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Abstract
AIM: To identify the genes induced and regulated by the MYC protein in generating tumors from liver stem cells.

METHODS: In this study, we have used an immortal porcine liver stem cell line PICM-19, to study the role of c-MYC in hepatocarcinogenesis. PICM-19 cells were converted into cancer cells (PICM-19-CSCs) by overexpressing human MYC. To identify MYC-driven differential gene expression, transcriptome sequencing was carried out by RNA sequencing (RNA-seq), and genes identified by this method were validated using real-time PCR. In vivo tumorigenicity studies were then conducted by injecting PICM-19-CSCs into the flanks of immunodeficient mice.

RESULTS: Our results showed that MYC-overexpressing PICM-19 stem cells formed tumors in immunodeficient mice demonstrating that a single oncogene was sufficient to convert them into cancer cells (PICM-19-CSCs). By using comparative bioinformatics analyses, we have determined that > 1000 genes were differentially expressed between PICM-19 and PICM-19-CSCs. Gene ontology analysis further showed that the MYC-induced, altered gene expression was primarily associated with various cellular processes, such as metabolism, cell adhesion, growth and proliferation, cell cycle, inflammation and tumorigenesis. Interestingly, six genes expressed by PICM-19 cells (CDO1, C22orf39, DKK2, ENPEP, GPX6, SRPX2) were completely silenced after MYC-induction in PICM-19-CSCs, suggesting that the absence of these genes may be critical for inducing tumorigenesis. 

CONCLUSION: MYC-driven genes may serve as promising candidates for the development of HCC therapeutics that would not have deleterious effects on other cell types in the liver.

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.
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Core tip: It is well-established that cancer stem cells not only drive tumor growth in the liver, in general, but also that the proto-oncogene c-MYC plays a critical role in that process. However, little is known about genes induced and regulated by MYC to generate tumors, and, in particular, those involved in liver stem cells. In this study, we examined the role of MYC protein in hepatocarcinogenesis using an immortal porcine liver stem cell line PICM-19. Interestingly, MYC-overexpression silenced the expression of six genes in PICM-19 cells (CDO1, C22orf39, DKK2, ENPEP, GPX6, SRPX2), suggesting that they may be critical in inducing tumorigenesis.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the most common form of liver cancer, and is the third leading cause of cancer-related deaths worldwide[1]. It occurs as a consequence of exposure to a variety of risk factors, and appears primarily in liver disease patients with underlying cirrhosis[2]. While surgical resection and whole liver transplantation are the most effective treatment options currently available for the treatment of HCC, recurrence is quite common in patients who have had a resection, and the 5-year survival rate post-surgery is < 50%[3].
	Hepatocarcinogenesis is a multistep process involving a number of cellular and molecular factors. Among these, the proto-oncogene c-MYC (herein, referred to as MYC) has been shown to be a critical regulator of malignant transformation during the early stages of liver cancer[4]. Dysregulation of MYC expression correlates with poor prognosis in human cancers, including HCC[5]. Its overexpression, and subsequent induction of its target genes, causes the malignant conversion of preneoplastic liver lesions[4]. Conversely, silencing of MYC results in the inhibition of migration, invasion and proliferation of human liver cancer cells[6]. Therefore, the study of MYC-expressing liver stem cells could be highly relevant to our understanding of the pathogenesis in human HCC. Due to the involvement of the MYC oncoprotein in angiogenesis and various cellular processes such as cell cycle regulation, differentiation, growth, metabolism, adhesion and motility, MYC, and its downstream target genes have become an attractive therapeutic aims of cancer research[7].
It is now apparent that the capacity to sustain tumor growth resides in a small population of stem cells [termed “cancer stem cells” (CSCs)] present in most cancers, including HCC[8-10]. CSCs possess greater colony-forming efficiency, higher proliferation potential, and the necessary phenotype of “stemness” to form tumors in animals[5]. To support this, CD133-expressing progenitor cells were shown to drive the recurrence of liver cancer following chemotherapy, suggesting that CSCs are resistant to treatment[11]. A possible mechanism for the enhanced survival of CSCs in tumors is the activation of the Akt (also known as protein kinase B) and B-cell lymphoma 2 (Bcl-2) signaling pathways[11]. Therefore, a critical step towards developing effective cancer treatments is to understand cellular, molecular and biochemical differences between normal stem cells and CSCs.
To decipher the role of MYC and MYC-targeted genes in HCC, we have developed a liver cell model of MYC oncogene transformation based on the overexpression of MYC in a porcine liver stem cell line, PICM-19[12]. The PICM-19 cell line originated from the spontaneous differentiation of cultured pig epiblast tissue and was, therefore, derived from pig embryonic stem cells[13]. The cell line is unique in its ability to differentiate into either of the two cell types that comprise the parenchyma of the developing liver, i.e., fetal hepatocytes or bile duct epithelium, and grows indefinitely without change in stem cell character. In this study, we have MYC-transformed the PICM-19 cell line into CSCs, and studied their transcriptome profiles by RNA sequencing (RNA-seq). We determined that MYC induced the expression of a large number of genes with diverse cellular processes in PICM-19 cells, most of which were not previously implicated in HCC. Our data identified novel therapeutic targets while underscoring that importance of MYC in tumor generation in primary liver stem cells.

MATERIALS AND METHODS
Cell culture
The PICM-19 porcine liver stem cell line was established from a pig embryo’s inner cell mass, i.e., embryonic stem cells, and was cultured as described previously[12,13]. Briefly, cells were grown in 10% DMEM/199 medium and plated as feeder-free cultures using Matrigel (BD Biosciences, San Jose, CA). This growth medium is a 50:50 mixture of DMEM low glucose (Invitrogen, Carlsbad, CA) and Medium 199 (Invitrogen) supplemented with 10% fetal bovine serum (FBS), 2-mercaptoethanol and nucleosides. In subsequent steps, cells were fed daily with conditioned medium obtained from the γ-irradiated STO feeder cells, a mouse embryonic fibroblast cell line (Cat. #CRL-1503, ATCC, Rockville, MD). PICM-19-CSCs, generated by transfecting the PICM-19 cell line (see below), were also maintained under these growth conditions. All cells were maintained at 37 °C in a 5% CO2 humidified incubator.

Plasmids 
The expression vector pUNO1-hMYC was generated by cloning the human c-MYC ORF into the multiple cloning site of the plasmid pUNO1-mcs (InvivoGen, San Diego, CA) downstream of a strong elongation factor (EF)-1α/human T-lymphotropic virus (HTLV) hybrid promoter active in most cell types. pUNO1-mcs contains the blasticidin resistance gene driven by a cytomegalovirus (CMV) promoter and enhancer in tandem with the bacterial EM7 promoter. This allows the amplification of the plasmid, and, after transfection into mammalian cells, the blasticidin selection of stable transfectants. Another plasmid, pUNO1-MYC-IRES-Luc was also constructed by cloning the firefly luciferase ORF downstream of MYC open reading frame (ORF) separated by an internal ribosome entry site (IRES) sequence to maintain expression of both MYC and luciferase (luc) genes under the control of the hybrid promoter in this plasmid. Large scale preparations of both vectors were prepared by transforming them into competent cells of Escherichia coli strain DH5α, and by extracting them using the Qiagen Plasmid Maxi kit (Qiagen, Valencia, CA). 

Luciferase assay
PICM-19 cells were successfully transfected with the pUNO1-MYC-IRES-Luc plasmid using the mouse macrophage nucleofection kit (Amaxa Biosystems, Gaithersburg, MD) and the program A-13 on the nucleofector I device (Amaxa). Following nucleofection, cells were plated in 12-well plates and incubated overnight at 37 °C. Growth medium was then replaced with the fresh medium containing 5 µg/mL blasticidin (InvivoGen) to select for positive transfectants. Individual colonies that formed were further grown, and assessed for MYC expression using reverse transcription polymerase chain reaction (RT-PCR) (data not shown). The clone that showed the highest MYC expression was then used in further experiments mentioned below. Next, cells of this clone were plated in 6-well plates, and 24 h post-plating they were resuspended in fresh medium and were treated with the Bright-Glo luciferase assay substrate (Promega, Madison, WI) to measure luciferase activity using the IVIS® Imaging System (Xenogen Corporation, Alameda, CA).

Western blotting
Western blot analysis of cellular proteins extracted from PICM-19 and PICM-19-CSCs was performed using mouse anti-human c-MYC antibody (Cat. #sc-40, Santa Cruz Biotechnology, Inc., Santa Cruz, CA). Ten μg of total protein from these cells was loaded onto a 10% denaturing SDS-PAGE gel. Following separation, proteins were transferred to a nitrocellulose filter and treated with blocking solution containing 5% milk powder. Primary antibody at a concentration of 1:500 was then added to the filter and incubated for 2 h in a rotating chamber at 4 °C. After several washes in buffer, the secondary anti-mouse IgG antibody (Santa Cruz Biotechnology) was added at a concentration of 1:1000 and the filter incubated for 2 h at RT. The blot was washed and probed with ECL solution to visualize protein bands (Thermo Fischer Scientific, Rockford, IL).

