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Abstract
Endothelial cells (ECs) are essential for pancreas 

differentiation, endocrine specification, and endocrine 
function. They are also involved in the physiopathology of 
type 1 and type 2 diabetes. During embryogenesis, aortic 
ECs provide specific factors that maintain the expression of 
key genes for pancreas development such as pancreatic 
and duodenal homeobox-1. Other unknown factors are 
also important for pancreatic endocrine specification 
and formation of insulin-producing beta cells. Endocrine 
precursors proliferate interspersed with ductal cells and 
exocrine precursors and, at some point of development, 
these endocrine precursors migrate to pancreatic 
mesenchyme and start forming the islets of Langerhans. 
By the end of the gestation and close to birth, these islets 
contain immature beta cells with the capacity to express 
vascular endothelial growth factor and therefore to recruit 
ECs from the surrounding microenvironment. ECs in turn 
produce factors that are essential to maintain insulin 
secretion in pancreatic beta cells. Once assembled, a 
cross talk between endocrine cells and ECs maintain the 
integrity of islets toward an adequate function during the 
whole life of the adult individual. This review will focus 
in the EC role in the differentiation and maturation of 
pancreatic beta cells during embryogenesis as well as the 
current knowledge about the involvement of endothelium 
to derive pancreatic beta cells in vitro  from mouse or 
human pluripotent stem cells.  
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Core tip: Many studies have demonstrated that endothelial 
cells (ECs) have an important role in organogenesis. 
For instance, during embryogenesis, aortic ECs provide 
specific factors that maintain the expression of key genes 
for pancreas development. Other unknown factors are 
also important for pancreatic endocrine specification and 
formation of insulin-producing beta cells. In addition, by 
the end of the gestation and close to birth, pancreatic 
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islets contain immature beta cells with the capacity to 
express factors that recruit ECs from the surrounding 
microenvironment and form a functional unit that will 
lasts for the whole life of the individual. In the present 
review, we will analyze the current endothelial-derived 
factors called angiocrine factors that are essential in 
organogenesis and we will focus the role of these factors 
in pancreas development and pancreatic beta cells.

Talavera-Adame D, Dafoe DC. Endothelium-derived essential 
signals involved in pancreas organogenesis. World J Exp Med 
2015; 5(2): 40-49  Available from: URL: http://www.wjgnet.com/
2220-315X/full/v5/i2/40.htm  DOI: http://dx.doi.org/10.5493/
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INTRODUCTION
At present, insulin producing cells have been derived from 
different sources[1-3]. With the emergence of embryonic 
stem cells (ESCs) and induced pluripotent stem cells 
(iPSCs), that can be plated in vitro, the potential 
production of several cell types including pancreas 
can be now achieved[2,4-11]. Endothelial cells (ECs) are 
present at early stages during embryogenesis[12-15]. 
These cells are the main component of most niches[16]. 
Therefore, ECs interact early with developing tissues 
during organogenesis even before they are able to 
form blood vessels and nourish specific regions[16-19]. It 
has been reported that the absence of ECs results in 
agenesis of some organs such as pancreas[20,21]. This 
fact points out the essential role of EC signaling during 
organogenesis. Apparently ECs are not only involved in 
pancreas differentiation, they are essential for endocrine 
differentiation as well[20]. Endocrine progenitors give rise 
to immature beta cells that recruit ECs after expression 
of vascular endothelial cell growth factor (VEGF)[18,20]. 
These ECs in turn provide factors to promote beta-cell 
maturation and stabilize b-cell function. In this review, 
we will be focusing in the role of ECs in the differentiation 
and maturation of beta cells in vivo and in vitro with 
the emerging technology of human PSCs that can be 
expanded in vitro.  

ENDOTHELIUM AS AN ENDOCRINE 
ORGAN
Extensive studies with ECs have demonstrated that these 
cells play essential roles in immunity, inflammation, 
angiogenesis, and tumor metastasis. ECs do not only line 
the interior surface of blood vessels[22,23]. ECs are found 
at the interface between blood and other cell types. They 
not only maintain the blood fluid but also have a great 
plasticity that allows these cells to accomplish several 
essential functions to maintain homeostasis[18]. However,  
recent studies demonstrated that the endothelium is 
capable of releasing growth factors and cytokines that 
play an essential role in organogenesis[24] (Table 1). 

