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Abstract
Heart failure is one of the leading causes of death 
today. It is a complex clinical syndrome in which the 
heart has a reduced contraction ability and decreased 
viable myocytes. Novel approaches to the clinical 
management of heart failure have been achieved 
through an understanding of the molecular pathways 
necessary for normal heart development. Neuregulin-1 
(NRG-1) has emerged as a potential therapeutic target 
based on the fact that mice null for NRG-1 or receptors 
mediating its activity, ErbB2 and ErbB4, are embryonic 
lethal and exhibit severe cardiac defects. Preclinical 

studies performed with animal models of heart failure 
demonstrate that treatment with NRG-1 significantly 
improves heart function and survival. Clinical data 
further support NRG-1 as a promising drug candidate 
for the treatment of cardiac dysfunction in patients. 
Recent studies have revealed the mechanism underlying 
the therapeutic effects of NRG-1/ErbB signaling in 
the treatment of heart failure. Through activation of 
upstream signaling molecules such as phosphoinositide 
3-kinase, mitogen-activated protein kinase, and focal 
adhesion kinase, NRG-1/ErbB pathway activation 
results in increased cMLCK expression and enhanced 
intracellular calcium cycling. The former is a regulator 
of the contractile machinery, and the latter triggers 
cell contraction and relaxation. In addition, NRG-1/
ErbB signaling also influences energy metabolism and 
induces epigenetic modification in cardiac myocytes in 
a way that more closely resembles healthy heart. These 
observations reveal potentially new treatment options 
for heart failure.
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Core tip: Neuregulin (NRG)-1/ErbB signaling plays a 
critical role in the development of the heart and the 
maintenance of cardiac function. In both pre-clinical and 
clinical studies, NRG-1 has demonstrated efficacy as a 
therapeutic agent for the treatment of heart failure. In 
model animals and clinical trials, short-term treatment 
with recombinant NRG-1 protein results in a long-term 
beneficial effect. Here, the mechanisms underlying the 
therapeutic effects of NRG-1 during heart failure are 
reviewed. The results indicate that NRG-1 induces a 
cardiac reverse remodeling process through the initiation 
of changes in both cell metabolism and epigenetic 
modification.
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INTRODUCTION
The neuregulins (NRGs) are a group of growth factors 
that regulate multiple cellular processes, including 
proliferation, apoptosis, adhesion, differentiation, 
metabolism, and epigenetic modification, through 
the activation of ErbB receptors and downstream 
signaling pathways. Increasing evidence demonstrates 
that NRG-1/ErbB signaling plays a critical role in the 
development of the heart and the maintenance of 
cardiac function. In both pre-clinical and clinical studies, 
NRG-1 has demonstrated efficacy as a therapeutic 
agent for the treatment of heart failure. This review 
will focus on the underlying mechanisms and recent 
achievements in the treatment of heart failure with NRG 
therapy.

NRG FAMILY AND THEIR RECEPTORS
NRGs are ligands for receptor tyrosine kinases of 
the ErbB family. In mammals, NRGs are a family of 
homologous proteins encoded by four genes, NRG1, 
NRG2, NRG3, and NRG4. NRG-1 is the most abundant 
family member expressed in the cardiovascular system 
and the only NRG currently known to play a role in the 
development and function of the heart[1-4]. 

Six NRG-1 isoforms generated by alternative splicing 
have been identified. All NRG-1 isoforms contain an 
epidermal growth factor (EGF)-like domain, which 
is critical for function. Proteolytic cleavage at the 
C-terminal end of the domain results in the release of a 
secreted, bioactive form of NRG-1[5,6]. Due to alternative 
splicing, the EGF-like domain of NRG-1 differs at the 
C-terminal end. An α- or β-variant is generated, and in 
vitro studies have demonstrated that NRG-1β isoforms 
are 10-100-fold more biologically active than NRG-1α 
isoforms[3,7-9].