Tumorigenicity assay 
Five-week old NOD/SCID mice were purchased from Charles River Breeding Laboratories (Wilmington, MA). Freshly cultured PICM-19 and PICM-19-CSCs were treated with trypsin to detach and harvest them in PBS. After washing twice in PBS, 1 x 106 cells were resuspended in 100 µL PBS, and were injected into the flanks of the immunodeficient mice (n = 3). This study was approved by the University of Minnesota’s Institutional Animal Care and Use Committee. Animals were observed on a daily basis for signs of declining health and lethargy. Tumor formation was monitored twice weekly by measuring the width and length of tumors. Animals with tumors that grew to a diameter of 1.5 cm, as measured by calipers, were sacrificed. To alleviate pain and stress in animals, carbon dioxide will be administered in the fume hood prior to euthanasia. Tumors were then harvested and immediately fixed in 10% formalin for 24 h. These tissue samples were cut in 5 µm-thick sections on a microtome. Sections were deparaffinized with xylene, rehydrated in three five-minute steps with 100% ethanol, 90% ethanol, and 70% ethanol, and stained with hematoxylin and eosin (HE) for 1 h. Slides were rinsed with RNase-free water and mounted under glass coverslips with Clarion mounting medium (Santa Cruz Biotechnology). They were observed using a Nikon DXM1200C microscope.

RNA isolation and library preparation
Total cellular RNAs were isolated from PICM-19 and PICM-19-CSCs using the RNeasy Mini kit (Qiagen). They were quantified using a fluorimetric RiboGreen assay. Total RNA integrity was assessed by capillary electrophoresis using BioAnalyzer 2100 (Agilent Technologies, Santa Clara, CA, United States). For samples to pass the initial quality control (QC) step, it was necessary to quantify > 1 µg and to have a RNA Integrity Number (RIN) of ≥ 8. They were then converted to Illumina sequencing libraries using the Truseq RNA Sample Preparation Kit (Cat. # RS-122-2001, Illumina, San Diego, CA). For amplification and library preparation, 1µg of total RNA was purified using oligo-dT coated magnetic beads, fragmented and reverse transcribed into cDNA. The cDNA was fragmented, blunt-ended, and ligated to indexed (barcoded) adaptors and amplified using 15 cycles of PCR. Final library size distribution was validated using capillary electrophoresis and quantified using fluorimetry (PicoGreen) and by Q-PCR. Indexed libraries were normalized, pooled and size selected to 320bp +/- 5% using Caliper’s XT instrument.

Cluster generation and sequencing
Truseq libraries were hybridized to a paired-end flow cell and individual fragments were clonally amplified by bridge amplification on the Illumina cBot. Once clustering was complete, the flow cell was loaded onto the Illumina HiSeq 2000 sequencer and sequenced using Illumina’s SBS chemistry. Upon completion of read 1, a 7 base pair index read was performed. Finally, the library fragments were resynthesized in the reverse direction and sequenced from the opposite end of the read 1 fragment thus producing the template for paired end read 2.

Primary analysis and de-multiplexing
Base call (.bcl) files for each cycle of sequencing were generated by Illumina Real Time Analysis (RTA) software. The base call files and run folders were then exported to servers maintained at the Minnesota Supercomputing Institute, where primary analysis and de-multiplexing were performed using Illumina’s CASAVA software 1.8.2. De-multiplexed FASTQ files generated by the CASAVA workflow were analyzed by the mapping and aligning software as described below. 

Read mapping and RNA sequencing analysis
Raw paired-end RNA-seq reads in FASTQ format were assessed for base call quality, cycle uniformity and contamination using FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/). The QC-filtered paired-end reads were mapped to pig genome (UCSC susScr3 assembly) via Tophat 2[14] using the UCSC pig annotation in GTF format. Resulting Binary Alignment and Mapping (BAM) files were then visualized using the Integrative Genomics Viewer (IGV)[15] to ensure reasonable behavior of expected control invariant genes (e.g., GAPDH), and to confirm expected behavior of positive control genes (e.g., MYC). BAM files were subsequently analyzed via Cuffdiff (default parameters using the iGenomes GTF file as shown previously[16]) to quantify the expression level(s) of each known gene in units of FPKM (Fragment mapped per kilobase of genes per million mapped reads), and test for differential expression. A matrix of FPKM transcript abundance levels for each gene was extracted and downloaded into CummeRbund[17] to assess sample clustering using Multi-Dimensional Scaling (MDS) and Principle Component Analysis (PCA), which revealed sample outliers. Differential gene sets were filtered to remove those with fold changes < 1.5 (up- or downregulated) and with a BH FDR-corrected P-value > 0.05. 

Real time PCR
The cDNA from PICM-19 and PICM-19-CSCs was synthesized with 1 µg of total RNA using SuperScript II reverse transcriptase (Invitrogen Life Technologies, Carlsbad, CA) and oligo dT6-12 primers (Sigma-Genosys, The Woodlands, TX). Quantitative real-time PCR was performed using the FullVelocity SYBR Green QPCR master mix (Stratagene, La Jolla, CA) following the manufacturer’s specifications. The 25 µL final reaction volume consisted of pre-made reaction mix (SYBR Green I dye, reaction buffer, Taq DNA polymerase, and dNTPs), 0.3 mM of each primer, and 0.5 ng cDNA in water. Reaction conditions for PCR for the Mx3000P QPCR System (Stratagene) were as follows: polymerase activation at 95 °C for 5 min, 40 denaturation cycles of 95 °C for 10 s, annealing at 60 °C for 10 s and elongation at 72 °C for 10 s. A melting curve was performed to assess primer specificity and product quality using the same conditions. The relative product levels were quantified using the 2(-∆∆CT) method[18]. Data are presented as relative induction of each porcine gene, normalized to β–actin, and are representative of three independent experiments. 

RESULTS
Expression of MYC protein in PICM-19 stem cells
We initially determined that PICM-19 cells can be transfected with an expression vector driven by the EF-1α/HTLV hybrid promoter. pUNO1-MYC-IRES-Luc was constructed by cloning the open reading frame (ORF) of firefly luciferase (luc) gene downstream of the MYC ORF separated by an IRES sequence. This vector also contains the blasticidin resistance gene as a selectable marker. The function of the genetic construct was tested by assaying the expression of luciferase in transfected cells. After transfection, feeder-independent PICM-19 cells were cultured (Figure 1A) and transfectants were selected using blasticidin. Individual clones were then screened for MYC expression, and the clone that had the highest MYC expression as detected by RT-PCR (data not shown) was assayed for luciferase activity in 24-well plates using D-luciferin as the substrate. Transfected PICM-19 cells expressed luciferase demonstrating that they took up and incorporated the plasmid DNA (Figure 1B). This finding also indicated that the stem cells were expressing the MYC ORF located upstream of luc ORF in the expression vector. This was confirmed by Western blotting assay using anti-human MYC antibody (Figure 1C).

Conversion of PICM-19 liver stem cells into cancer cells by MYC overexpression
We subcutaneously injected 1 x 106 cells into the back flanks of NOD-SCID mice to establish that MYC-overexpressing PICM-19 cells (PICM-19-CSCs) can generate tumors in mice. PICM-19-CSCs, but not the control PICM-19 stem cells, generated tumors in vivo (Figure 2). When the tumors reached 1.5 cm in diameter, animals were sacrificed and the tumors were sectioned to be analyzed by HE staining. The tumors were composed of a uniform mass of cells that were actively undergoing cell division. This experiment demonstrated the proof-of-principle that PICM-19-CSCs are capable of producing tumors in vivo.

