
liver diseases and liver failure. It is a relatively less 
complicated surgical procedure, and has the advantage 
that it can be repeated several times if unsuccessful. 
Another advantage is that hepatocytes can be isolated 
from partly damaged livers which are not suitable 
for liver transplantation. Despite these advantages 
hepatocyte transplantation is less popular. Important 
issues are poor engraftment of the transplanted cells 
and the scarcity of donor hepatocytes. Generation of 
“hepatocyte like cells”/iHeps from embryonic stem 
cells (ES) and induced pluripotent stem cells (iPSCs) by 
directed differentiation is an emerging solution to the 
latter issue. Direct conversation or trans-differentiation 
of fibroblasts to “hepatocyte like cells” is another way 
which is, being explored. However this method has 
several inherent and technical disadvantages compared 
to the directed differentiation from ES or iPSC. There 
are several methods claiming to be “highly efficient” for 
generating “highly functional” “hepatocyte like cells”. 
Currently different groups are working independently 
and coming up with differentiation protocols and 
each group claiming an advantage for their protocol. 
Directed differentiation protocols need to be designed, 
compared, analyzed and tweaked systematically and 
logically than empirically. There is a need for a well-
coordinated global initiative comparable to the Human 
Genome Project to achieve this goal in the near future.  
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Core tip: Hepatocyte transplantation is an alternative 
for liver transplantation in chronic liver disease patients 
for a long term cure. There is a scarcity of donor liver 
and hepatocytes. Induced pluripotent stem cells (iPSC) 
derived hepatocytes and hepatocytes generated by 
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Abstract
Hepatocyte transplantation is an alternative to liver 
transplantation in certain disorders such as inherited 
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transdifferentiation are two possibilities. iPSC derived 
hepatocytes often fail to engraft upon transplantation. 
We need to define methods to evaluate and compare 
efficiency of differentiation, standards and clear quality 
definition for hepatocyte like cells. More comprehensive 
analysis of the RNAs and proteome is required. Methods 
to compare and analyze the expression profiles, 
standards and references to be compared with need 
to be defined. There is a need for a well-coordinated 
global initiative comparable to the scale of the Human 
Genome Project to achieve this goal in the near future.

Sanal MG. Cell therapy from bench to bedside: Hepatocytes from 
fibroblasts - the truth and myth of transdifferentiation. World J 
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HEPATOCYTE TRANSPLANTATION OVER 
LIVER TRANSPLANTATION
Liver transplantation is the only long term option 
in some inherited metabolic liver diseases, acute 
liver failure and most end stage liver diseases[1,2]. 
Hepatocyte transplantation is an alternative for these 
patients for a long term cure if not as a bridge to 
regeneration or liver transplantation[3,4]. Hepatocyte 
transplantation has the advantage that it can be 
performed more than once on the same patient. 
Hepatocytes for this procedure can be isolated from 
cadaveric liver or living donor liver tissue which 
are not suitable for liver transplantation for various 
reasons such as damage to the blood vessels, localized 
hypoxic damage or local lesions. Another advantage 
of hepatocyte transplantation is that the procedure 
is less complicated and the mortality and morbidity 
is expected to be much lower compared to liver 
transplantation. Moreover, even if the patient receives 
the hepatocyte transplant and it does not work, they 
can be considered for orthotopic liver transplantation 
as if they never received the hepatocyte transplant. 
Shortage of donor liver is one of the major limiting 
factors in both liver transplantation and hepatocyte 
transplantation[3]. 

APPLICATIONS OF HEPATOCYTE 
TRANSPLANTATION
 Conditions benefitting from hepatocyte transplantation 
can be classified into two major categories (1) where 
transplanted cells rescue the liver function and help the 
patient survive (example: acute liver failure resulting 
from toxins). Here hepatocyte transplantation might 
actually work because the host liver suffered a massive 
damage and loss of hepatocytes and transplanted 
hepatocyte help with the liver functions; and (2) an 

inherited disease of the liver. Example: Hemophilia, 
Wilson’s disease, Urea cycle disorders, α1 antitrypsin 
deficiency, Crigler Najjar syndrome. Here the patient’s 
liver cells have a gene defect which does not allow them 
to synthesize a protein in its correct form or function. 
Here the disease can be cured only if we can replace 
certain percentage the patient’s defective hepatocytes 
with healthy hepatocytes or gene corrected (example 
by gene therapy using viral vectors or genome 
editing tools such as ZFN, TALENs[5] or CRISPR-Cas9) 
hepatocytes in sufficient quantities to allow normal liver 
functions. This is a very difficult task to achieve and 
hence a major road block in the technique of hepatocyte 
transplantation because the transplanted cells would 
engraft and repopulate the host liver only if we could 
provide them a selective advantage. This is usually 
achieved by inflicting a physical or chemical damage 
to the host liver. However, the methods for damaging 
hepatocytes are not safe and therefore not clinically 
acceptable. 