NRG-1 is a growth factor that elicits function through 
interaction with the ErbB family of tyrosine kinase 
receptors and is regulated by stress[10,11]. The ErbB 
family contains four members: ErbB1, ErbB2, ErbB3, 
and ErbB4. ErbB1, also known as EGF receptor, does 
not bind NRG-1[2]. ErbB2 does not directly bind any 
ligands, but functions as the heterodimeric partner of 
the other three ErbB family members[12]. NRG-1 binds 
to ErbB3 and ErbB4, which results in the formation of 
ErbB2/ErbB3 and ErbB2/ErbB4 heterodimers and leads 
to the phosphorylation of cytoplasmic receptor tyrosine 
residues. Multiple intracellular signal transduction 
cascades, such as phosphoinositide 3-kinase (PI3K)/
protein kinase B (Akt), mitogen-activated protein kinase 
(MAPK)/extracellular signal-regulated kinase (Erk) 

1/2, and focal adhesion kinase (FAK), are induced and 
stimulate cell proliferation, differentiation, and survival 
in many tissues including the heart[13-15].

NRG-1/ERBB SIGNALING IN CARDIAC 
DEVELOPMENT AND HEART FAILURE
The importance of NRG-1 in heart development was 
demonstrated in Nrg1-knockout mice. The Nrg1 
knockout was embryonic lethal, with the animals 
exhibiting cardiac developmental defects, such as the 
absence of ventricular trabeculation and insufficient 
myocyte differentiation[16,17]. Such results indicate 
that NRG-1 activity during cardiac development is not 
functionally redundant among family members[18-20]. The 
fact that NRG-2 and NRG-3 are expressed in the central 
nervous system and NRG-4 is expressed in pancreas 
and skeletal muscle further underscores the essential 
role for NRG-1 in cardiac development. Proteolytic 
cleavage is critical for the function of NRG-1, Adam17-
knockout mice died at birth[21]. Interestingly, a deletion 
mutation in the cytoplasmic tail of NRG-1 is resistant 
to proteolysis and cannot activate ErbB receptors, 
suggesting that the intracellular domain is essential for 
the proteolytic processing of NRG-1 proteins[22]. Mice 
with disrupted ErbB2 or ErbB4 were also embryonic 
lethal before day 11, mirroring the phenotype of the 
Nrg1-knockout mice[23,24]. These findings implicate an 
essential role in cardiac development for NRG-1/ErbB2/
ErbB4 signaling. ErbB3, however, is only expressed in 
mesenchymal cells of the endocardial cushion of the 
fetal heart. ErbB3-knockout mice were embryonic lethal 
at day 13.5 with defects in the endocardial cushion; 
however, the trabeculae had developed normally[24-26].

A function for NRG-1/ErbB2/ErbB4 signaling has 
also been confirmed in the adult heart[27]. Expression of 
NRG-1 is found in the microvascular endothelial cells in 
the adult heart, but not in the large coronary arteries 
or in the aorta[10]. ErbB2 and ErbB4 are expressed in 
adult cardiomyocytes, while ErbB3 is only expressed in 
fetal myocytes[27]. However, in one recent study, ErbB3 
expression was detected in the adult myocardium, 
although its function in adult heart still remains to be 
determined[28]. Mice with a cardiac-specific knockout 
of ErbB2 were phenotypically normal at birth, but 
spontaneously developed dilated cardiomyopathy at 
eight weeks of life. These animals were furthermore 
unable to survive pressure overload induced by aortic 
binding, and cardiac hypertrophy markers, skeletal 
α-actin and atrial natriuretic peptide, also significantly 
increased during the progression of heart failure[29]. 
The same result was observed in transgenic mice with 
a cardiomyocyte-specific null mutation in ErbB2[30]. 
In addition, the ErbB4 conditional-knockout mice 
developed dilated cardiomyopathy with delayed 
conduction and impaired contractility by the third month 
after birth[31]. Based on these results, ErbB2/ErbB4 
appears to be critical also for the maintenance of normal 
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function of the adult heart.
In clinical trials, breast cancer patients treated with 