Molecular characterization of PICM-19 and PICM-19-CSCs
To understand the differences between PICM-19 and PICM-19-CSCs at the molecular level, we examined the RNA-seq profiles of both these cell types, and found sets of genes that were expressed in each cell line (Tables 1 and 2). These genes were normalized to the expression of housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and were analyzed. Only a two-fold change or greater was considered significant. In this process, we identified a set of six genes that were expressed only in PICM-19 stem cells (Table 1). The expression of these six genes (CDO1, C22orf39, DKK2, ENPEP, GPX6 and SRPX2) was undetectable in PICM-19-CSCs, as a result of MYC protein overexpression. Their absence in PICM-19-CSCs suggested their potential use as therapeutic targets for liver cancers associated with MYC overexpression. Among these, CDO1 is a tumor suppressor[19], while Dickkopf-related protein 2 (DKK2) is an inhibitor of the Wnt signaling pathway[20]. Both these genes are epigenetically silenced in human cancers. While the overexpression of DKK2 led to an inhibition in renal cancer progression through apoptotic and cell cycle pathways[20], forced expression of cysteine dioxygenase type 1 (CDO1) decreased tumor cell growth of different tumor cell lines and in mice[19]. Lack of DDK2 expression in PICM-19-CSCs suggested that a putative epigenetic control mechanism to silence DKK2 also exists in MYC-induced liver cancer. 
In contrast, ectopic expression of MYC protein upregulated the expression of 237 genes in PICM-19-CSCs not found in the PICM-19 stem cell profile (Table 3). New genes upregulated by MYC included those involved in cell growth and proliferation, adhesion, migration, protein transport, cell cycle, metabolism, inflammation, and tumorigenesis underscoring the broad reach of MYC protein in regulating diverse cellular processes. However, genes coding RNAs involved in transcriptional and post-transcriptional regulatory mechanisms dominated the top 25 MYC-upregulated genes (Table 2), consistent with the active cell growth and proliferative nature of PICM-19-CSCs. 
The farnesoid X receptor (FXR), a member of the nuclear receptor superfamily, plays an important role in regulating the progression of several cancers including HCC, and miR-421, which was highly upregulated in PICM-19-CSCs, suppresses the expression of FXR to induce tumorigenesis and migration in HCC cells[21]. MiR-421 also regulates deleted in pancreatic cancer 4 (DPC4; also known as Smad4), a critical tumor suppressor shown to be involved in the progression of pancreatic cancer[22]. 
In addition to these regulatory RNAs, protocadherin-7 (PCDH7), tissue inhibitor of metalloproteinase 3 (TIMP-3) and vascular endothelial growth factor (VEGF) were highly expressed in PICM-19-CSCs compared to PICM-19 parental stem cells. The ratio between the matrix metalloproteinsases (MMPs) and their inhibitors (TIMPs) is an important factor in balancing tissue homeostasis. Recent studies have shown that TIMP family of proteins not only inhibit several disintegrin-metalloproteinases (ADAMs and ADAMTSs) but also have contrasting functions including anti- and pro-apoptotic[23]. The sequestration of TIMP-3 by binding to the ECM or through endocytosis may help to protect cells from apoptosis while still allowing it to control pericellular proteolysis via its potent inhibition of MMPs, ADAMs and ADAMTSs[23]. In PICM-19-CSCs, only TIMP-3 was upregulated (Table 2), and ADAM23 and ADAMTS2 were suppressed (Table 4).
	It has been well established that VEGF is highly produced in HCC, and the inhibition of VEGF results in the suppression of angiogenesis[24]. Moreover, miR-26a targets VEGF and HGF to cause this effect via the hepatocyte growth factor (HGF)-cMet pathway[24] as well as the phosphatidylinositol 3-kinase (PIK3C2α)/Akt/hypoxia-inducible factor (HIF)-1α pathway in HCC cells[25]. In our study, downregulation of miR-26a and upregulation of HIF-1α in PICM-19-CSCs demonstrates that MYC is also a player in this tumor-inducing molecular mechanism of HCC.

Genes not regulated by the MYC protein in PICM-19-CSCs
Next, we studied the profiles of PICM-19 and PICM-19-CSCs to identify the genes whose expression was not altered in stem cells due to MYC overexpression. For this, we selected genes that showed more than two-fold increase when normalized with the GAPDH. We found that the expression of 28 genes was not affected by the MYC protein (Table 5). These genes included a number of microRNAs (miRNAs) and small nucleolar RNAs (SnoRNAs) that regulate post-transcriptional gene expression, and are expressed at very high levels. As MYC has no influence on their expression, it appears that the genes of this 28-gene set may be primarily involved in maintaining the cellular integrity and stemness. 

Differential expression of MYC-regulated in genes in CSCs
In order to identify genes that are involved in MYC-induced oncogenesis, we studied global transciptome profiles of PICM-19-CSCs and compared them with those obtained with PICM-19 stem cells. While these genes are expressed by both PICM-19 and PICM-19-CSCs, a significant number of genes were differentially regulated by MYC. While MYC upregulated 4173 genes in PICM-19-CSCs, it downregulated 4248 genes. Statistical analysis of the data has revealed 616 upregulated and 391 downregulated genes that had a log2 ratio of at least 2. Analysis of gene expression of these two cell types showed that MYC overexpression resulted in changes in gene expression among genes involved in diverse cellular processes. This is not surprising as it is known that MYC regulates about 15% of genes in mammalian genomes[26]. 
	Among the genes upregulated by MYC are ribosomal genes demonstrating active protein synthesis in CSCs which is associated with cell growth, proliferation, and metabolism. While our data show only 8 of these genes, others such as the initiation factors (elF-2a, eIF4A, eIF4E, eIF4G, eIF5A), MrDb, nucleolin, and ribosomal proteins (S11, S16) were also induced > 1.5 fold (data not shown). These genes were previously shown to be regulated by the MYC protein[27].
	MYC is also considered an important regulator of the cell cycle. We found that the expression of several cell cycle genes (cdc45, CCND2, CIPN) was enhanced in PICM-19-CSCs. Adhesion molecule with Ig-like domain 2 (AMIGO2), a leucine-rich repeat family member implicated in decreased cell adhesion and migration, and an increase in chromosomal instability and tumorigenicity in human gastric adenocarcinoma[28], was also upregulated in PICM-19-CSCs.
	The majority of the top 25 genes upregulated by MYC are those involved in metabolism, adhesion and inflammation (Table 3). Integrin genes ITGA3 and ITGB4, and plakoglobin JUP were upregulated in PICM-19-CSCs. These three genes were recently found to be responsible for metastasis seen in oral squamous cell carcinoma[29]. Their expression in CSCs is significant because integrin adhesion receptors link the extracellular matrix (ECM) to actin cytoskeleton and transmit biochemical signals across the plasma membrane[30]. Binding of integrins to their cognitive receptors trigger signaling cascades to induce diverse cellular processes such as cell survival, apoptosis, proliferation, and motility[29]. JUP expression was also associated with colorectal tumor metastasis[31]. 
	Interestingly, markers of inflammation in the liver, apolipoproteins (APOA1 and APOE) and the SERPINA1 gene encoding alpha1-antitypsin (AAT), and another member of the AAT family, SERPINA3-2 were also induced in PICM-19-CSCs. While APOE was shown to confer protection against liver damage caused by hepatitis C virus (HCV) infection[32], its expression level was found to be significantly higher in HBV associated liver cirrhosis[33]. In a recent HCC study on familial aggregation, APOA1 and APOE were identified by mass spectroscopy of the proteins as being among nine highly overexpressed in individuals with HCC[34]. Previous studies have shown that the protein level of APOE was increased in human HCC[35], and that human hepatoma-derived cell lines express high levels of APOE and very low density lipoprotein (VLDL). Consistent with this, PICM-19-CSCs displayed an upregulated expression of VLDLR (Table 3). AAT is the most abundant liver-derived glycoprotein in the plasma, and a diagnostic and prognostic marker of HCC[36,37]. It is associated with the progression from liver cirrhosis to cancer in HCV-infected individuals[38]. Collectively, upregulation of APOA1, APOE, VLDLR and AAT in PICM-19-CSCs suggested their involvement in MYC-induced liver cancer. 
	We found that MYC overexpression resulted in downregulation of a number of genes (Table 4) that were previously implicated in tumor reduction and/or inhibition of human cancers. These genes differ from those that were silenced; and the reduced expression could be a result of either direct or indirect MYC targeting (Table 1). Among these, c-Fos induced growth factor, FIGF (also known as vascular endothelial growth factor D), is active in angiogenesis and endothelial cell growth. Its putative role in human cancers is unclear. While it was shown to enhance lymphatic node metastasis in tissue sarcomas[39], its expression was significantly lower in the serum of metastatic patients with differentiated thyroid sarcoma suggesting that FIGF may prevent metastasis. Interestingly, MYC caused the downregulation of FIGF in PICM-19-CSCs (Table 4) indicating that, in liver stem cells, FIGF has an anti-tumor function. Osteoglycin, a protein that decreases gelatinase activity and suppresses lymphatic metastasis[40], was also downregulated in PICM-19-CSCs.
	Collagens are structural components of the ECM and are primarily synthesized by hepatic stellate cells in the liver to induce fibrosis[41]. A recent proteomic study with platelet-derived growth factor C (PDGFC) transgenic and phosphatase and tensin homolog (PTEN) null mouse models of liver fibrosis and its progression to HCC demonstrated that the protein levels of collagens COL6A2 and COL28A1 were downregulated in fibrosis, and COL5A3 was upregulated in fibrosis; whereas only COL6A2, but not COL5A3 and COL28A1, was increased in tumors generated in both mouse models[42]. We found that COL5A3, COL6A2, COL28A1 were significantly downregulated in PICM-19-CSCs. Thus, in liver cells, MYC may be involved in the regulation of COL5A3 and COL28A1.
Among regulatory RNAs upregulated in PICM-19-CSCs, miR-125b was recently shown as a negative regulator of p53[43]. While the knockdown of miR-125b elevated p53 levels and induced apoptosis in zebra fish and human cells[43], its overexpression promoted human glioma cell proliferation and inhibited apoptosis by targeting the pro-apoptotic Bcl-2 modifying factor (Bmf)[44].
MiR-31 is an oncomir that is upregulated in PICM-19-CSCs. In colorectal cancer cells, miR-31 activated the rat sarcoma (RAS) pathway and inhibited the function of the RAS p21 GTPase activating protein 1 (RASA1) in promoting tumorigenesis and cancer cell growth[45]. It was also shown to promote oncogenesis in the cholangiocarcinoma HCCC-9810 cell line by inhibiting RASA1, thereby downregulating the mitogen-activated protein kinase (MAPK) signaling pathway[46]. Based on these findings, it appears that miR-31 may also be inhibiting the RASA1 in liver cancers. Paradoxically, miR-195, which was shown to suppress tumorigenicity and cause cell cycle arrest by blocking the G1/S transition via the repression of retinoblastoma-E2 transcription factor (Rb-E2F) signaling through cyclin D1, CDK6, and E2F3 in HCC cell lines[47], was upregulated in PICM-19-CSCs. 
High levels of miR-365 were found in PICM-19-CSCs. The expression levels of miR-365 vary in different malignancies. It is was overexpressed in both cells and clinical specimens of cutaneous squamous cell carcinoma (SCC)[48], where it was found to suppress to Mybl2 activity[49]. siRNA silencing of Mybl2 in proliferating Caco-2 cells increased the expression of the cell-cycle regulators cdk2, cyclin D2, and c-MYC; and decreased the expression of cdc25B and cyclin B2[50]. Thus, it is possible that MYC protein suppresses the expression of Mybl2 through the upregulation of miR-365, as seen in the PICM-19-CSCs.
Another key and common feature of CSCs was activation of NF-κB signaling, which is known to increase stress resistance and survival[10]. PICM-19-CSCs had a high level of NF-κB expression when compared to PICM-19 cells. Similarly, the expression of anti-apoptotic genes Bcl-xl and Mcl-1 were elevated in PICM-19-CSCs. Thus, the blocking of anti-apoptotic effects of these proteins may be a viable strategy to eliminate tumor cells. Sabutoclax, a pan-inhibitor of Bcl-2 family of protein that was shown recently to target Mcl-1[51], may be a suitable drug for this purpose.
	Selenium-binding protein (SELENBP1) is a tumor suppressor and lower SELENBP1 levels are associated with poor prognosis of liver, lung, colorectal and stomach cancers[52,53]. Decreased SELENBP1 expression has been associated with increased cell motility, proliferation and inhibition of apoptosis, and vascular invasion in HCC[53]. Its expression was suppressed in PICM-19-CSCs suggesting that MYC regulates this gene in the liver to promote cell proliferation and invasion. In a recent proteomic study conducted with serum and tumor tissue specimens of c-MYC transgenic mice, it was shown that APOE, SELENBP1 and retinol binding protein 4 (RBP4) are differentially regulated[54]. Our data supports these findings and confirms that MYC differentially regulates the expression of these proteins in liver cells.
Previous studies have also identified MYC as a downstream target of the Wnt signaling, a pathway that is highly active in HCC[55,56]. Dysregulated Wnt signaling occurs in 30% of HCCs. Also, deletion of adenomatous polyposis coli (APC), a negative regulator of Wnt, in the adult mouse liver, leads to an increase in the nuclear β-catenin and MYC[57]. Gene expression array analysis of colorectal cancer cells has shown that MYC is required for the majority of Wnt targeted gene activation after the APC loss[58]. In our study, we found a high level of Wnt expression (Table 2) demonstrating that the Wnt pathway was activated in PICM-19-CSCs.

