rs984295 Intron variant 5.86 × 10-6

   rs457603 Intergenic 4.57 × 10-6 EIF4A1P1 Pseudogene
   rs452621 Intergenic
   rs7617400 Intron variant 6.16 × 10-6 ROBO1 Neuronal development
   rs11924965 Intron variant
   rs7644918 Intron variant

HSD17B13: hydroxysteroid (17-beta) dehydrogenase 13; MAPK10: Mitogen-activated protein kinase 10; TRIB1: tribbles pseudokinase 1; CPN1: 
carboxypeptidase N, polypeptide 1; PNPLA3: patatin-like phospholipase domain containing 3; SAMM50: sorting and assembly machinery component; 
CHUK: conserved helix-loop-helix ubiquitous kinase; ST6GALNAC3: ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide 
alpha-2,6-sialyltransferase 3; MMADHC: methylmalonic aciduria (cobalamin deficiency) cblD type, with homocystinuria; CCDC102B: Coiled-Coil Domain 
Containing 102B; RGS5: regulator of G-protein signaling 5; BRD7: bromodomain containing 7; GALNT13: polypeptide N-acetylgalactosaminyltransferase 
13; SIRPA: signal-regulatory protein alpha; CD93: CD93 molecule; SLC39A11: solute carrier family 39, member 11; ADAMTS9: ADAM metallopeptidase 
with thrombospondin type 1 motif, 9; CYB5AP5: cytochrome b5 type A (microsomal) pseudogene 5; CELF2: CUGBP, Elav-like family member 2; GOT1: 
glutamic-oxaloacetic transaminase 1, soluble; THSD7B: thrombospondin, type Ⅰ, domain containing 7B; EIF4A1P1: eukaryotic translation initiation 
factor 4A1 pseudogene 1; ROBO1: roundabout, axon guidance receptor, homolog 1. Biological function was extracted from Gene Atlas (http://genatlas.
medecine.univ-paris5.fr).
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SYSTEMS BIOLOGY APPROACHES TO 
EXPLORING A PUTATIVE CONNECTION 
BETWEEN THE SIGNIFICANTLY 
ASSOCIATED LOCUS WITH LIVER 
TRANSAMINASES
To understand a putative biological connection between 
the significantly associated locus with levels of  liver 
transaminases, we used a strategy for exploring biomolecular 
interactions, based on the Cognoscente program, freely 
available at http://vanburenlab.tamhsc.edu/cognoscente.
html. The interaction network image is shown in Figure 2, 
and comprises 828 nodes with different levels of  complexity. 
Hypernodes, such as the ones centered on CHUK and 
GOT1, and nodes-such as the ones centered on SAMM50, 
MAPK10, CD93, CELF2 and BRD7-are highlighted in 
Figure 2. The results of  the prediction of  biomolecular 
interactions revealed some attractive findings that deserve 
further exploration in future experimental or functional 

studies. For example, GOT1 was predicted to have a 
significant number of  gene-gene interactions, including 
IDH1 (isocitrate dehydrogenase 1 (NADP+), soluble) 
that catalyzes the oxidative decarboxylation of  isocitrate 
to 2-oxoglutarate, SCD1 (stearoyl-CoA desaturase) 
involved in fatty acid biosynthesis, which we and others 
found deregulated in fatty liver[40,41], GDH2 (glutamate 
dehydrogenase 2) that catalyzes the reversible oxidative 
deamination of  glutamate to 2-ketoglutarate, and CHD1 
(chromodomain helicase DNA binding protein 1), an ATP-
dependent chromatin-remodeling factor that functions 
as substrate recognition component of  the transcription 
regulatory histone acetylation (HAT) complex SAGA, 
(Figure 3A, arrow).