trastuzumab (a humanized monoclonal ErbB2-targeted 
antibody) were found to have an increased risk for 
symptomatic heart failure and cardiac dysfunction[32,33]. 
This finding provided strong evidence for the critical 
role of ErbB2 in the adult human heart. In adult rat 
ventricular myocytes, treatment with NRG-1β resulted 
in activation of Erk1/2 and Akt, and significantly 
inhibited anthracycline-induced myofilament disarray. 
In contrast, simultaneous treatment of myocytes 
with anti-ErbB2 and doxorubicin led to more severe 
myofibrillar disarray than doxorubicin alone[34]. In the 
stress-induced rat model, administration of NRG-1β 
also led to significant improvement in the prevention 
of cardiac dilatation[35]. These results implicate a role 
for NRG-1/ErbB signaling in the maintenance of adult 
cardiac myocyte function and structure. Interestingly, 
NRG1 mRNA levels were found to be increased in 
chronic heart failure patients, while the expression of 
ERBB2 and ERBB4 was reduced in a potential feedback 
mechanism[6,36], indicating a possible role for NRG-1/
ErbB signaling during heart failure.

POSSIBLE MECHANISMS MEDIATING 
NRG-1/ERBB SIGNALING IN ADULT 
HEART
Based on in vitro and in vivo studies of cardiac myocytes, 
NRG-1/ErbB signaling regulates a number of cellular 
processes by activating signaling pathways such as 
PI3K/Akt, MAPK-Erk1/2, and FAK[15,27,34,37]. These 
canonical signaling cascades have been extensively 
reviewed elsewhere and will be addressed very briefly 
in this review[1,38,39]. In addition, recent studies indicate 

that NRG-1 functions as an effector molecule regulating 
energy metabolism[7] and epigenetic modification in 
cardiomyocytes[40]. A working model for NRG-1/ErbB 
signaling in heart is summarized in Figure 1.

CANONICAL SIGNALING PATHWAYS 
MEDIATING NRG-1/ERBB ACTIVITY
The PI3K/Akt pathway has been well studied in 
cell proliferation, growth, and apoptosis. In cardiac 
myocytes, activated Akt signaling inhibits apoptosis[41,42] 
and protects cardiomyocytes from apoptosis induced by 
serum starvation[27], cardiotoxic anthracycline[43], as well 
as β-adrenergic receptor activation[44,45]. This protective 
effect is dependent on the downstream activation of 
members of the Bcl-2 family, which typically block 
apoptosis[45,46]. Interestingly, NRG-1 shows a biphasic 
dose effect on p70S6K (a downstream protein kinase 
in the Akt/mTOR pathway) phosphorylation, as higher 
NRG-1 concentration leads to a decreased response[13]. 
In addition, Akt also promotes glucose uptake as well as 
activates endothelial nitric oxide synthase, which may 
contribute to cell survival under metabolic stress[7,47]. 

In adult cardiac myocytes, NRG-1 stimulates the 
Erk1/2 pathway, which leads to expression of genes 
associated with cardiac hypertrophy[13] as well as 
myofilament organization[34,37]. Erk1/2 activation is 
mediated by Grb2, Grb7, and Shc, which are downstream 
targets of ErbB2 and thus, also play a role in cardiac 
hypertrophy[48-51].