Validation of MYC-regulated genes in PICM-19-CSCs
To further validate these RNA-seq data, four genes that were upregulated, four genes downregulated, and two genes that were silenced in PICM-19-CSCs, when compared with PICM-19 cells (Tables 1, 3-4) were selected for quantitative real-time PCR studies on the basis of their roles in diverse cellular processes. PCR was performed using porcine-specific primers for CTSB, HIF-1A α-subunit, SERPINA3-2, ITGA3, SELENBP1, RSPO2, FIGF, ANGPT1, CDO1 and DKK2 (Table 6). While two of them (HIF-1α and SELENBP1) were suggested as biomarkers for HCC, others were identified in studies with multiple human cancers. As shown in Figure 3, induced expression of MYC in PICM-19-CSCs has resulted in the alteration of gene expression for all ten genes studies. These findings clearly illustrate differences in the expression of these genes between PICM-19 stem cells and PICM-19-CSCs.
	Collectively, the vast repertoire of genes that are either directly or indirectly induced by MYC protein expression in PICM-19-CSCs underscores the importance of its involvement in the induction of diverse cellular pathways that ultimately may lead to liver cancer.

DISCUSSION
CSCs have been identified in a number of cancers, including HCC, as a unique population of cells that possess self-renewing and tumor-initiating properties[5,8]. Mounting evidence strongly suggests that CSCs are resistant to anti-cancer therapies[11,59]. Therefore, targeting CSCs may be an effective strategy to eliminate the drug resistant and metastatic tumor cells[60]. Here, we have developed CSCs that are capable of forming tumors in mice by overexpressing human MYC in the liver stem cell line, PICM-19. The involvement of MYC in murine and human HCC malignant transformation has been well documented[2,4,7]. Cellular targets of MYC include genes from almost every biochemical and regulatory pathway, including growth, metabolism, cell cycle progression, differentiation and apoptosis[26,61]. Our results provide a snapshot of differential gene expression induced by the MYC protein in an in vitro model of liver stem cells. PICM-19-CSCs were able to form tumors in immunodeficient mice within three weeks, demonstrating their elevated proliferation and tumor-producing potential in vivo. Analysis of gene expression profiles in PICM-19-CSCs has revealed novel “molecular signatures” that were either up- or downregulated as a consequence of MYC overexpression. A number of genes were both up- and downregulated by MYC overexpression in PICM-19 cells demonstrating their potential involvement in MYC-induced tumorigenesis. We also found that MYC expression silenced six genes completely (Table 1), suggesting that the inhibition of these genes is potentially crucial for tumor induction by MYC. To our knowledge, this is the first report to investigate transcriptome profiles driven by a single oncogene in liver stem cells, and cells of porcine origin, an important animal for modeling human physiology and disease.
The use of MYC to generate CSCs is highly relevant to study HCC because MYC is a key component of hepatocarcinogenesis. High-level expression of MYC was also shown to be essential for the proliferation and survival of other CSCs, such as in glioma[62]. In a recent report, chemoresistant CSCs were isolated from MYC-driven mouse liver tumors[63]. Side-population (SP) cells in these tumors expressed CD44, a marker of hepatic progenitor cells, and displayed an upregulation in the expression of multidrug resistance gene 1 (MDR1), which conferred resistance to doxorubicin, paclitaxel and SN38[63]. We found that both PICM-19-CSCs had a significant upregulated expression of MDR1 when compared to PICM-19 cells, suggesting that MDR1 can be an effective therapeutic target for MYC-driven liver cancers. Interestingly, CD44 expression was found only in PICM-19-CSCs but not in PICM-19 cells, demonstrating that MYC regulates CD44.
We discovered several notable similarities in comparing our RNA-seq data with those recently published from CD90+ liver CSCs isolated from HCC patients[64]. Among these, upregulation of glypican 3 (GPC3), apolipoprotein E (APOE), Polo-like kinase 2 (PLK2) and peroxisome proliferator-activated receptor γ (PPARG), and downregulation of interleukins 8 and 12, suppressor of cytokine signaling 3 (SOCS3), and chemokine ligands CXCL12 and CCL2 also occurred in PICM-19-CSCs. Interestingly, neither PICM-19 nor PICM-19-CSCs expressed the progenitor cell markers CD90 and CD133. This observation suggests species-specific differences between cells of human and porcine origin.
MYC also induced the expression of hepatic stem cell marker EpCAM, a target of the Wnt/β-catenin signaling pathway, in PICM-19-CSCs. EpCAM-expressing cells in HCC tumor specimens were previously shown to possess stem-like features and were able to initiate tumors within the liver[65]. PICM-19 cells expressed MYC, Oct4, Sox2, Klf4, and Nanog, which are factors that are commonly used to generate induced pluripotent stem cells. When MYC protein was overexpressed in PICM-19 cells the expression of these proteins was elevated, suggesting that such reprogramming factors are critical for the proliferation of CSCs, and may play a role in tumor-initiation, as shown recently in the Ewing sarcoma[66] and breast cancer[67]. 
By comparing global transcriptome sequencing data between PICM-19 and PICM-19-CSCs, we have confirmed the involvement of a number of MYC-regulated genes involved in development (Sox2, Klf4, Nanog, Oct4, Amd1, Med12), stemness and self-renewal (Wnt/β-catenin), cell cycle (Cyclin D1, GPC3), metabolism (APOA1, APOE), and markers of hepatic stem/progenitor cells (EpCAM, KRT19). In fact, some of these were found to be expressed by side-population (SP) cells isolated from liver cancer cell lines[68]. Their upregulation in CSCs makes them potential candidates as therapeutic targets in liver cancers where MYC is overexpressed. In addition to these genes, PICM-19-CSCs also displayed high levels of a novel protein Sal-like protein 2 (SALL2), a member of zinc finger transcription factor family. Recently, a family member SALL4 was found to be expressed in liver cancers[69], where it regulates the stemness of EpCAM+ CSCs[70]. While we did not detect SALL4 in PICM-19-CSCs, the induction of SALL2 suggests a certain degree of redundancy in the function of these proteins.
Hypoxia plays an important role in the recurrence of HCC, and HIF-1α is critical part of this process. After insufficient radiofrequency ablation of HCC or sustained treatment with sorafenib, tumor recurrence occurs via signaling pathways involving HIF-1α[71,72], and the expression level of HIF-1α was recently shown to correlate with unfavorable outcomes in patients with HCC[73]. We found that the expression of HIF-1α was significantly upregulated in CSCs. Another protein overexpressed in CSCs is cathepsin B (CTSB). Even though the role of CTSB in HCC is unclear, it has been shown to interact directly with the hepatitis B spliced protein-encoded by the HBV in hepatoma cell lines promoting tumor cell migration and invasion[74]. The alpha-1-antichymotrypsin 2 (SERPINA3-2) is a porcine-specific gene that is also significantly upregulated in CSCs (Figure 4). It shares 71% identity with human SERPINA3, a serine protease inhibitor[75]. While its involvement in HCC is unknown, it has been reported recently that the expression of SEPRINA3 is elevated in cholargiocarcinoma[76]. 
Epithelial-mesenchymal transition is a crucial event in the tumor progression of HCC. It has been reported recently that the expression of integrin α3 (ITGA3) is a molecular marker of cells undergoing EMT and of cancer cells with aggressive phenotypes[77]. ITGA3 expression is upregulated in breast cancer[77], and colorectal cancer[78]; and ITGA3-knockout mice were found to be considerably less susceptible to skin carcinogenesis[79], suggesting that ITGA3 is a critical gene in multiple cancers. While its involvement has not been demonstrated in HCC, we observed that its expression is enhance in CSCs. This result indicated that ITGA3 may play a role in MYC-induced liver cancer.
The R-spondin proteins are secreted agonists of the canonical Wnt/β-catenin signaling pathway. Although they are unable to initiate Wnt signaling, they can enhance responses to low-dose Wnt proteins[80]. One of these proteins, R-spondin 2 (RSPO2) possesses tumor-suppressive activity and was recently shown to inhibit tumor growth in colorectal cancer cells by inhibiting Wnt signaling[81]. Induction of Wnt signaling and downregulation of RSPO2 was also observed in human neurofibromas and malignant peripheral nerve sheath tumors[82]. We found that RSPO2 was downregulated in CSCs, suggesting that it might act as a tumor suppressor in liver cells as well. 
The expression of SELENBP1 is markedly reduced in multiple tumor types. Downregulation of SELENBP1 correlated with increased DNA damage and oxidative stress in tissue samples of patients with HCC[83]. Recent studies have shown that the reduced expression of SELENBP1 correlated with poor survival in breast cancer patients[84], and with the degree of colorectal cancer differentiation[85], suggesting that its expression could serve as a potential biomarker for these cancers. We found down-regulation of SELENBP1 in CSCs, demonstrating that that MYC-overexpression can result in this effect.
Tumor metastasis is associated with accelerated cell proliferation, dedifferentiation and loss of cell-cell contacts. FIGF and ANGPT1, two genes involved in angiogenesis, were found to be down-regulated in canine mammary carcinoma[86], breast cancer[87], and prostate cancer[88]. In our studies, the expression of both these genes was significantly lowered in CSCs, suggesting that their reduced expression is a factor in MYC-induced tumorigenesis in liver cells.
Aberrant DNA methylation was shown to play a role in carcinogenesis and disease progression in many cancers[89], and DNA methylation analysis of cancer genes might reveal novel prognostic biomarkers[90]. Cysteine dioxygenase 1 (CDO1), a tumor suppressor, is one such gene that is silenced by promoter methylation in multiple human cancers[19]. For instance, in lymph node-positive breast cancer patients , promoter DNA methylation of CDO1 causes its downregulation, making it an ideal biomarker for disease outcome prediction[91]. A recent DNA methylation study on human lung squamous cell carcinoma has also shown that CDO1 is hypermethylated and downregulated in lung cancer[92]. Even though forced expression of CDO1 resulted in markedly decreased tumor cells growth in human cancer cell lines and in mice[19], little is known about its role in HCC. In our studies, we found that CDO1 is silenced in CSCs, indicating that CDO1 may play a role in MYC-induced carcinogenesis.
Among Wnt antagonists, the Dickkopf (DKK) family of proteins act as tumor suppressors and are frequently silenced in various cancers[93,94]. It has been previously shown that DKK2 is epigenetically silenced in renal cancer, where it inhibits tumor progression through apoptotic and cell cycle pathways involving Bcl2 and cyclin D1[20]. In our study, we found that the expression of DKK2 is silenced in CSCs after MYC-overexpression (Figure 4), suggesting that the inhibition of Wnt antagonist is a mechanism of carcinogenesis mediated by the MYC protein.
	Approximately 70000 cancer deaths in the United States each year are associated with changes in the MYC gene or its expression[61]. Despite enormous progress achieved during the past several decades, long-term patient survival remains very low. Advances in stem cell technology provide opportunities to develop novel approaches to reduce morbidity and mortality associated with liver cancer. Our study is an important contribution to understanding the potential of CSC-targeted therapy for HCC. Novel genes identified in our investigation may serve as promising candidates to develop effective therapeutic options for HCC. 
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COMMENTS
Background
It is now well-established that cancer stem cells (CSCs) not only drive tumor growth in the liver, in general, but also that the proto-oncogene c-Myc plays a critical role in that process. However, little is known about the genes that are induced and regulated by the MYC protein to generate tumors, and, in particular, those involved in liver stem cells. 