The term angiocrine has been proposed by Butler and 
collaborators to indicate the capacity of ECs to release 
growth factors and cytokines that may be involved in 
organogenesis[25]. For instance, bone marrow sinusoidal 
ECs (SECs) promote differentiation of hematopoietic 
stem cells (HSCs) through “angiocrine factors” such as 
hepatocyte growth factor (HGF), Wnt2, and Notch[25,26]. 
Additionally, Butler and colleagues reported that ECs 
promote self-renewal of hematopoietic stem cells when 
these cells are interacting in co-culture[25]. Apparently, 
Notch ligands expressed by ECs are associated with 
this response[25]. Another studies indicate that ECs from 
liver, called sinusoidal ECs (LSECs), express factors such 
as VE-cadherin, Factor VIII and vascular endothelial 
growth factors 2 and 3 (VEGF2, VEGF3) and these 
cells release angiocrine factors that may be involved 
in liver regeneration[26].  In another work it has been 
described that angiocrine factors are able to regulate 
tumor growth[27]. Other studies demonstrated that mice 
deficient in FLK-1 (VEGF receptor), die at embryonic day 
E9.5 or E10.5 because immaturity of blood cells and 
blood vessels[28]. Absence of embryonic liver budding is 
also present in these mice indicating that ECs play an 
important role during the early phases of organogenesis. 
In a similar work, it has been observed that ECs are 
also involved during the early stages of pancreas 
development[20]. Another research work indicated that 
signals from myocardium, such as those exerted by 
bone morphogenetic protein-2 (BMP-2), can promote 
epithelial-mesenchymal transformation mediated by 
ECs[24,29]. In the kidney, VEGF, bFGF, and PDGF coordinate 
cellular differentiation, proliferation, and migration[30]. It 
has been suggested that ECs promote the differentiation 
of endoderm cells toward liver or pancreas through 
secretion of HGF[17,19,24,28,31,32] (Table 1). At the same 
time, reciprocal interactions between tissue-specific 
cell types and ECs ensure coordinated growth and 
adequate tissue function. For instance, it is known that 
neurogenesis takes place close to blood vessels in adult 
brains[33]. Additionally, brain-derived neurotrophic factor 
(BDNF) secreted by ECs promotes neurogenesis and 
angiogenesis in the brain of song birds[34]. Another report 
indicates that pigment epithelium-derived factor (PEDF) 
is secreted by ECs and enhances self-renewal of neural 
stem cells (NSCs)[35]. Regarding the pancreas, it has 
been shown that pancreatic endoderm attract endothelial 
progenitor cells (EPCs) or angioblasts by expression 
of SDF-1/CXCL12[36]. Expression of pancreatic and 
duodenal homeobox 1 (PDX-1) appeared in endoderm 
cells in contact with angioblasts via LIM domain only 
2 (LMO2) suggesting that angioblasts may induce 
expression of PDX-1[37]. Functional blood vessels may 
induce differentiation before they carry blood. However, 
some blood factors such as sphingosine-1-phosphate 
(SIP) are important for differentiation and maturation[38]. 
For instance, it has also been described that beta-cell 
differentiation can be regulated by oxygen tension via 
hypoxia-inducible factor 1 alpha (HIF-1α)[39]. This fact 
suggests that blood factors can also be involved in the 
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complete differentiation and maturation of pancreatic 
endocrine cells. 

ENDOTHELIUM ROLE IN THE 
PANCREATIC NICHE
The pancreas originates from ventral and dorsal buds 
formed in the foregut at 8.5 d post-coitum (d.p.c) 
of gestation in mice and Carnegie stage 12 (CS12) 
in humans[54-56]. The cells that composed these buds 
express transcription factors such as PDX-1 which is a 
key regulator of pancreas development[57-59]. However, 
before these cells express these genes, the cells interact 
with other surrounding cells such as those that compose 

the notochord and factors such as fibroblast growth 
factor-2 (FGF-2) and activin-βB suppress the expression 
of sonic hedgehog (SHH) locally and promotes 
expression of PDX-1 in the subjacent endoderm[60-63] 
(Figure 1). 