Likewise, remarkable gene-gene interactions were noted 
for CHUK and PPARGC1β (peroxisome proliferator-
activated receptor gamma, coactivator 1 beta), whereby the 
last one is involved in fat oxidation, non-oxidative glucose 
metabolism, and the regulation of  energy expenditure 
(Figure 3B, arrow). Gene-protein interactions between 
CHUK and CCND1 (cyclin D1), a highly conserved 
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CD93  node

MAPK10  node

CELF2  node

SAMM50  node

BRD7  node

GOT1 hypernode

CHUK hypernode

Figure 2  Visualization of biomolecular interactions among associated loci with serum levels of alanine-aminotransferase and aspartate-aminotransferase 
in published genome-wide association studies. Prediction was based on the Cognoscente program, freely available at the web-based submission portal: http://
vanburenlab.tamhsc.edu/cognoscente.html. The interaction network image shows 828 nodes with different levels of complexity; black arrows indicate the major 
nodes. Additional interconnectivity nodes of importance (highlighted in black dashed arrows) are SAMM50, CD93 (highly connected with CHUK), MAPK10, CELF2 
and BRD7. Prediction by Cognoscente supports multiple organisms in the same query, as well as gene-gene, gene-protein, protein-RNA and protein-DNA interactions, 
and multi-molecule queries[77]. The input list was based on the gene list presented in Table 4, while the graph depicts known interactions the query list members.
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member of  the cyclin family (Figure 3B, arrow), and 
BIRC3 (baculoviral IAP repeat containing 3) (Figure 
3B, inset), a gene activated by hypoxia we previously 
found associated with NAFLD in a human study[42], 
were predicted. PNPLA3 showed a connection with 
the CHUK hypernode (Figure 3B, inset) by a putative 
protein-protein interaction with AKT2 (v-akt murine 
thymoma viral oncogene homolog 2), which regulates 
many processes, including metabolism, proliferation, cell 
survival, growth and angiogenesis.

Systems Biology modeling also predicted presence of  
gene-gene biomolecular interaction between SAMM50 
and let-756 (Figure 3C, arrow), whereby the latter is 
involved in fibroblast growth factor receptor signaling 
pathway in Caenorhabditis elegans. In addition, a 
protein-RNA prediction between SAMM50 and PUF3 
was found (Figure 3C, arrow); PUF proteins bind to 
related sequence motifs in the 3’ untranslated region of  
specific target mRNAs and repress their translation[43].

GWAS coupled with metabolomics 
analysis: understanding the 
genetic contributions to 
metabolic diversity
The use of  GWAS studies, coupled with large scale 

metabolomics analysis, is a powerful strategy that can 
assist in better understanding genetic contributions to 
metabolic diversity and its importance in the biological 
context. For instance, Geiger and colleagues performed 
a GWAS with metabolomics based on the quantitative 
measurement of  363 metabolites in serum, and found 
that common variants might explain up to 12% of  
the observed variance in metabolite concentration[44]. 
Examples of  GWAS relevance are the discovery of  SNPs 
in GLS2 (glutamine synthase 2) associated with glutamine 
levels, such as the rs2638315[45]. Furthermore, a recently 
reported large GWAS coupled with high-throughput 
metabolomics demonstrated the role of  genetic loci in 
influencing human metabolism, including liver enzymes[46]. 
Shin et al[46] explored genome-wide associations at 145 
metabolic loci and their biochemical connectivity with 
more than 400 metabolites in human blood and found 
that a variant in GOT2, the rs12709013, was associated 
with the phenyllactate/phenylalanine ratio. In addition, 
the GOT2-rs4784054 was associated with phenyllactate 
levels[46]. Interestingly, the rs12709013 and the rs4784054, 
located in chromosome 16, at positions 58795886 and 
58742410, respectively (both in the forward strand), are 
intronic variants that reside in a genomic region encoding 
a noncoding RNA (ncRNA) transcript (Gene: RNU6-
1155P ENSG00000200424). Genetic regulation of  these 
metabolites may indicate that GOT2 would be not only 
involved in the maintenance of  the equilibrium of  amino 
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Magnification of GOT1  hypernode

Magnification of 
GHUK  hypernode

Magnification of SAMM50 node
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B