Research frontiers
Hepatocellular carcinoma is a multifactorial disease in which the MYC protein plays a central role. However, a number of different proteins and signaling pathways are activated in liver cancer. Cancer stem cells were isolated from hepatocellular carcinoma (HCC)  specimens and by culturing human HCC cell lines. But it is unclear as to which cellular pathways are activated by the MYC protein. 

Innovations and breakthroughs
This is the first study to demonstrate the regulation of global gene expression by a single oncoprotein (MYC) in porcine liver stem cells using a novel stem cell line PICM-19 that is capable of propagating in cell culture for a prolonged time period without losing its phenotypic characteristics. By overexpressing the MYC protein, these stem cells were converted into cancer cells. By using a cutting-edge deep sequencing technique (RNA-seq), we have identified six genes (CDO1, C22orf39, DKK2, ENPEP, GPX6, SRPX2) that might be critical in carcinogenesis induced by the MYC protein in PICM-19 cells.

Applications
MYC-driven genes identified in this study may serve as promising candidates for the development of HCC therapeutics without the deleterious effects on non-cancerous stem cells and on other cells present in the liver.

Terminology
CSC – cancer stem cells; RNA-seq – RNA sequencing.

Peer review
In this study, the authors identify the overall genes expression in a liver stem cell after induction by c-MYC plasmid transfection in generating hepatic tumors. The authors used an immortal porcine liver stem cell line PICM-19, to identify MYC-driven differential gene expression, transcriptome sequencing was carried out by RNA sequencing and genes identified by this method were validated using real-time PCR. And finally find that MYC-driven genes may serve as promising candidates for the development of HCC therapeutics that would not have deleterious effects on other cell types in the liver.
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Table 1 Genes expressed by PICM-19 liver stem cells
	Gene ID
	Gene abbreviation
	Function
	Fold Δ1 

	C22ORF39
	Human chromosome 22 orf39 homolog
	Unknown
	11.33

	CDO1
	Cysteine dioxygenase type 1
	Tumor suppressor
	6.28

	DKK2
	Dickkopf Wnt signaling pathway inhibitor 2
	Cell signaling
	12.20

	ENPEP
	Glutamyl aminopeptidase
	Proteolysis
	4.82

	GPX6
	Glutathione peroxidase 6
	Detoxification
	2.18

	SRPX2
	Sushi-repeat containing protein, X-linked 2
	Angiogenesis
	17.22


1Normalized to GAPDH expression.

Table 2 Genes expressed in PICM-19-CSCs but not in PICM-19 cells
	Gene ID
	Gene abbreviation
	Fold Δ1 