Once the mesoderm layer starts proliferating, other 
signals from aortic endothelial cells (AECs) and mesen
chyme (MCs) continue interacting with these PDX-1 
expressing cells that give rise to acinar cells that harbor 
pancreatic exocrine and endocrine progenitors[64] (Figure 
2). As these progenitors continue receiving more 
surrounding instructive signals, definition of cell function 
is established and the exocrine cells form acini while the 
endocrine cells form islets of Langerhans[54] (Figure 3). 
However, these islets contain immature beta cells that will 
become more mature after islet vascularization that allows 
closer interaction between beta cells and ECs.

Embryonic endothelium and endoderm pre-patterning
The vascular system is one of the first tissues that 
develop during embryogenesis. Mesodermal progenitors 
coalesce in the yolk sac and give rise to endothelium and 
blood cells[15]. Endothelial cells exert inductive effects 
on specific points were they are in contact with pre-
patterned definitive endoderm (DE) cells of the FG[20]. 
DE forms during gastrulation and Nodal, a member 
of transforming growth factor β (TGFβ) family, plays 
a central role in DE formation[65]. At these points of 
effective cell-cell interactions, the gut endoderm has 
to be competent to respond to EC-derived signals. 
Competence of these cells takes place during gastrulation 
when the mesoderm germ layer invades the middle 
area between primitive ectoderm and endoderm[66]. 
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Table 1  EC-derived factors related to organogenesis

Angiocrine factors Source Target Ref

Notch ligands (1 and 2) Bone marrow ECs; brain ECs Neural progenitors and HSCs [40,41]
VEGF ECs ECs and several tissues such as islets [12,42,43]
bFGF ECs ECs and several tissues such as islets [43]
PDGF Brain capillaries ECs [42]
HGF Lunga capillaries, SECs, Lung epithelium,

hepatocytes,
islet beta cells

[26,31,44,45]
islet capillaries 

Endothelins ECs Lung,
neural cells

[46]

EG-VEGF ECs Endocrine glands [32]
Brain-derived neurotrophic factor Brain microvascular endothelium Neuronal precursors, [33]

islet endothelium
Pigment epithelium-derived factor Brain capillaries Neural stem cells [35,47] 
Vessel-derived stromal-derived factor 1 (SDF-1/CXCL12) Microvascular endothelium Endoderm and pancreatic beta cells [48]
Wnt2 Sinusoidal ECs Hepatocytes [26]
S1P Plasma (plateles) Pancreatic multipotent progenitor cells [38]
CTGF Pancreas capillaries Pancreatic endocrine cells [49]
Laminin Islet capillaries Islet endocrine cells [50]
Collagen IV Islet capillaries Islet beta-cells [51]
BMP-2 ECs/MSCs Islet beta-cells [52,53]
BMP-4 ECs/MSCs Islet beta-cells; hepatocytes; cardiomyocytes [52,53]
BMPR1A ECs/MSCs Islet beta-cells; hepatocytes; cardiomyocytes [52,53]

ECs: Endothelial cells; BMP: Bone morphogenetic protein; VEGF: Vascular endothelial cell growth factor; HGF: Hepatocyte growth factor; bFGF: Basic 
fibroblast growth factor; PDGF: Platelet-derived growth factor; CTGF: Connective tissue growth factor.