FAK signaling is involved in the formation of focal 
adhesion complexes as well as the restoration of sarcomeres 
in cardiac myocytes[52,53], and contributes to the growth 
and survival of myocytes[54,55]. In addition, cardiomyocyte 
FAK conditional knockout in mice was embryonic lethal, 
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Figure 1  Role of neuregulin-1/ErbB signaling in heart. Neuregulin (NRG)-1 treatment affects various signaling pathways as well as leads to changes in cell metabolism 
and epigenetic modification that more closely resemble normal heart function. Akt: Protein kinase B; cMLK: Cardiac myosin light-chain kinase; eNOS: Endothelial nitric 
oxide synthase; Erk: Extracellular signal-regulated kinase; FAK: Focal adhesion kinase; MLC: Myosin light chain; PLB: Phospholamban; PP1: Protein phosphatase 1; 
SERCA2a: Sarcoplasmic reticulum Ca2+-ATPase 2a.
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Epigenetic modification has been linked to cardiac 
hypertrophy and heart failure[76]. For example, class 
Ⅱ histone deacetylases (HDACs) suppress cardiac 
hypertrophy, partially through inhibition of the activity 
of myocyte enhancer factor 2[77]. In contrast, inhibition 
of HDAC activity results in increased cell size[78] and 
sarcomere disorganization in cultured cardiac myocytes[79]. 
Furthermore, the activity of histone acetyltransferase 
cofactors, such as cyclic AMP response element-binding 
protein (CREB)-binding protein and p300, is required in 
phenylephrine-induced cardiomyocyte hypertrophy[80]. 
In a model for congestive heart failure, the Dahl salt-
sensitive rat[81], H3K4 and H3K9 were identified as two 
primary histone modification sites that were markedly 
altered in cardiac myocytes during the development of 
the disease. High-throughput analysis performed by 
chromatin immunoprecipitation of H3K4 or H3K9 on 
DNA prepared from human heart also revealed global 
epigenetic changes in cardiac myocytes, and changes 
occurred in multiple signaling pathways previously 
associated with the progression of heart failure[82].

In cultured rat Schwann cells, NRG-1β dose-
dependently activated the transcription factor CREB, 
a protein with endogenous histone acetyltransferase 
activity[83]. In cultured muscle cells, NRG-1 activated 
mitogen and stress-activated kinase 1 and 2 and 
phosphorylated histone H3 in an Erk-dependent manner, 
resulting in chromatin remodeling[40]. Such results 
implicate a role for NRG-1 in epigenetic modification as 
well as provide a possible molecular mechanism.

Expression profiles of mRNA from NRG-1 treated and 
untreated cardiomyocytes have also been compared[58,84,85]. 
In our previous study, post-MI rats were infused with 
rhNRG-1β, and the total RNA extracted from the non-
infarcted area of the left ventricle was analyzed on 
GeneChip arrays (Affymetrix, Santa Clara, CA, United 
States). The results demonstrated that improvement 
in cardiac function was accompanied by an increase in 
expression of several epigenetic-related genes[58] (Table 1). 

The global epigenetic changes observed in our study 
reveal epigenetic modification as an important molecular 
mechanism underlying changes in cardiac myocytes 
induced by rhNRG-1β treatment. How these epigenetic 
changes are triggered by rhNRG-1β requires further 
investigation. Epigenetic modification also plays an 
important role in the development of cardiac dysfunction 
as well as hypertrophy, so that characterization of the 
epigenetic changes that occur will also help to improve 
our understanding of the molecular basis of heart failure.

CELL METABOLISM
Normal cardiac function relies on the maintenance of 
energetic homeostasis to a large degree. The cardiac 
myocyte is a highly oxidative cell type that utilizes 
mitochondrial respiration to generate most of its energy. 
In newborn heart, about half of the ATP production 
is derived from glycolysis[86]. After birth, fatty acid 
oxidation is significantly increased and accompanied 

and embryos exhibited a phenotype similar to the ErbB2 
or ErbB4 cardiac-specific knockout mice[56,57]. These results 
provide evidence for a role of FAK in cardiac development.

Recent studies have identified cardiac myosin 
light chain kinase (cMLCK) as a downstream target of 
NRG-1/ErbB signaling in cardiomyocytes[58]. As a cardiac 
specific kinase[59], cMLCK is capable of activating myosin 
light chain[60], resulting in sarcomere organization[61]. 
Ventricular myocyte hypertrophy was found in cMLCK-
deficient mice with histologic evidence of necrosis and 
fibrosis[62]. In our previous study, adenovirus-mediated 
gene delivery of cMLCK significantly improved cardiac 
function of post-myocardial infarction (MI) rats, and 
RNA interference of cMLCK reduced the beneficial effect 
of recombinant human NRG-1, rhNRG-1β (Ser177-
Glu237 of the EGF-like domain of human NRG-1β2a 
developed by scientists at Zensun Company; Shanghai, 
China), on sarcomere organization[58]. Interestingly, 
although the cMLCK-knockout mice had attenuated MLC 
phosphorylation and decreased fraction shortening, 
NRG-1 infusion still improved cardiac performance, 
indicating that the beneficial effect of NRG-1 on heart 
function is not completely mediated by cMLCK[63].