	VEGF
	Vascular endothelial growth factor
	41718.7

	snoZ40
	Small nucleolar RNA Z40
	16658.2

	ssc-mir-195a-1
	MicroRNA mir-195a-1
	6514.83

	ssc-mir-125b-1 
	MicroRNA mir-125b-1
	3627.42

	ssc-mir-423
	MicroRNA mir-423
	3627.42

	SNORD53
	Small nucleolar RNA, C/D box53 
	2811.10

	ssc-mir-421
	MicroRNA mir-421
	2811.10

	ssc-mir-133a-2
	MicroRNA mir-133a-2
	2558.12

	ssc-mir-365-1
	MicroRNA mir-365-1
	2558.12

	SNORD16
	Small nucleolar RNA, C/D box 16
	1497.27

	ssc-mir-31
	MicroRNA mir-31
	1144.09

	SERP2
	Stress-associated ER protein family member 2
	1137.16

	SNORD94
	Small nucleolar RNA, C/D box 94
	1126.85

	SNORD67
	Small nucleolar RNA, C/D box 67
	816.01

	Y_RNA
	Non-coding RNA
	727.41

	GRIA
	FAD-dependent oxygenase
	370.13

	CH242-74M17.6 
	GAS locus protein, porcine-specific
	322.43

	CH242-74M17.6
	GNAS complex locus, porcine-specific
	322.43

	SNORA36
	Small nucleolar RNA, C/D box 36
	199.10

	RBP1
	Retinol-binding protein 1
	182.72

	TIMP-3
	TIMP metallopeptidase inhibitor 3
	173.55

	RNF130
	Ring finger protein 130
	147.15

	MT-ND6
	Mitochondrial NADH dehydrogenase 6
	141.82

	PCDH7
	Protocadherin 7
	90.60

	ND4L
	NADH dehydrogenase subunit 4L
	89.11

	U12
	Non-coding RNA
	85.94

	MT1A
	Metallothionein 1A
	84.09

	ZFX
	Zinc finger protein X-linked
	79.94

	CH242-17J7.1
	GNAS complex locus, porcine-specific
	65.88

	RNPC1
	RNA binding motif protein 38
	65.10

	GEM1
	Gremlin 1
	54.41

	CADM4
	Cell adhesion molecule 4
	39.92

	CYP1A1
	Cytochrome P450, family 1, subfamily A1
	39.89

	TFAP2A
	Transcription factor AP-2 alpha
	39.27

	AFP
	Alpha-fetoprotein
	33.23

	CFD
	Complement factor D
	26.62

	GNG
	Two-component system response regulator GnG/NtrC
	24.2

	RNF128
	Ring finger protein 128
	23.79

	MIF
	Macrophage migration inhibitory factor
	23.69

	IFI27l2
	Interferon, alpha-inducible protein 27-like 2
	22.72

	PDE6H
	Phosphodiesterase 6H, cGMP-specific
	22.54

	KLF5
	Krüppel-like factor 5
	22.53

	PRKD1
	Protein kinase D1
	21.27

	SPINT2
	Serpin peptidase inhibitor, Kunitz type, 2
	18.54

	MYC
	Myelocytomatosis oncogene
	17.64

	CD44
	Cell surface glycoprotein 44
	17.14

	GPC3
	Glypican 3
	16.54

	ECHS1
	Enoyl-coA hydratase, short-chain, 1
	15.42

	S100A14
	S100 calcium binding protein A14
	15.41

	LONRF3
	LON peptidase N-terminal domain and ring finger 3
	15.25

	CU463271.1
	Protein encoded by CU463271.1 locus
	14.86

	MMP16
	Matrix metalloproteinase 16
	14.28

	S100A16
	S100 calcium binding protein A16
	14.14

	SLC22A17
	Solute carrier family 22 member A17
	14.07

	ID1
	Inhibitor of DNA binding 1 
	13.34

	ATP5E
	ATP synthase H+ transporting epsilon
	13.14

	ISG12(a)
	ISG12 protein-like
	13.03

	UQCRH
	Uniquinol-cytochrome c reductase hinge protein
	12.44

	DKK2
	Dickkopf homolog 2
	12.2

	IL17RA
	Interleukin 17 receptor A
	12.13

	STXBP6
	Syntaxin binding protein 6
	11.63

	F2
	Coagulation factor II
	11.57

	COX17
	Cytochrome c oxidase copper chaperone
	10.05

	MGMT
	O-6-methylguanine-DNA methyltransferase
	9.96

	SDF4
	Stromal cell derived factor 4
	9.50

	PDPN
	Podoplanin
	9.46

	DLK2
	Delta-like 2 homolog
	9.24

	WNT1
	Wingless-related MMTV integration site family member 1
	9.03

	CISD1
	CDGSH iron sulfur domain 1
	9.00

	MYD88
	Myeloid differentiation primary response 88
	8.71

	SDC4
	Syndecan 4
	8.68

	EPCAM
	Epithelial cell adhesion molecule
	8.59

	RPS29
	Ribosomal protein S29
	8.32

	P14ARF
	p14 ARF protein (porcine-specific)
	8.29

	ELAVL2
	ELAV-like neuron-specific RNA binding protein 2
	8.23

	FZD3
	Frizzled homolog 3
	8.17

	XBP1
	X-box binding protein 1
	8.09

	TRIAP1
	TP53 regulated inhibitor of apoptosis 1
	8.08

	ATP5O
	ATP synthase H+ transporting O subunit
	8.02

	VKORC1
	Vitamin K epoxide reductase complex, subunit 1
	7.80

	FAM84B
	Family with sequence similarity 84, member B
	7.70

	ECI2
	Enoyl-coA delta isomerase 2
	7.69

	ARHGDIB
	Rho GDP dissociation inhibitor beta
	7.41

	C20ORF27
	Human chromosome 22 orf39 homolog
	7.31

	RAB6B
	RAS oncogene family member
	7.28

	DDT
	D-dopachrome tautomerase
	7.14

	AGMAT
	Agmatine ureohydrolase (Agmatinase)
	7.12

	CHCHD2
	Coiled-coil-helix-coil-helix domain 2
	6.92

	EPHA7
	Eph receptor A7
	6.72

	OSR2
	Odd-skipped related 2
	6.71

	CFI
	Complement factor I
	6.55

	NDUFB11
	NADH dehydrogenase 1 alpha subcomplex 11
	6.37

	SLC35F1
	Solute carrier family 35 member F1
	6.37

	NUDT14
	Nucleoside diphosphate linked moiety X-type motif 14
	6.35

	SH3GL3
	SH3 domain GRB2-like 3
	6.32

	NDUFA12
	NADH dehydrogenase 1 alpha subcomplex 12
	6.30

	CDO1
	Cysteine dioxygenase type 1
	6.28

	DYNLT1
	Dynein, light-chain, Tctex-type
	6.27

	HSBP1
	Heat shock factor binding protein 1
	6.20

	CCK
	Chloecystokinin
	5.98

	ANXA1
	Annexin A2
	5.85

	FCGRT
	Fc fragment of IgG, receptor, transporter, alpha
	5.84

	AK5
	Adenylate kinase 5
	5.83

	RDH11
	Retinol dehydrogenase 11
	5.58

	RPS18
	Ribosomal protein S18
	5.56

	TGOLN2
	Trans-golgi network protein 2
	5.55

	RNF150
	Ring finger protein 150
	5.54

	HIFX
	Hypoxia-inducible factor X
	5.47

	CFH
	Complement factor H
	5.43

	NPC2
	Niemann-Pick disease, type C2
	5.34

	DCTPP1
	dCTP pyrophosphatase 1
	5.25

	CLVS1
	Clavesin 1
	5.24

	HSF4
	Heat shock transcription factor 4
	5.23

	SERINC2
	Serine incorporator 2
	5.08

	MSMB
	Microseminoprotein, beta
	5.03

	CHID1
	Chitinase domain containing 1
	4.98

	LYSMD2
	LysM, putative peptidoglycan-binding, domain 2
	4.95

	SH3BGRL2
	SH3 domain binding glutamic acid-rich protein-like 2
	4.86

	POU3F1
	POU domain, class 3, transcription factor 1
	4.77

	TCN2
	Transcobalamin II
	4.76

	SORT1
	Sortilin 1
	4.75

	PTGES
	Prostaglandin E synthase
	4.65

	CCND2
	Cyclin D2
	4.63

	GXYLT2
	Glucoside xylosyltransferase 2
	4.50

	CRTAC1
	Cartilage acidic protein 1
	4.33

	MFGE8
	Milk fat globule-EGF factor 8
	4.29

	TNC
	Tenascin C 
	4.28

	PCBD1
	Pterin-4 alpha-carbinolamine
	4.27

	PDE10A
	Phosphodiesterase 10A
	4.22

	RAB27B
	RAS oncogene family member
	4.18

	INCENP
	Inner centromere protein antigens 135/155kDa
	4.14

	GJB1
	Gap junction protein, beta 1
	4.09

	CEBPG
	CCAAT/enhancer binding protein, gamma
	4.04

	DUROC-SLA1
	Src-like adaptor 1 (pig-specific)
	4.04

	ITIH4
	Inter-alpha-trypsin inhibitor heavy chain family, member 4
	4.03

	PEBP1
	Phosphatidylethanolamine binding protein 1
	4.02

	ABTB2
	Ankyrin repeat and BTB (POZ) domain containing 2
	4.00

	GJB5
	Gap junction protein, beta 5
	3.95

	CREB3
	cAMP responsive element binding protein 3
	3.86