C

Figure 3  Biomolecular interactions focused on hypernodes (GOT1 and CHUK) and nodes (SAMM50) predicted by the visualization tool for systems 
biology Cognoscente. Cognoscente currently contains over 413000 documented interactions, with coverage across multiple species, including Homo sapiens, 
Saccharomyces cerevisiae, Drosophila melanogaster, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus, and Caenorhabditis elegans, among 
others[74]. Colors under the hypernode/node gene name denote different species; for example, light blue corresponds to homo sapiens, blue to saccharomyces 
cerevisiae S288c and violet to schizosaccharomyces pombe; light green is arabidopsis thaliana, orange is Drosophila melanogaster, red is Gallus gallus, gray is rattus 
norvegicus and pale gray is caenorhabditis elegans. Arrows highlight biomolecular interactions discussed in the body of the manuscript.
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acid levels in circulation, including the regulation of  the 
glucose-alanine cycle, but also in the control of  energy 
balance. Figure 4 depicts additional variants in GOT2 with 
genome-wide significant associations with metabolites 
of  the amino acid and lipid metabolism. Surprisingly, 
these findings indicate that the metabolites associated 
with GOT2 locus surpass the current knowledge of  
classical GOT2 protein function. They thus offer novel 
biochemical and functional insights into poorly explored 
roles of  GOT2, such as fatty acid and glycerolipid 
metabolism. For instance, a significant association 
between the intronic GOT2-rs10500407 and arachidonate 
(20:4n6)/glycerol ratio was recently reported[46] (Figure 
4), suggesting that GOT2 participates in the arachidonate 
and docosahexaenoic acid (DHA)-related metabolic 
pathways. Likewise, variants located in GOT1 (rs11867, 
p value < 0.0008 and rs10748775, p value < 0.001) were 
associated with N-(2-h) glycine and glycerol 2-phosphate, 
respectively.

Overall, these observations are in line with the functional 
data from comparative genomics, indicating that the domain 
and molecular function of  aminotransferases, including 
GOT2, are highly conserved among species, thus suggesting 
an important role in metabolic functioning. For instance, the 
orthologue of  GOT2 in drosophila melanogaster, known 
as Dmel/Got2, is involved in glutamate[47] and aspartate 
metabolic process[48]. Moreover, tissue localization yielded 
evidence, indicating that Dmel\Got2 is expressed in 
embryonic larval fat body and midgut[49], and in adult 
heart[50]. Furthermore, subcellular localization showed 
evidence of  Dmel\Got2 localized to lipid particles[51] 
and mitochondria[52]. Notably, drosophila lipid droplets 
are ubiquitous organelles, which play a central role in 
cholesterol homeostasis and lipid metabolism. Taken 
together, these observations suggest that metabolism 

regulation is the “ancestral” GOT2 protein function. A 
representative figure of  GOT2 gene phylogenetic tree is 
depicted in Figure 5, where, supporting the aforementioned 
concept, the high conservation of  the aminotransferase Ⅰ 
and Ⅱ domains among species, including fruit fly, is 
clearly visible.

On the other hand, variants located in GPT1 were 
associated with epiandrosterone sulfate and androsterone 
sulfate (rs1063739, p value < 0.0002 and 0.0007, 
respectively), and variants located in GPT2 were associated 
with 3-phenylpropionate (hydrocinnamate) (rs734309, 
p value < 0.00001) and the ratio between biliverdin and 
glycoursodeoxycholate (rs754043, p value < 1 × 10-7).

Finally, metabolite associations with PNPLA3-rs738409 
are summarized in Table 5. Notably, while no significant 
associations were found for the rs738409 and human 
metabolites, some other SNPs in disequilibrium with 
this variant reached GWAS significance with metabolite 
ratios of  interest, for example cholesterol/gamma-
glutamyltyrosine, docosapentaenoate (n3 DPA; 22:5n3)/
eicosapentaenoate (EPA; 20:5n3), and aspartylphenylalanine/
docosapentaenoate (n3 DPA; 22:5n3) (Table 5). Remarkably, 
eicosapentaenoic acid (EPA) is an important polyunsaturated 
fatty acid that serves as a precursor for the prostaglandin-3 
and thromboxane-3 families. In our previous works, putative 
disease-related mechanisms associated with PNPLA3 
severity in NASH and its relationship with prostaglandins 
were postulated[53,54]. Furthermore, aspartylphenylalanine 
results from an incomplete breakdown of  protein digestion 
products, or protein catabolism, and might have a 
physiological involvement in cell-signaling. Recently, we 
described a novel role of  PNPLA3, beyond its classical 
participation in triacylglycerol remodeling that involves 
amino acid metabolism[55]. Furthermore, the importance 
of  amino acid metabolism in the pathogenesis of  
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Figure 4  GOT2: Trait associations from the genome-wide association studies Catalog. Significant associations were extracted from the Metabolomics genome-
wide association studies Server, freely available at http://metabolomics.helmholtz-muenchen.de/gwas/index.php. This site contains the association results of two 
genome-wide association studies on the human metabolome[46,78]. GWAS: Genome-wide association studies.
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NAFLD was recently highlighted[56,57]. Finally, a significant 
association was found between the intronic PNPLA3-
rs2281135 and the glycocholate (glycocholic acid) to 
levulinate (4-oxovalerate) ratio. The secondary bile 
glycocholic acid is a bile acid-glycine conjugate produced 
by the action of  enzymes existing in the microbial flora of  
the colonic environment. Metabolomic data on PNPLA3 
also indicated that this gene plays an important role in bile 
acid metabolism[55].