Disruption of calcium homeostasis also occurs during 
the development of heart failure[64,65]. Sarcoplasmic 
reticulum Ca2+-ATPase 2a (SERCA2a) is a Ca2+-
ATPase that regulates calcium uptake and contributes 
to cardiomyocyte relaxation[66,67]. SERCA2a activity 
is negatively regulated by phospholamban, a target 
of protein phosphatase 1[68,69]. It has been reported 
that rhNRG-1β enhances the intracellular calcium 
cycle in post-MI rats through the suppression of 
protein phosphatase 1 expression, which results in the 
improved SERCA2a activity[58]. The first clinical trial of 
gene therapy using adeno-associated virus (AAV) in 
the treatment of heart failure was performed in the 
United States. Both the safety and efficacy of SERCA2a 
delivery by gene transfer through a recombinant AAV1/
SERCA2a were evaluated in patients with advanced 
heart failure[70,71]. A further 250 patients are currently 
being enrolled in a phase 2b trial for intracoronary 
administration of AAV1/SERCA2a[72].

EPIGENETIC MODIFICATION
Chronic heart failure is considered to be a remodeling 
process affected by multiple environmental factors, 
and too complex to be addressed by single pathway 
interventions[73]. NRG-1 treatment results in long-
lasting benefits in animal models and human studies, 
indicating that NRG-1 at least partially stimulates 
cardiac reverse remodeling, as evidenced by a 
switch to fetal gene expression, rather than merely 
preventing cardiac dysfunction[35]. DNA methylation is 
one epigenetic mechanism known to directly regulate 
the expression of genes by altering the binding of 
transcription factors to DNA recognition elements[74], 
and dynamic DNA methylation/demethylation has 
been observed in vivo[75]. 
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In a different NRG-1 study, freshly isolated adult rat 
cardiomyocytes were treated with recombinant human 
NRG-1β (Neomarkers; P.H. Stehelin and Cie; Basel, 
Switzerland), and expression profiles were generated with 
cDNA arrays[84]. Expression reprogramming of several 
cellular processes was revealed, such as improved redox 
regulation, enhanced utilization of carbohydrates, and 
increased fatty acid β-oxidation[84]. In our experiments, 
rats with sustained MI were intravenously infused with 
rhNRG-1β, and microarray analysis was performed. 
Expression profiling revealed alterations in a number 
of genes, including carnitine palmitoyltransferase-1, 
a key enzyme responsible for the mitochondrial entry 
of fatty acids[97]. A series of fatty acid metabolism 
enzymes were also upregulated in myocardium[58] (Table 
2). Our microarray data therefore support a model 
where cardiac fatty acid β-oxidation is increased during 
rhNRG-1β treatment, and this model is consistent with 
the observation that rhNRG-1β plays a role in reverse 
remodeling. However, the causality between energy 
metabolism and NRG-1-induced reverse remodeling is 
still an unanswered question, and thus whether a shift in 
metabolism is the cause or consequence of remodeling 
requires further investigation.

PRECLINICAL STUDIES WITH NRG-1 FOR 
THE TREATMENT OF HEART FAILURE
Multiple isoforms of NRG-1 in humans are generated 
as a result of alternative splicing. Preclinical in vivo 
studies have demonstrated that several of the 
isoforms are capable of improving heart function by 
reducing hypertension[47], improving cardiomyocyte 
proliferation[27], inhibiting apoptosis[43], and enhancing 
angiogenesis[98] and Ca2+ handling[99]. rhNRG-1β was 
used in a series of animal models to evaluate its effect on 
heart function[35]. Intravenous administration of rhNRG-
1β significantly improved cardiac function and survival in 

by a parallel decrease in glycolytic rates[87]. The energy 
generated by mitochondrial oxidation is primarily 
derived from the fatty acid β-oxidation pathway, and in 
healthy heart, β-oxidation of fatty acids provides more 
than two thirds of cardiac energy[88]. 