	DPM2
	Dolichyl-phasphate mannosyltranferase polypeptide 2 
	3.85

	GEM
	GTP binding protein overexpressed in skeletal muscle
	3.85

	DOCK8
	Dedicator of cytokinesis 8
	3.84

	TMP-SLA-2
	Transmembrane protein, pig-specific
	3.83

	CYB5B
	Cytochrome b5 type B
	3.80

	TSAN6
	Tsan6, Pig-specific protein
	3.75

	RNASEH2C
	Ribonuclease H2, subunit C
	3.71

	NARS
	Asparaginyl-tRNA synthetase
	3.70

	LSM6
	U6 snRNP-associated protein
	3.69

	MTFP1
	Mitochondrial fission process 1
	3.66

	SLC16A1
	Solute carrier family 16 member A1
	3.65

	RARB
	Retinoic acid receptor, beta
	3.64

	SDSL
	Serine dehydrarase-like
	3.64

	MPC2
	Mitochondrial pyruvate carrier 2
	3.63

	PARVB
	Parvin, beta
	3.60

	RENBP
	Renin binding protein
	3.55

	POC1A
	POC1 centrolar protein A
	3.54

	GUSB
	Glucuronidase, beta
	3.53

	CH242-9E10.1
	GNAS complex locus, porcine-specific
	3.52

	REEP3
	Receptor accessory protein 3
	3.51

	CPT1A
	Carnitine palmitoyltransferase 1A
	3.40

	BHLHB9
	Basis helix-loop-helix domain containing B9
	3.37

	FAAH
	Fatty acid amide hydrolase
	3.37

	MRPL20
	Mitochondrial ribosomal protein L20
	3.37

	HTR2A
	5-hydroxytryptamine (serotonin) receptor 2A, G protein-coupled
	3.36

	TRERF1
	Transcriptional regulating factor 1
	3.35

	XYLB
	Xylulokinase
	3.32

	RBPMS2
	RNA binding protein with multiple splicing 2
	3.28

	FGFR3
	Fibroblast growth factor receptor 3
	3.27

	SLC22A23
	Solute carrier family 22 member A23
	3.21

	NDUFB1
	NADH dehydrogenase 1 alpha subcomplex 1
	3.18

	ZFAND2A
	Zinc finger, AN1-type domain 2A
	3.16

	EPB41
	Erythrocyte membrane protein band 4.1
	3.11

	IGSF23
	Immunoglobulin superfamily, member 23
	3.11

	FAM122C
	Family with sequence similarity 122, member C
	3.10

	AMIGO2
	Adhesion molecule with Ig-like domain
	3.03

	SHROOM4
	Shroom family member 4
	3.02

	MAT1A
	Methionine adenosyltransferase 1A 
	3.01

	PARN
	Poly(A)-specific ribonuclease
	3.00

	PFKFB1
	6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1
	3.00

	TCF25
	Transcription factor 25
	2.98

	PRODH2
	Proline dehydrogenase (oxidase) 2
	2.95

	CHCHD10
	Coiled-coil-helix-coil-helix domain 10
	2.91

	CH242-217H9.3
	GNAS complex locus, porcine-specific
	2.85

	CASC5
	Cancer susceptibility candidate 5
	2.84

	IGLON5
	IgLON family member 5
	2.84

	CDH17
	Cadherin 17
	2.82

	SLC44A4
	Solute carrier family 44 member A4
	2.82

	LRCH2
	Leucine-rich repeats and calponin homology domain 2
	2.76

	DUROC-NEU1
	Sialidase 1 (pig-specific)
	2.75

	CDC45
	Cell division cycle 45
	2.71

	BCKDHB
	Branched chain keto acid dehydrogenase E1
	2.69

	HNF4A
	Hepatocyte nuclear factor 4, alpha
	2.67

	SCG5
	Secretogranin V
	2.66

	BOLA1
	BolA family member 1
	2.65

	PYGL
	Phosphorylase, glycogen, liver-specific
	2.64

	SCARB1
	Scavenger receptor class B, member 1
	2.64

	SERPIND1
	Serpin peptidase inhibitor, clade D, member 1
	2.63

	GAS2L3
	Growth arrest-specific 2 like 3
	2.61

	EFNA2
	Ephrin A2
	2.60

	PDZK1IP1
	PDZK1 interacting protein 1
	2.59

	VIMP
	VCP-interacting membrane protein
	2.59

	PRR5L
	Proline-rich 5-like
	2.57

	ACVR2B
	Activin A receptor, type IIB
	2.56

	ATP9A
	ATPase, class II, type 9A
	2.55

	PLAUR
	Plasminogen activator, urokinase receptor
	2.53

	LDLR
	Low density lipoprotein receptor 
	2.51

	FLRT3
	Fibronectin leucine-rich transmembrane protein 3
	2.50

	ADAMTSL3
	ADAMTS-like 3
	2.49

	CINP
	Cyclin-dependent kinase 2 interacting protein
	2.48

	WBSCR22
	Williams Beuren syndrome chromosome region 22
	2.48

	ALDH9A1
	Aldehyde dehydrogenase 9 family member 1
	2.46

	SSC.82438
	Sus scrofa Amphiregulin
	2.44

	NME3
	NME/NME23 nucleoside diphosphate kinase 3
	2.43

	CCS
	Copper chaperone for superoxide dismutase
	2.40

	PITX2
	Paired-like homeodomain transcription factor 2
	2.38

	MRPL3
	Mitochondrial ribosomal protein L3
	2.33

	BNC1
	Basonuclin 1
	2.32

	RPS16
	Ribosomal protein S16
	2.32

	TM7SF2
	Transmembrane 7 superfamily member 2
	2.30

	CRELD2
	Cystein-rich with EGF-like domains 2
	2.22

	HHEX
	Hematopoietically expressed homeobox
	2.20

	RPL31
	Ribosomal protein L31
	2.20

	TGFA
	Transforming growth factor, alpha
	2.20

	IDS
	Iduronate 2-sulfatase
	2.18

	NRG4
	Neuregulin 4
	2.17

	DGAT1
	Diacylglycerol O-acyltransferase 1
	2.16

	GNAZ
	Guanine nucleotide binding protein
	2.14

	ARL3
	ADP-ribosylation factor-like 3
	2.12

	FABP5
	Fatty acid binding protein 5
	2.12

	KIF12
	Kinesin family member 12
	2.12

	IKBKG
	Inhibitor of kappa B 
	2.09

	PDZRN3
	PDZ domain containing ring finger 3
	2.09

	PHF19
	PHD finger protein 19
	2.09

	MRPL24
	Mitochondrial ribosomal protein L24
	2.07

	ARAP2
	ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 2
	2.04

	ITGF3
	ItgF3-like protein
	2.02

	POLA2
	Polymerase (DNA directed), alpha 2
	2.02

	ADAMTS7
	ADAM metallopeptidase with thrombo- Spondin type 1 motif 7
	1.45


1Normalized to GAPDH expression.

Table 3 Genes upregulated by MYC in PICM-19-CSCs
	Gene ID
	Gene abbreviation
	Function
	log2 ratio

	CH242-278B18.2
	GNAS Complex, porcine-specific
	Unknown
	10.25

	NFKB1
	Nuclear factor κB
	Inflammation
	8.94

	SEMA3F
	Semaphorin 3F
	Cell signaling
	8.27

	NME1-NME2
	NME1-NME2 read-through
	Inflammation
	8.22

	SERPINA1
	Serpin protease inhibitor, clade A1
	Inflammation
	8.17

	VLDLR
	Very low density lipoprotein receptor
	Metabolism
	8.01

	APOE
	Apolipoprotein E
	Metabolism
	7.57

	ITGA3
	Integrin, alpha 3
	Migration, Cell adhesion, Invasion
	7.41

	IGF2BP2
	Insulin-like growth factor 2 mRNA binding protein 2
	Gene regulation
	7.33

	MT-ATP6
	Mitochondrial ATP synthase 6
	Metabolism
	7.21

	HIF1A
	Hypoxia-inducible factor 1α
	Angiogenesis
	7.12

	APOA1
	Apolipoprotein A1
	Metabolism
	7.06

	ITGB7
	Integrin, beta 7
	Cell adhesion
	7.03

	NKAIN1
	Na+/K+ transporting ATPase
	Ion transport
	7

	FGG
	Fibrinogen gamma chain
	Cell adhesion
	6.79

	CTSB
	Cathepsin B
	Carcinogenesis
	6.74

	NTN1
	Netrin 1
	Inflammation
	6.65

	JUP
	Junction plakoglobin
	Cell adhesion
	6.61

	PLG
	Plasminogen
	Cell proliferation
	6.6

	MT-ND2
	Mitochondrial NADH dehydrogenase 2
	Metabolism
	6.37

	SERPINA3-2
	Serpin protease inhibitor, clade A3-2
	Inflammation
	6.31

	RBP4
	Retinol binding protein 4
	Metabolism
	6.18

	FTL
	Ferritin, light polypeptide
	Iron metabolism
	6.08

	DUSP4
	Dual specificity phosphatase 4
	Cell proliferation
	6.02

	MT-CO1
	Mitochondrial cytochrome c oxidase I
	Inflammation
	6



Table 4 Genes downregulated by MYC in PICM-19-CSCs
	Gene ID
	Gene abbreviation
	Function
	log2 ratio