A comprehensive summary of  SNPs and their role in 
the regulation of  metabolites can be found at the freely 
available web resource “Metabolomics GWAS server” 
(http://metabolomics.helmholtz-muenchen.de/)[46].

CONCLUSION
The reaction of  transamination from glutamine to 
alpha-keto acids was first described in 1950[4]. Since 
then, clinicians have been using serum measurement of  
ALT and AST for the evaluation of  liver injury. Nearly 
50 years later, the rise in the worldwide prevalence of  
obesity, type 2 diabetes and CVD brought into the 
clinical scenario a new concept, associating increased 
levels of  liver enzymes with long-term development 
of  multiple metabolic and CV disorders. In addition, 
GWAS coupled with metabolomics uncovered key roles 
of  transaminases in the global metabolism. In particular, 
“omics” studies have led to interesting insights into the 

biology of  liver metabolic function and its relationship 
with liver transaminases.

Of  note, background knowledge on liver enzymes 
functioning indicates that liver concentrations of  ALT 
and AST are not significantly higher relative to the pool 
of  major liver enzymes[58]. In contrast, liver concentrations 
of  LDH (lactate dehydrogenease) and MD (malate 
dehydrogenase), for instance, rank first and second, 
respectively. At 50% of  their concentrations, AST and ALT 
respectively take the third and fourth place (Figure 6)[58].

Wieme et al[58] made an interesting observation about 
the relationship between liver and plasma concentration of  
enzymes, reporting that the localization of  the enzymes at 
the cellular level very much conditions the concentration 
in the circulation. The authors further showed that mild 
cell damage tends to release the enzymes in the soluble 
fraction only, while severe necrotic lesions, which also 
affect the mitochondria, release enzymes from both 
fractions[58]. Hence, it is plausible to suggest that enzymes 
that are present in high concentrations in the liver tissue, 
such as LDH, might better and more accurately reflect 
liver injury. Nevertheless, LDH levels are not commonly 
used in clinical practice for the diagnosis or monitoring of  
acute or chronic liver damage. Indeed, serum LDH was 
reported to be markedly elevated in ischemic, but not viral 
hepatitis[59,60], indicating that severe cell necrosis is needed 
for the leaking of  the liver-LDH content into the blood to 
occur.
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Figure 5  Conservation analysis of GOT2 between species. Cladogram shows the relationships between GOT2 genes in different species; for simplicity reasons 
species were restricted to few models. An alignment of all homologous sequences (protein domain) in the TreeFam family is represented in pink, displayed on the 
left side of the graph. Numbers below branches are bootstrap values, whereby 100% indicates strong support for these nodes, whereas other nodes receive much 
weaker support (e.g., 0%). Arrows highlight aminotransferase class Ⅰ and Ⅱ domain in human and fruit fly (aa: amino acid). TreeFam gene was created by using the 
resource TreeFam, freely available at http://www.treefam.org/family.
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Table 5  PNPLA3-rs738409 metabolite trait associations from the genome-wide association studies catalog

A second factor in determining the rise of  liver 
enzymes in the circulation seems to be its biological half-
life as, according to the observation of  Wieme et al[58], 
the longer the half-life the greater the accumulation of  
the enzymes in the serum (Figure 6 depicts the half-
life of  liver enzymes in serum). Based on the above, 
the findings reported by Wieme et al[58] may explain why 
ALT, which seems to have a half-life of  50 h, is more 
likely to be found elevated in serum than the LDH 
isoform 5, which is normally present in the liver and has 
a very short half-life of  10 h.