Metabolic abnormalities are clearly involved in the 
development of heart failure; however, controversy 
remains concerning the specific alterations in cardiac 
metabolism and the underlying mechanisms. In late-
stage heart failure induced in dogs through pacing-
overdrive, fatty acid oxidation-related enzymes were 
found to be downregulated, while the rate of glucose 
oxidation dramatically increased[89,90]. Analysis of 13C 
nuclear magnetic resonance demonstrated that fatty acid 
oxidation was suppressed in hypertrophic, compensated 
heart, whereas lactate and glucose oxidation were 
unaffected[91]. In contrast, pressure overload-induced 
hypertrophy in a rat model exhibited a significant 
increase only in glucose oxidation[92]. This phenomenon 
was confirmed in a second rat model, in which supra-
renal aortic constriction was used to induce hypertrophy; 
glycolytic capacity was modestly elevated but no 
significant decline in fatty acid oxidation occurred in the 
hypertrophic heart[93]. These conflicting observations 
highlight the complexity of energy metabolism in the 
failing heart. 

Emerging evidence indicates that the shift in 
substrate preference from fatty acids towards glucose 
in cardiac myocytes can improve heart function and 
slow the progression of heart failure[94], possibly due 
to the fact that fatty acids waste more ATPs in cardiac 
metabolism[95,96]. Furthermore, in advanced or end-stage 
heart failure, the levels of long- and medium-chain acyl-
CoA dehydrogenases were dramatically downregulated, 
resulting in the suppression of fatty acid oxidation[88]. 
Thus, a switch to carbohydrate metabolism appears 
to improve heart function in the short term, whereas 
fatty acid oxidation benefits long-term cardiac reverse 
remodeling.

67  May 23, 2015|Volume 5|Issue 2|WJH|www.wjgnet.com

Table 1  Changes in mRNA levels of chromosome remodeling and histone modification genes in rat cardiomyocytes treated with 
rhneuregulin-1b

Gene Fold increase 
(rhNRG-1b/vehicle)

Biologic process Ref.

Embryonic ectoderm development (Eed) 1.56 Genetic imprinting, histone methylation [114]
SWI/SNF related, matrix associated, actin dependent 
regulator of chromatin, subfamily a, member 4 (Smarca4)

1.48 Nucleosome disassembly, methylation-dependent 
chromatin silencing, ATP-dependent chromatin remodeling

[115]

Jumonji domain containing 6 (Jmjd6) 1.61 Histone H3-R2 demethylation, histone H4-R3 
demethylation, histone lysyl 5-hydroxylation

[116,117]

Histone cluster 1, H4b (Hist1h4b) 1.49 Nucleosome assembly [118]
CSRP2 binding protein (Csrp2bp) 2 Histone acetylation [119]
H2A histone family, member Z (H2afz) 1.63 Nucleosome assembly [120]
MYST histone acetyltransferase (monocytic leukemia) 3 
(Myst3)

1.48 Chromatin modification, histone acetylation [121]

Nuclear receptor coactivator 3 (Ncoa3) 2.33 Chromatin modification, histone acetylation [122]
Nucleophosmin (nucleolar phosphoprotein B23, numatrin) 
(Nmp1)