N

Activin-bB FGF-2

FG

PDX-1+/shh-

Figure 1  Early cell-cell interactions that give rise to pancreatic cells derived 
from definitive endoderm of the foregut (FG). Factors released by notochord 
(N) such as activin-βB and FGF-2 permit expression of PDX-1 and suppress 
expression of sonic hedgehog. FGF: Fibroblast growth factor; PDX: Pancreatic 
and duodenal homeobox.
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leading to inhibition of factors such as SHH and promotion 
of PDX-1 expression[60]. However, these permissive signals 
are apparently replaced by instructive signals from the 
growing mesoderm and AECs that become in close 
proximity with pre-patterned endoderm. Interestingly, ECs 
not only exert these signals directly to the pre-patterned 
endoderm but also promote the survival of adjacent 
mesodermal cells that produced essential factors such 
as Islet-1 (Isl1)[64]. Homozygous mice lacking expression 
of Flk-1 (flk-1-/-) had absence of aorta with no formation 
of dorsal mesenchyme that led to diminished expression 
of PDX-1 in the subjacent endoderm[64]. However, lateral 
and ventral mesenchyme were not affected and PDX-1 
positive cells also appeared in the ventral endoderm[64]. 
These findings indicate that aortic EC signaling is essential 
to maintain the dorsal mesenchyme and therefore to 
direct differentiation of dorsal pancreatic endoderm. 
Additionally, at later embryo stage, flk-1-/- mice showed 
dorsal mesenchyme that does not express Isl-1 in the 
absence of aortic ECs suggesting that endothelial-cell 
signaling promotes Isl-1 cell expression from dorsal 
mesenchymal cells[64]. In addition, it has been reported 
that mesenchymal cells also express bone morphogenetic 
proteins (BMPs) and that these proteins have a pivotal role 
in pancreas development[71,72].  

Apparently mesoderm-derived cells are required to 
maintain the phenotype of posterior endoderm that 
includes the site where pancreas and duodenum will be 
formed. Therefore, anterior-posterior (A-P) endoderm 
axis will be sustained by the presence of mesoderm-
derived factors such as Wingless-type MMTV integration 
site family (Wnt), fibroblast growth factor (FGF), bone 
morphogenetic proteins (BMPs), and retinoic acid 
(RA)[63,67]. For instance, high signaling of the canonical 
WNT/β-catenin pathway promotes endoderm posterior 
pattern with foregut-derived structures such as pancreas 
and liver[68]. Interestingly it has been found that some of 
these factors are produced by ECs[13,42,53,69-71].

Pancreatic specification induced by surrounding 
endothelium
Endothelial signaling is required to induce insulin gene 
expression during pancreas development[20]. Cell-cell 
interactions between definitive endoderm and aortic 
endothelial cells take place at about 9-10 d.p.c. in mice 
and give rise to PDX-1 expressing cells[18,20]. Apparently, 
these interactions are also essential to promote insulin 
expression in pre-patterned endoderm[20]. However, 
signals from the developing pancreas to embryonic 
endothelium also promote endothelium-specific 
phenotype and these interactions are crucial for adequate 
organ function in adulthood[32]. As mentioned above, the 
first signals to promote expression of PDX-1 come from 
the notochord that produce factors such as activin-βB 
and FGF-2[60]. These cross-talk take place between cells 
from notochord and cells from the subjacent endoderm 
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AECs

FG

PDX-1+/shh-

?
?

Figure 2  Endothelial-derived signals maintain expression of PDX-1 and 
promote pancreatic endocrine differentiation. Once the aorta is forming, aortic 
ECs (AECs) interact closely with FG/DE cells that maintain expression of PDX-1 
and form the dorsal pancreatic bud (DPB). ECs: Endothelial cells; DE: Definitive 
endoderm; FG: Foregut; PDX: Pancreatic and duodenal homeobox.