HEPATOCYTES FROM PLURIPOTENT 
STEMS CELLS AND FIBROBLASTS - THE 
TRUTH AND MYTH
Shortage of donor hepatocytes is another major issue 
in hepatocyte transplantation. Generating hepatocytes 
from embryonic stem cells (ES) or induced pluripotent 
stem cells (iPSCs) (or even less known entities such 
as very small embryonic-like stem cells) is an exciting 
solution to this conundrum[4-7]. There are several 
protocols which claim generation of hepatocyte like 
cells from directed differentiation of ES, iPSC or other 
stem cell types[6,8-23]. There is no doubt about the future 
promise of hepatocytes derived from pluripotent stem 
cells (such as ES, iPSCs or SCNT/iPSCNT), however 
worldwide there is no unambiguous data to support 
the usefulness of ES or iPSC derived “hepatocyte 
like cells” in their current form (using the “highly 
efficient” and “state of the art” protocols), in animal 
models or humans[4,5,23-28]. This is because despite 
the “extensive” and “excellent” in vitro characterized 
cellular, biochemical, metabolic, physiological and 
microscopic properties (such as various surface and 
structural proteins, transcriptional factors, secretion 
of albumin, clotting factors, liver enzymes, active bile 
acid and drug transporters, lipoprotein mediated lipid 
uptake/secretion, glycogen accumulation, mild to 
moderate cytochrome activity, electron microscopic 
demonstration of subcellular structures characteristic 
for hepatocytes) these cells fail to integrate in host 
livers upon transplantation except under extreme 
selection pressure in certain limited animal models 
such as genetically engineered fumaryl hydroxylase 
deficient knock-out (FAH-KO) immunodeficient 
mice[29,30], urokinase-type plasminogen activator-
severe combined immunodeficiency [uPA(+/+)-
SCID] mice[31]. Alternatively host hepatocytes are 
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intentionally damaged by chemical agents such as 
dimethylnitrosamine[32] or physical agents such as 
radiation[33] such that the transplanted hepatocytes will 
have a selective advantage over the host hepatocytes. 
Thus host liver damage would facilitate engraftment 
and repopulation of the transplanted cells. All these 
techniques will induce chronic liver damage and 
therefore have a very limited clinical value (e.g., 
clinical trial # NCT01465100)[34].

The current hepatocyte like cells are likely to be 
a mixture of immature cells which express several 
markers belonging predominantly to the endodermal 
lineage which includes many liver transcription 
factors and liver genes. Many of the current iPSC 
protocols claim high efficiency, however there is no 
standard means to compare various protocols. Many 
of these protocols decide efficiency of differentiation 
by calculating the percentage of cells expressing 
one or two hepatocyte markers such as albumin, 
HNF-4α and ASGPR1. This method is not entirely 
correct because only a few markers are evaluated 
and many investigators do not typically look for the 
quantification and co-expression of various factors. 
Similarly, many investigators do not look for markers 
which are not typically expressed in liver (for example 
pancreas or lung specific markers). It is possible that 
these ES/iPSC derived hepatocytes are somewhere 
“lost” with respect to their identity along their way to 
hepatocytes[22]. Finally, much of the published work is 
dependent on immunofluorescent techniques for the 
determination of differentiation efficiency, however, this 
can be inherently flawed as many immunofluorescent 
techniques are associated with errors from various 
sources such as, nonspecific binding, variability in 
fixation procedures, lack of proper controls and 
observer bias[35]. 

POPULAR ANIMAL MODELS FOR 
HEPATOCYTE REPOPULATION - THE 
ISSUES
In FAH model, part of the mechanism of engraftment 
and repopulation is the fusion of the transplanted cells 
with host cells which are deficient in a critical enzyme 
necessary for hepatocyte survival. Similarly, the 
uPA model suffers from spontaneous (or cell fusion 
induced deletion upon xenotransplantation) deletion 
of the offending uPA gene[36-39]. This implies that non-
liver cells can fuse with host hepatocytes (resulting in 
a compensated phenotype) and repopulate the host 
liver. The fusion is expected to result in unstable or 
metastable intermediate stages which may acquire 
some degree of genomic stability by spontaneous 
deletions, duplications or recombination of the 
genetic material. Therefore repopulation of FAH-
KO/UPA mouse liver cannot be considered as a proof 
of hepatocyte identity or quality and one needs to 

be skeptical towards the different claims for “highly 
efficient” generation of hepatocyte like cells from 
ES/iPSC. Spontaneous repopulation of liver with 
transplanted hepatocytes was reported in mutant α1-
antitrypsin protein (AAT-Z) expressing mice even in 
the absence of severe liver injury[40]. However there 
is little information available in the literature on the 
post-repopulation genetic/epigenetic changes in 
transplanted cells. 