	ASPN
	Asporin
	Extracellular matrix
	8.2

	IGF1
	Insulin-like growth factor 1
	Cell growth
	7.44

	OGN
	Osteoglycin
	Metabolism
	6.52

	GPM6B
	Glycoprotein M6B
	Membrane trafficking, cell-to-cell communication
	6.23

	ISLR
	Immunoglobulin superfamily containing leucine-rich repeat
	Unknown
	6.19

	ANGPT1
	Angiopoietin 1
	Angiogenesis
	5.53

	WDR66
	WD repeat domain 66
	EMT modulator
	5.49

	RSPO2
	R-spondin 2 homolog
	Wnt modulator
	5.46

	COL6A2
	Collagen, type VI, alpha 2
	Fibrosis
	5.14

	TNR
	Tenascin R
	Extracellular matrix
	5.03

	FAM5C
	Family with sequence similarity 5, member C
	Unknown
	4.97

	FIGF
	c-Fos iduced growth factor
	Angiogenesis
	4.92

	ADAM23
	ADAM metallopeptidase domain 23
	Metabolism
	4.84

	MAB21L2
	Mab-21-like 2
	Cell survival
	4.83

	PDE1A
	Phosphodiesterase 1A
	Metabolism, Apoptosis
	4.83

	CLMP
	CXADR-like membrane protein
	Cell adhesion
	4.74

	COL28A1
	Collagen, type XXVIII, alpha 1
	Fibrosis
	4.74

	GJA1
	Gap junction protein, alpha 1
	Oxidative stress
	4.67

	SELENBP1
	Selenium binding protein 1
	Tumor suppressor
	4.58

	CPED1
	Cadherin-like and PC-esterase domain containing 1
	Unknown
	4.52

	COL5A3
	Collagen, type V, alpha 3
	Fibrosis
	4.51

	ADAMTS2
	ADAM metallopeptidase with thrombospondin typ1 motif 2
	Metabolism
	4.5

	PDE8B
	Phosphodiesterase 8B
	Metabolism
	4.47

	SGCE
	Sarcoglycan, epsilon
	Cytoskeleton
	4.42

	GDPD2
	Glycerophosphodiester phosphodiesterase domain containing 2
	Cell growth
	4



Table 5 Genes expressed by both PICM-19 and PICM-19-CSCs, and were not affected by MYC overexpression
	Gene ID
	Gene abbreviation
	Function
	Fold Δ1 

	SSC-MIR-425
	MicroRNA mir-425
	Gene regulation
	7925.28

	SNORD53
	Small nucleolar RNA, C/D box 53
	Gene regulation
	4969.5

	SSC-MIR-378-1
	MicroRNA mir-378-1
	Gene regulation
	3962.64

	SSC-MIR-99A
	MicroRNA mir-99a
	Gene regulation
	3761.27

	SSC-MIR-101-2
	MicroRNA mir-101-2
	Gene regulation
	3400.56

	SSC-LET-7F-2
	MicroRNA let-7f-2
	Gene regulation
	2814.68

	5s rRNA
	5S ribosomal RNA
	Protein synthesis
	2255.63

	SSC-MIR-210
	MicroRNA mir-210
	Gene regulation
	1730.53

	U6
	Small nucleolar RNA U6
	RNA interference
	1187.43

	SSC-MIR-196A-2
	MicroRNA mir-196a-2
	Gene regulation
	1127.81

	SCARNA15
	Small Cajal body-specific RNA 15
	Gene regulation
	287.24

	SNORA72
	Small nucleolar RNA, H/ACA box 72
	Gene regulation
	255.25

	SCARNA11
	Small Cajal body-specific RNA 11
	Gene regulation
	163.5

	RAMP2
	Receptor (G protein-coupled) activity modifying protein 2
	Protein transport
	56.66

	CCNI2
	Cyclin I family member 2
	Cell cycle
	10.67

	P4HTM
	Prolyl 4-hydroxylase, transmembrane
	Hypoxia
	6.25

	SPDYA
	Speedy/RINGO cell cycle regulator family member A
	Cell cycle
	5.56

	PARK2
	Parkin RBR E3 ubiquitin ligase
	Unknown
	5.09

	GRPR
	Gastrin-releasing peptide receptor
	Cell proliferation
	4.52

	ATG10
	Autophagy related 10
	Autophagy
	3.76

	PHYHIP
	Phytanoyl-CoA hydroxylase interacting protein
	Cell proliferation
	3.41

	DPEP1
	Dipeptidase 1
	Metabolism
	2.72

	DUROC-C2
	Nuclear receptor corepressor 2
	DNA binding
	2.64

	HIST1H2BH
	Histone cluster 1, H2bh
	Histone modification
	2.58

	PHKG1
	Phosphorylase kinase, gamma 1
	Glycogenolysis
	2.52

	TMEM79
	Transmembrane protein 79
	Protein secretion
	2.04

	APH1B
	APH1B gamma secretase subunit
	Protein transport
	2.01

	IRAK4
	Interleukin-1 receptor-associated kinase 4
	Cell signaling
	2.01


1Normalized to GAPDH expression.

Table 6 Procine-specific primers used in real-time PCR
	Gene
	Gene ID
	GenBank#
	Primer sequences
	Product size (bp)

	
	
	
	
	

	 CTSB
	100370961
	NM_001097458.1
	F: AGCCTGGAACTTCTGGACAA 
	190

	
	
	
	R: TTTGTAGGACGGGGTGTAGC
	

	
	
	
	
	

	HIF-1A α-subunit
	396696
	NM_001123124.1
	F: GCCAGAACCTCCTGTAACCA
	204

	
	
	
	R: CCTTTTCCTGCTCTGTTTGG
	

	
	
	
	
	

	SERPINA3-2 
	396686
	NM_213787.1
	F: TGAAAGTTTCCCAGGTGGTC
	200

	
	
	
	R: CTAGGGCTTGGTGACTTTGC
	

	
	
	
	
	

	ITGA3
	100517053
	XM_005668879.1
	F: CTTCAAACGGAACCAGAGGA
	203

	
	
	
	R: AGAAGCTTTGTAGCCGGTGA
	

	
	
	
	
	

	SELENBP1
	100152724
	XM_001929643.3
	F: GGTACCAGCCTCGACACAAT
	203

	
	
	
	R: GTTGTGCAGGAATCGGATCT
	

	
	
	
	
	

	RSPO2
	100154008
	NM_001293141.1
	F: GTCCAGATGGTTTTGCACCT
	202

	
	
	
	R: CTCCTGGATTCAGCAATGGT
	

	
	
	
	
	

	FIGF
	100155670
	XM_001928382.3
	F: TCCCCAACCCTGTCATTTTA
	202

	
	
	
	R: TCCTTCTCCATTCCTTGGTG
	

	
	
	
	
	

	ANGPT1
	397009
	NM_213959.1
	F: GGGGGAGGTTGGACTGTAAT
	203

	
	
	
	R: TGTGAATAGGCTCGGTTTCC
	

	
	
	
	
	

	CDO1
	100312964
	NM_001167643.1
	F: TCTGAAGATGCTGCAAGGAA
	208

	
	
	
	R: CGTATCGAAGGGTGGACTGT
	

	
	
	
	
	

	DKK2
	100519672
	XM_003129269.2
	F: CTGGTACCCGCTGCAATAAT
	198

	
	
	
	R: GACAGGGATCTCCTTCATGC
	

	
	
	
	
	

	β-actin
	45269029
	AY550069.1
	F: GGACCTGACCGACTACCTCA
	180

	
	
	
	R: GGCAGCTCGTAGCTCTTCTC
	



[image: ]
Figure 1 Generation of PICM-19-CSCs. A: Feeder-independent PICM-19 cells were grown in 10% DMEM/Medium 199 on Matrigel in 24-well plates (see Materials and Methods). They were transfected with pUNO1-MYC-IRES-Luc plasmid and tested for luciferase expression using luciferin as substrate; B: Untransfected PICM-19 cells did not show bioluminescence (left panel), whereas transfected cells expressed luciferase (right panel); C: Detection of MYC protein in PICM-19-CSCs by Western blotting using the anti-human mouse c-MYC monoclonal antibody. As expected, PICM-19-CSCs, but not the untransfected PICM-19 stem cells (control) expressed MYC.

[image: ]
Figure 2 PICM-19-CSCs generate tumors after implantation in mice. A: PICM-19 cells were transfected with 3 µg of pUNO1-hMYC by nucleofection. 1 x 106 PICM-19 cells expressing MYC were implanted into the back flanks of NOD-SCID mice (n = 3) by subcutaneous injections. Tumors that grew to 1.5 cm in diameter were harvested; B and C: Tumors were sectioned and HE staining was performed, and cells were visualized by confocal microscopy (B: 40 x; C: 400 x). These images show that the PICM-19-CSCs induced tumors were uniform, and the cells were actively dividing in the PICM-19-CSC tumors, as seen by mitotic cell division [indicated by arrows in (C)].

[image: ]
Figure 3 RNA sequencing of PICM-19 liver stem cells and PICM-19-CSCs. A: Quality of the RNA extracted from PICM-19 and PICM-19-CSCs was assessed by electrophoresis (left panel) and by Nanodrop measurement to determine (RIN) for each cell type. RIN for PICM-19 and PICM-19-CSCs was 9.50 and 9.30, respectively. After the completion of sequencing, data was analyzed with TopHat and Cufflinks (see Materials and Methods), differential gene expression was calculated as fragments per kilobase of transcripts per million mapped reads (FPKM). Data thus obtained was plotted as a B: Density plot; C: Scatter Matrix plot; D: Box plot. Differentially expressed genes for each cell type were shown as log10 fold change. Log10 fold change of 2 or greater was considered significant. In total, 25096 genes were differentially expressed in both cell types, whereas PICM-19 and PICM-19-CSCs displayed unique expression of 6 and 237 genes, respectively.

[image: ]
Figure 4 Validation of RNA-seq data using real-time PCR. Expression of ten genes was tested by real-time PCR using total RNA isolated from PICM-19 and PICM-19-CSCs (see Materials and Methods). Data presented represent the mean ± SE of three independent experiments and P-value < 0.05 as determined by ANOVA.
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