1.8 Nucleosome assembly [123]
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thus rendering NRG-1 a promising drug candidate for 
the treatment of heart failure. To date, two different 
isoforms of NRG-1 have been tested in human clinical 
trials. Since 2004, phase 1 and phase 2 trials in China, 
Australia, and the United States have confirmed that 
rhNRG-1β is safe and well tolerated in both chronic 
heart failure patients and healthy controls. In a phase 
2, randomized, double-blind, multicenter, placebo-
controlled study, 44 patients with New York Heart 
Association functional class II or III stable chronic heart 
failure were randomly assigned to four groups and 
treated with placebo or rhNRG-1β (0.3 µg/kg per day, 
0.6 µg/kg per day, or 1.2 µg/kg per day) through a ten-
hour intravenous infusion per day for ten consecutive 
days. At day 30, patients treated with rhNRG-1β 
exhibited significantly increased left ventricular ejection 
fraction (LVEF%), as well as reduced end-diastolic and 
end-systolic volumes, which continued to decrease at 
day 90 and were accompanied by a sustained increase 
in LVEF%, indicating a long-term effect for rhNRG-1β in 
cardiac reverse remodeling[104]. In another clinical trial, 
15 patients with stable chronic heart failure received 
a daily infusion of rhNRG-1β for 11 d. Improved 
hemodynamic effects were observed, and the increase 
in LVEF% was sustained for 12 wk[105]. A phase 3 trial 
designed to measure the safety and efficacy of rhNRG-
1β in a larger cohort of chronic heart failure patients is 
currently ongoing in China.

Another NRG-1 isoform utilized in clinical trials is 
GGF2 (also known as NRG-1β3). In a phase 1, single-
infusion, dose-escalation study, a single dose of rhGGF2 
was well tolerated up to 0.75 mg/kg, whereas higher 
doses were associated with serious adverse events[106]. 
Patients with symptomatic heart failure receiving 
a single dose of rhGGF2 exhibited increased left 

a rat model of heart failure induced by the ligation of left 
anterior descending coronary artery. In the heart failure 
model induced by chronic pacing, rhNRG-1β treatment 
improved the left ventricular end diastolic and systolic 
pressures, as well as cardiac contractility and relaxation. 
In addition, a second recombinant form of NRG-1 
(recombinant human glial growth factor 2, rhGGF2) also 
prevented cardiac dysfunction and improved survival in 
doxorubicin-induced heart failure in the mouse[100]. 

An engineered bivalent human NRG-1β (generated 
through the synthetic linkage of two NRG-1β moieties) 
protected against acute doxorubicin-induced cardio
myopathy without proneoplastic effects[101]. In another 
study, administration of recombinant human NRG-1 
(Novartis Pharmaceuticals, Basel, Switzerland) significantly 
improved heart function and reversed cardiac remodeling 
of diabetic cardiomyopathy in rats with chronic heart 
failure[102]. In addition, rhGGF2 treatment improved 
residual left ventricular function and normalized a 
number of myocardial genes altered by MI in rats[85].

CLINICAL STUDIES OF NRG-1/ERBB IN 
HEART FAILURE
During the past 30 years, many drugs have been 
developed for the treatment of heart failure, including 
β-blockers, angiotensin converting enzyme inhibitors, 
angiotensin receptor blockers, and brain natriuretic 
peptide. Despite the fact that these therapies have 
improved clinical outcomes significantly, heart failure 
has become the major cause of cardiovascular death[103]. 
Therefore, the development of new treatments for heart 
failure continues to be necessary.

Multiple in vitro and in vivo studies have confirmed the 
beneficial effects of NRG-1 on cardiac function[27,98,99], 
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Table 2  Changes in mRNA levels of fatty acid metabolism enzyme genes in rat cardiomyocytes treated with rhneuregulin-1b

Gene Fold increase 
(rhNRG-1b/vehicle)

Function Ref.