HEPATOCYTE LIKE CELLS - 
TRANSDIFFERENTIATED FIBROBLASTS 
VS IPSC/ES 
It is amidst these unsubstantiated claims of iPSC derived 
“highly functional” hepatocyte like cells, claims of trans-
differentiated hepatocytes rose to the limelight[19,35,41-51]. 
The proponents of transdifferentiation (from fibroblasts, 
the preferred source for most investigators) claim ‘highly 
efficient conversion of fibroblasts to hepatocytes’ by 
ectopic expression of a combination of transcription 
factors (or using a cocktail of small molecules, growth 
factors and cytokines). It has been claimed that 
these trans-differentiated fibroblasts are better than 
hepatocyte like cells from iPSC because they are less 
likely to form tumors (such as teratomas). They point to 
the potential of iPSCs to form teratomas. Another reason 
they cite is that oncogenes such as c-myc are used in 
the generation of iPSCs. These are pithless arguments 
for the following reasons: (1) it is the essential and 
natural property of all pluripotent stem cells to form 
teratomas and teratomas are benign tumors[52]. All 
the pluripotent cells in a morula which would give 
rise to a healthy offspring have the potential to form 
teratomas. In fact teratoma formation is the gold 
standard for the quality of pluripotency (in humans)[53]; 
and (2) all oncogenes are essential genes for normal 
development and function of an organism. Oncogenes 
can be oncogenic or anti-oncogenic depending on the 
cellular and extracellular genetic and epigenetic context 
which is partly dictated by the microenvironment. For 
example c-Myc can induce apoptosis in hepatocytes 
instead of proliferation[54,55]. Another argument favoring 
the trans-differentiated hepatocytes is that fibroblasts 
the common “raw material” for the generation of “trans-
differentiated hepatocyte like cells” are easily available. 
This is essentially wrong because ES/iPSC can proliferate 
indefinitely (by definition) in-vitro and therefore 
several fold more fibroblasts are required to generate 
a similar quantity of “hepatocyte like cells” through 
transdifferentiation considering the fact that fibroblast 
proliferation is limited by Hayflick’s limit. I would expect 
hepatocyte like cells generated from iPSC to be better 
than directly trans-differentiated cells because during 
iPSC generation the somatic cells are brought down to a 
ground state and this brings more epigenetic uniformity 
compared to transdifferentiation where hepatocytes 
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and hence lesser number of mutations[64-69]. 
To conclude we have a long way to our goal of 

generating hepatocytes by directed differentiation 
from ES/iPSCs or by transdifferentiation from somatic 
cells. Currently for many reasons iPSC derived 
hepatocytes are superior to hepatocyte like cells from 
transdifferentiated fibroblasts or other somatic cells. 

CALL FOR A UNIFIED EFFORT SIMILAR 
TO THE HUMAN GENOME PROJECT 
FOR ELUCIDATING DEVELOPMENTAL 
PATHWAYS AND SIGNALING
Before we compare and promote one method or the 
other for generating hepatocyte like cells, we need to 
define methods/protocols to evaluate and compare 
efficiency of differentiation, we need to define the 
standards and more importantly a clear definition for 
hepatocyte like cells. A more comprehensive analysis 
of the epigenome, RNAs and proteome of the different 
hepatocyte like cells are required to set the standards-
the gold standard of comparison being human primary 
hepatocytes. Methods to compare and analyze the 
expression profiles, standards and references to be 
compared with need to be defined. 

Currently different groups are working independently 
and coming up with differentiation protocols and each 
group claiming an advantage for their protocol. Directed 
differentiation protocols need to be compared, analyzed 
and tweaked systematically and logically than empirically. 
This is true not only for hepatocytes but also for several 
other cell types such as cardiomyocytes, neurons, retinal 
cells, cartilage, macrophages, endometrial or germ cells, 
which could eventually be used in clinics. There is a need 
for a well-coordinated global initiative comparable to the 
scale of the Human Genome Project[70] to achieve this 
goal in the near future.  
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