AECs

MCs

DPB

FG

PDX-1+/insulin+

BCs

IECs

Collagen Ⅳ
Laminin Ⅰ

Figure 3  Endothelial-derived signals promote the survival of pancreatic 
mesenchyme which is essential for pancreas development. Mesenchymal 
cells (MCs) appear between AECs and the dorsal pancreatic bud (DPB) and 
promote proliferation and survival of differentiated cells. Immature beta cells (BCs) 
that co-express PDX-1 and insulin migrate toward the mesenchyme and form cell 
clusters that will become islet of Langerhans that will recruit ECs that become 
islet ECs (iECs) and produce collagen IV and laminins which promote insulin 
expression. AECs crosstalk with MCs and maintain the integrity of these cells 
toward adequate exocrine and endocrine pancreas development. AECs: Aortic 
ECs; ECs: Endothelial cells; PDX: Pancreatic and duodenal homeobox.
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Signals from pancreatic mesenchyme toward exocrine 
pancreas
It is well known that once the mesenchymal cells 
proliferate between aortic ECs and the foregut 
endoderm, the aorta is pulled out from the subjacent gut 
(compare Figure 2 with Figure 3)[20,55]. This fact implies 
that the subjacent foregut starts receiving signals from 
the mesenchyme and that a gradient can be formed 
with diluted signals from aortic ECs. However, it has 
been demonstrated that ECs maintain the integrity 
of the subjacent mesenchyme and that absence of 
aorta promotes apoptosis of the mesenchymal cells 
and avoids the formation of the dorsal pancreas[64]. 
As mentioned before, mesenchymal cells between 
aorta and foregut maintain the expression of PDX-1 in 
pancreatic endoderm cells through the expression of 
the transcription factor Isl-1[54]. In addition, signals from 
mesenchyme such as Fgf-10 are essential to promote 
proliferation of pancreatic buds that already received 
signals from ECs[64]. Apparently, the specification of 
pancreatic fate is determined by permissive signals 
from notochord and instructive signals by ECs that are 
maintained by mesenchyme after the aorta is pulled 
out from the gut. It has been suggested recently that 
specification of endocrine phenotype also takes place 
during the close interaction between aortic ECs and 
pancreatic progenitors that express PDX-1 within the 
pancreatic bud[54]. Previous experiments indicated that 
insulin is expressing in foregut explants only after co-
culturing with aortic endothelial cells[20]. However, the 
signals from ECs that promote such specification in the 
foregut endoderm toward the formation of pancreatic 
endocrine progenitors are still under investigation. In 
the same way more characterization is required to 
identify the signals from ECs that promote survival and 
adequate function of mesenchyme. Therefore, functional 
mesenchyme is crucial for appropriate signaling to the 
subjacent foregut endoderm toward maintenance of the 
pancreatic phenotype and branching[43].

ENDOTHELIUM ROLE IN PANCREATIC 
BETA-CELL MATURATION
Pancreatic endothelium during islet neogenesis
Pancreatic endocrine progenitors receive signals from 
aortic ECs and mesenchyme that determined their fate. 
However, they remain interspersed with the ductal cells 
that form the epithelium of the growing branches. At 
a certain time of development, these cells receive still 
unknown instructions to migrate from the ductal area 
to the mesenchyme region. Once in the mesenchyme, 
these pancreatic progenitors that are apart from ductal 
cells form the islets of Langerhans[73]. This fact raises 
two questions: (1) Are there signals from ECs that 
promote islet neogenesis? and (2) Once the blood 
vessels are formed are there factors in the blood stream 
that promote the final maturation of beta cells? The 
answer to these questions is still unknown. The cells 

that migrate are pancreatic endocrine progenitors that 
give rise islets of Langerhans composed of alpha, beta, 
delta, and PP cells that will produce glucagon, insulin, 
somatostatin, and pancreatic polypeptide respectively. 
These islets will be distributed differently into the 
pancreas and apparently will be subjected to different 
stimuli[74,75]. Although endocrine specification takes place 
before migration, maturation of endocrine cells occurs 
at islet level and coincides with islet vascularization[54,76]. 
There is a significant growth of islet cells that correlates 
with islet endothelial-cell proliferation in rats the first 
week after birth[76]. For instance, endocrine cells with 
higher proliferative capacity closer to blood vessels[76]. 
Furthermore, it is known that ECs are able to produce 
HGF which is a potent mitogen for beta cells and 
ECs[31,77]. Therefore, the endothelial signaling is essential 
for beta-cell maturation. For instance, immature 
beta cells are formed some days before birth and 
maturation occurs several days after birth[76]. During 
this period, immature beta cells express VEGF and 
start recruiting ECs to the vicinity of the islet to provide 
signals for further differentiation and maturation[32,78]. 
However, along with EC stimuli, another signals should 
also be considered. For example, hormones that can 
reach beta cells through the blood stream once the 
vascular network is established may have a role in cell 
maturation[79]. Apparently, endogenous insulin has a 
minor role for the glucose homeostasis before birth[80]. 
In this condition, insulin provided by the mother 
regulates glucose in the fetus[80]. This fact suggests 
that fetal beta cells are not mature enough at birth 
to maintain the glucose homeostasis and that further 
maturation can be promoted by ECs after birth. 