Carnitine palmitoyltransferase Ib, muscle 
(Cpt1b)

1.83 Rate-limiting enzyme which imports fatty acid for mitochondrial 
oxidation

[124]

Acyl-CoA synthetase, long-chain family 4 
(Acsl4)

2.31 Promotes fatty acid uptake [125]

2,4-dienoyl CoA reductase, mitochondrial 
(Decr1)

2.04 Catalyzes the rate-limiting step that prepares polyunsaturated fatty acids 
to be utilized as substrates for b-oxidation

[126]

Hydroxyacyl-CoA dehydrogenase 
(Hadhb)

1.59 β-subunit of the mitochondrial trifunctional protein, catalyzes the last 
three steps of mitochondrial b-oxidation of long-chain fatty acids
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[130]
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4 (Hsd17b4)

1.64 Enzyme involved in peroxisomal fatty acid b-oxidation [131]

Dodecenoyl-coenzyme A delta isomerase 
(Dci)

1.66 Mitochondrial fatty acid oxidation enzyme [132]

Protein kinase, AMP-activated, b1 non-
catalytic subunit (Prkab1)

1.98 Regulatory subunit of the AMP-activated protein kinase, involved in 
regulating de novo biosynthesis of fatty acid and cholesterol

[133]
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The human neuregulin-2 (NRG2) gene: cloning, mapping and 
evaluation as a candidate for the autosomal recessive form of 
Charcot-Marie-Tooth disease linked to 5q. Hum Genet 1999; 104: 
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19	 Hayes NV, Newsam RJ, Baines AJ, Gullick WJ. Characterization 
of the cell membrane-associated products of the Neuregulin 4 gene. 
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sj.onc.1210689]

20	 Harari D, Tzahar E, Romano J, Shelly M, Pierce JH, Andrews GC, 
Yarden Y. Neuregulin-4: a novel growth factor that acts through the 
ErbB-4 receptor tyrosine kinase. Oncogene 1999; 18: 2681-2689 
[PMID: 10348342 DOI: 10.1038/sj.onc.1202631]

21	 Shi W, Chen H, Sun J, Buckley S, Zhao J, Anderson KD, Williams 
RG, Warburton D. TACE is required for fetal murine cardiac 
development and modeling. Dev Biol 2003; 261: 371-380 [PMID: 
14499647 DOI: 10.1016/S0012-1606(03)00315-4]

22	 Liu X, Hwang H, Cao L, Buckland M, Cunningham A, Chen J, 
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reveals critical regulation of neuregulin signaling by its cytoplasmic 
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ventricular function over 28 d compared to placebo[107]. 
A phase 1b study designed to evaluate the effect of 
rhGGF2 single intravenous infusion on midazolam 
pharmacokinetics is ongoing (registration at www.
clinicaltials.gov, NCT01944683). 

A complicating issue is the fact that ERBB2 has a 
well-described role as an oncogene, particularly in the 
development of breast cancers[108,109]. Although recent 
publications support the idea that NRG1 functions instead 
as a tumor-suppressor gene[110], NRG-1 treatment for 
cardiac therapy raises a concern for a potential increased 
risk of cancer. However, ErbB2-associated cancer is 
often NRG-independent, and furthermore NRG1 is often 
silenced by methylation in breast cancers[111]. In addition, 
chromosome translocation breakpoints targeting NRG1 
on 8p12 have been found in breast and pancreas cancer 
cell lines[112,113]. Finally, our previous clinical experience 
demonstrated that the incidence of cancer of any type 
in > 1000 subjects treated with rhNRG-1β was no 
different than in patients treated with placebo. Together, 
these findings indicate that there is a low risk for the 
development of cancer during NRG-1 treatment.  

CONCLUSION
A number of experimental results from both clinical 
studies and animal models have demonstrated the 
importance of NRG-1/ErbB signaling in adult heart 
function. Expression profiling has firmly established that 
in addition to canonical ErbB2 downstream pathways, 
energy metabolism and epigenetic modification also play 
roles in NRG-1-mediated reverse remodeling of heart 
failure. Additional studies, however, are still necessary 
to elucidate the precise molecular mechanisms utilized. 
Finally, a recombinant human NRG-1 peptide has 
demonstrated significant potential as a novel drug 
candidate for chronic heart failure in preclinical and 
clinical studies. Further studies illuminating mechanisms 
mediating NRG-1/ErbB signaling will therefore help 
to facilitate the development of novel strategies for 
the treatment of chronic heart failure and to better 
understand the function of NRG-1 in cardiac physiology.
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