Taken together, the observations made in the GWAS 
studies, coupled with metabolomics, in conjunction 
with past knowledge on the traditional biochemistry 
explorations (presently referred to as “quantitative biology”), 
are of  particular significance in providing a plausible 
biological explanation to the meaning of  elevated ALT 
and AST levels in the clinical setting. Indeed, these 
findings suggest that restricting the biological role of  
elevated aminotransferase levels to liver injury has not 
only been a misinterpretation but an underestimation 
of  the biological role of  these enzymes. Interestingly, 
in vitro studies showed that even ethanol might increase 

transaminases, mitochondrial AST in particular, by up-
regulating gene expression, rather than by inducing its 
release owing to cell injury[61].

Data from the Third National Health and Nutrition 
Examination Survey, the largest epidemiological study 
in the United States, showed that the prevalence of  
aminotransferase elevation in the general population is 
about 9%[22]. Notably, unexplained enzyme elevations 
were associated with adiposity and other features 
of  the metabolic syndrome[22,62]. On the other hand, 
presence of  a considerable inter-individual variation in 
the level of  transaminases is widely acknowledged, and 
this variability is explained in part by genetic variation. 
Links between aminotransferase genes and metabolites 
demonstrated important contributions to the metabolic 
diversity. In fact, evidence from high-throughput 
studies of  genetic influences on human metabolites 
demonstrated that aminotransferases ALT and AST are 
not solely involved in gluconeogenesis and amino acid 
synthesis, but also regulate other functions of  the liver 
metabolism, such as fatty acid, glycerolipid and bile acids 
metabolism. In addition, an interesting study highlighted 
a putative relationship between iron stores, ALT activity 
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Variant ID LD with rs738409 Metabolite ratio P  value for association

rs12483959 0.657 Cholesterol/gamma-glutamyltyrosine 7.76 × 10-6

rs2076211 0.657 Cholesterol/gamma-glutamyltyrosine 1.19 × 10-5

rs2076211 0.657 Aspartylphenylalanine/docosapentaenoate (n3 DPA; 22:5n3) 5.26 × 10-6

rs2294922 0.657 Docosapentaenoate (n3 DPA; 22:5n3)/eicosapentaenoate (EPA; 20:5n3) 4.64 × 10-7

rs2073081 0.568 3-methoxytyrosine/gamma-glutamylthreonine 2.14 × 10-5

rs2281135 0.609 Glycocholate/levulinate (4-oxovalerate) 3.26 × 10-5

rs1010023 0.609 Docosapentaenoate (n3 DPA; 22:5n3)/phenylacetylglutamine 1.43 × 10-5

rs926633 0.609 Docosapentaenoate (n3 DPA; 22:5n3)/myristate (14:0) 1.08 × 10-5

rs2896019 0.607 Aspartylphenylalanine/docosapentaenoate (n3 DPA; 22:5n3) 1.31 × 10-5

Information was retrieved from the GWAS server at the freely accessible URL: http://metabolomics.helmholtz-muenchen.de. This server combines data 
on large GWAS and non-targeted and metabolome-wide panel of small molecules, using blood samples and phenotype data from 2824 individuals of two 
major population-based European cohorts: the German KORA study and the British TWINs UK study. LD: Linkage disequilibrium that refers to a non-
random association in the occurrence of alleles at two loci was assessed by R2 (the square of the correlation coefficient between the presence or absence 
of a particular allele at the first locus and the other representing the presence or absence of a particular allele at the second locus). GWAS: Genome-wide 
association studies.
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Figure 6  Liver enzyme concentrations in normal human liver. Information of the liver concentration of major liver enzymes was extracted from the report published 
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and the risk of  metabolic disturbances in adolescents 
that deserves further follow-up[63].

Finally, the role of  the newly described TM6SF2 
rs58542926 nonsynonymous variant in genetic susceptibility 
to NAFLD and disease severity[64] deserves follow-up as 
this variant was associated in population-based studies but 
not in NAFLD patients with levels of  transaminases in 
circulation[65].

In conclusion, genomic, transcriptomic, proteomic, 
and metabolomic information has changed the classical 
conception of  the meaning that serum concentrations 
of  ALT and ALT are merely indicators of  hepatocyte 
membrane disruption. It has given way to a more 
complex and interconnected view of  the importance 
of  liver transaminases in the regulation of  systemic 
metabolic function.
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