ENDOTHELIUM ROLE IN PANCREATIC 
BETA-CELL FUNCTION
The role of ECs in b-cell function and pathology has been 
previously described[47,81-82]. It has been found that ECs 
from islets correspond to fenestrated endothelium[83,84]. 
Apparently the characteristics of islet endothelium differ 
from pancreatic exocrine endothelium and endothelium 
from other regions[47,83,85]. For instance, pancreatic 
endocrine capillaries have higher diameter than exocrine 
capillaries and endothelium from endocrine capillaries 
have 10 times more fenestrae that endothelium from 
exocrine capillaries[83]. These facts suggest that cell-cell 
interactions and signaling between endothelium and the 
surrounding cells are different even in the same organ. 
Pancreatic beta cells have polarity with an apical and 
basolateral membrane and insulin vesicles are more 
dense in the apical region close to ECs[47,86]. This aspect 
is very important when considering the ability of beta 
cells to release insulin into the blood stream. After islet 
transplantation, suitable EC-signals for polarization are 
crucial for appropriate insulin release into the capillaries. 
Islet ECs express common markers of ECs but one 
specific marker called the proteinase inhibitor and 
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angiostatin factor α1-antitrypsin[70,84]. This marker of 
specific islet ECs can be absent in surrogate vasculature 
with deregulation of islet function. Apparently EPCs or 
islet ECs are important for islet revascularization after 
transplantation[87-89]. In this sense, any islet injury leads 
to islet restoration through recruitment of EPCs toward 
islet re-vascularization with specific islet ECs and beta cell 
function[87]. For instance, normoglycemia is improved in  
streptozotocin-treated animals after co-transplantation of 
EPCs and islets[87]. 

ENDOTHELIUM AND BETA-CELL 
REGENERATION IN VIVO AND IN VITRO
As a first approach to investigate the role of endothelium 
in b-cell differentiation, we studied the role of in vivo 
surrogate vasculature in mouse embryoid body (EB) 
differentiation using quail chorioallantoic membranes 
(CAM)[90]. We found that some cells expressed cardiotin, 
myosin heavy chain, collagen Ⅳ, CD34, CD31, and 
neurofilament. Although some epithelial cells appeared, 
no cells derived from endoderm were identified[90]. Then, 
studies using co-cultures between human microvascular 
ECs (HMECs) and mouse EBs were performed[52,53,91]. 
In these studies, ECs from human dermis were able 
to induce differentiation of mouse EBs to pancreatic 
progenitors and insulin-producing cells[52]. Furthermore, 
BMP-2/-4 were involved in this differentiation process as 
evaluated by the effects of agonists (recombinant BMPs), 
and specific antagonists of BMP bioactivities (Noggin, 
Chordin). BMPs are members of the TGF-β superfamily[92]. 
In addition to the effects of BMP antagonists, we explored 
the levels of phosphorylation of SMAD1, 5, 8 in cells that 
expressed proinsulin[52,53]. The role of BMPs in pancreas 
development has also been explored previously[72,93]. We 
demonstrated that HMECs or mouse dermis as well as 
mouse AECs expressed BMPs and that BMP-2 and BMP-4 
increased the phosphorylation levels of SMAD1,5,8 in 
pancreatic progenitors and beta-like cells derived from 

mouse ESCs[52,53,94]. These findings together with previous 
works pointed out the important role of ECs in beta-cell 
differentiation in vitro. We recently have observed that 
when human ESCs (cell line H9) are co-cultured with 
HMECs, the formation of proinsulin positive cells takes 
place in about twenty days in close proximity to internal 
ECs without the use of additional growth factors (Figure 4).  

In the model using mouse EBs, we observed that 
ECs promote up-regulation of BMPs within EBs[53]. 
However, the target cells that produce these BMPs are 
still unknown. One good candidate for these cells are 
mesenchymal cells since it has been demonstrated 
that ECs are essential to maintain dorsal pancreatic 
mesenchyme during pancreas morphogenesis that 
may promote pancreas differentiation within EBs[64] 
(Figure 5). However, further studies should be done to 
demonstrate that internal ECs are able to trigger beta 
cell differentiation through signaling to mesenchymal 
stem cells. At present, ECs can be generated in vitro 
from human induced pluripotential stem cells (hiPSCs) 
or human embryonic stem cells (hESCs) and this studies 
can be important to answer this question[95,96].

In this model, an excess of human microvascular 
ECs (HMECs) surround a human embryoid body which 
is composed of endoderm, ectoderm, and mesoderm 
cells. External ECs produce factors such as BMPs and 
other EC-derived factors that promote upregulation of 
endogenous BMPs in still unknown target cells (possibly 
mesenchymal or internal ECs). These BMPs together 
with other unknown factors may promote differentiation 
of multipotent cells (MC) toward beta-like cells (BC) and 
other cell lineages (OCL)[52,53].  

ENDOTHELIUM AND BETA-CELL 
PATHOGENESIS
ECs play an important role for the pathogenesis of 
type 1 (T1DM) and type 2 diabetes mellitus (T2DM). 
ECs involvement in cellular diapedesis, inflammation, 
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A B

25 mm

Figure 4  Analysis of blood vessels and insulin-producing cells in embryoid bodies obtained from human embryonic stem cell line H9. Human embryonic 
stem cells were cultured in suspension for 5 d to obtain embryoid bodies (EB). After attachment on coverslips for 24 h. Some EBs were cultured alone or together with 
human microvascular endothelial cells (HMECs). Then, after 20 d both groups of EBs were fixed and stained with with anti-proinsulin (green) (a marker for pancreatic 
beta cells), anti-CD31 (red) (a marker for endothelial cells), and DAPI (blue) (that stains the nuclei). A: EB cells cultured alone that do not show proinsulin or CD31 
expression. In contrast with (B) EB cells co-cultured with HMECs at passage 14 in which we can find cells that express proinsulin in close proximity to cells that 
express CD31. HMECs did not stain positive for CD31 at the dilutions used indicating that the ECs are forming within EBs.
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and  Vessel fibrosis, which leads to islet dysfunction, 
has been demonstrated. In T1DM, Ecs allow infiltration 
of leucocytes[47]. Interestingly multiple diabetic comp
lications relate to endothelial-cell function. The key 
to prevention or reversal of diabetes may rest in the 
recently emphasized role of endothelium in beta-cell 
differentiation and maturation in vitro[52,53].

In addition, it has been suggested that EC pathology 
can lead to islet dysfunction suggesting that ECs are 
essential to maintain islet function in adults[97].

CONCLUSION
In this review we focused in the essential role of 
endothelium for pancreatic endocrine differentiation, 
functional maturation, and islet dysfunction. ECs play a 
key role during the differentiation of the dorsal pancreas 
by maintaining the expression of transcription factors 
necessary for pancreas development including endocrine 
progenitors. Before birth, immature beta cells recruit ECs 
close to their microenvironment and these ECs provide 
signals for further maturation and function of pancreatic 
beta cells. In addition, ECs co-transplanted with islets 
have demonstrated to improve the engraftment of 
human islets. Finally, ECs are able to provide signals 
in vitro for derivation of functional beta-like cells from 
human pluripotent stem cells.  Therefore, the study of 
interactions between EC and beta cells is relevant for 
future clinical applications in regenerative medicine.
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