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Abstract
Cardiovascular diseases (CVDs), which include all 

diseases of the heart and circulation system, are 
the leading cause of deaths on the globally. During 
the development of CVDs, choric inflammatory, lipid 
metabolism disorder and endothelial dysfunction are 
widely recognized risk factors. Recently, the new 
treatment for CVDs that designed to regenerate the 
damaged myocardium and injured vascular endothelium 
and improve recovery by the use of stem cells, attracts 
more and more public attention. Histone deacetylases 
(HDACs) are a family of enzymes that remove acetyl 
groups from lysine residues of histone proteins 
allowing the histones to wrap the DNA more tightly 
and commonly known as epigenetic regulators of 
gene transcription. HDACs play indispensable roles in 
nearly all biological processes, such as transcriptional 
regulation, cell cycle progression and developmental 
events, and have originally shown to be involved in 
cancer and neurological diseases. HDACs are also 
found to play crucial roles in cardiovascular diseases by 
modulating vascular cell homeostasis (e.g. , proliferation, 
migration, and apoptosis of both ECs and SMCs). This 
review focuses on the roles of different members of 
HDACs and HDAC inhibitor on stem cell/ progenitor cell 
differentiation toward vascular cell lineages (endothelial 
cells, smooth muscle cells and Cardiomyocytes) and its 
potential therapeutics.
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Core tip: Stem cell differentiation toward vascular cell 
lineages is an area of important active research at 
present. Histone deacetylases (HDACs) are found to 
play important roles in cardiovascular diseases. Through 
modulating the homeostasis of acetylation status 
in histone and non-histone proteins and regulating 
grow factor activities, HDACs participate in stem cell 
differentiation and vascular cell homeostasis. In this 
review we provide an update on the roles of HDACs 
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and HDAC inhibitors on stem cell differentiation toward 
vascular cell lineages.
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INTRODUCTION
Cardiovascular diseases (CVDs) are the number one 
killer of human beings globally, which is a class of 
disorders of the heart and blood vessels. CVDs include 
all diseases of the heart and circulation system, 
including coronary heart disease, angina, heart attack, 
congenital heart disease and stroke. Coronary heart 
disease (angina and heart attack) and stroke may be 
caused by the same problem - atherosclerosis[1].

Atherosclerosis is a chronic inflammation process 
marked with thickened artery wall as a result of 
invasion and accumulation of fatty material (called 
atheroma) inside arteries. During this process, the 
endothelium, as the major regulator of vascular 
homeostasis, shows a number of vasoprotective effects, 
such as vasodilation, suppression of smooth muscle cell 
growth, and inhibition of inflammatory responses[2]. 
Accumulating evidence suggests that endothelial 
dysfunction is an early marker for atherosclerosis 
and can be detected and repaired prior to structural 
changes within the vessel wall[3].

Normally the repairing treatments for injured 
vascular endothelium include physical exercise and 
drug treatments aimed at reducing cardiovascular risk 
factors, such as lowering cholesterol, antihypertensive 
therapy, smoking cessation and some regulator 
replacement strategies such as angiotensin-converting 
enzyme 2 inhibitor therapy, estrogen replacement 
therapy in postmenopausal women, supplementation 
with folic acid[4]. Recently, a new therapeutic 
strategy, that designed to regenerate the damaged 
myocardium and injured vascular endothelium and 
improve recovery by the use of stem cells, attracts 
more and more public attention[5]. Till now, there 
has not established a specific cell type to serve best 
the treatment of CVDs. Many stem cell types such 
as embryonic stem cells (ESCs), adult stem cells 
and induced pluripotent stem cells have the ability to 
differentiate into vascular cell lineages in vitro. 

Stem cell therapy is based on the stem cell 
characters, the potential to differentiate into specific 
cell types under different stimulation and proliferate to 
replace damaged cells with healthy functional ones[6]. 
Like any biological process, the differentiation of stem 
cell involves gene expression reprogramming via 
histone acetylation homeostasis mediated chromatin 

remodelling. Histone deacetylases (HDACs) are key 
components of the regulating system that controls 
histone acetylation homeostasis. HDACs play an 
essential role in multiple biology processes regulating 
cell survival, proliferation and apoptosis via histone 
and non-histone protein modification. Accumulating 
evidence showed that HDACs play an important role in 
vascular remodelling[7]. 

HDACS
Histone acetylation is a reversible process characterized 
by histone and non-histone protein acetyl-transferase 
transferring the acetyl moiety from acetyl co-enzyme 
A to lysine residues. HDACs are a family of enzymes 
that remove acetyl groups from the N-acetylated 
lysine residues on histones[8] and non-histone proteins. 
Histone acetylation/ deacetylation alters chromosome 
structure and affects transcription factors access to 
DNA[9]. Accumulating evidence indicates that HDACs 
play a fundamental role in transcriptional regulation, 
cell cycle progression, and contribute to developmental 
events.

Mammalian genome encodes 18 HDACs, which can 
be grouped into four classes based on the homology 
with yeast histone deacetylases[10]. All members share 
a highly conserved deacetylase domain but differ 
in structure, subcellular localization and expression 
pattern, which results in different cellular functions[11]. 
Class Ⅰ HDACs (homologous to yeast Rpd3) comprise 
of HDAC1, -2, -3 and -8, which are widely expressed 
in many human tissues and cell lines. Among them 
both HDAC3 and HDAC8 can shuttle between the 
cytosol and the nucleus, while HDAC1 and HDAC2 are 
exclusively located in nucleus[12,13]. The deacetylation 
of histones to repress gene transcription is the main 
function of class Ⅰ HDACs. Class Ⅰ HDACs form large 
multi-subunit complex that associates with transcription 
factors and other chromatin modifiers, except HDAC8 
whose function is not clearly clarified[14]. In mammals, 
HDAC1 and -2 can bind to each other forming the 
catalytic core of three different complexes: Sin3, 
nucleosome remodelling deacetylase and corepressor 
of RE1-silencing transcription factor. HDAC3 can form 
two different multi-protein complexes, nuclear receptor 
corepressor and silencing mediator of retinoic acid and 
thyroid hormone receptors. Class Ⅰ HDACs are mainly 
found in such nuclear complexes. Furthermore, the 
association with several different proteins show an 
essential role in regulating their activity, which is highly 
pronounced in developmental processes that requires a 
global modulation of transcriptional programmes. With 
the exception of HDAC8, knockout of class Ⅰ HDACs in 
mice have indeed resulted in embryonic lethality[15].

Class Ⅱ HDACs can be divided into two sub-class 
groups. Class Ⅱa members include HDAC4, -5, -7, -9, 
while class Ⅱb comprises of HDAC6 and -10. Class 
Ⅱ HDACs differ from Class Ⅰ mainly for their tissue-
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specific expression pattern and the considerable lower 
deacetylase activity. Besides, their length (almost 
the double of Class Ⅰ HDACs) and cellular localization 
are all different. Class Ⅱ HDACs can shuttle between 
nucleus and cytoplasm. Class Ⅱa HDACs have 
conserved binding sites for the transcription factor 
myocyte enhancer factor 2 and the chaperone protein 
14-3-3, which help HDACs shuttle from the nucleus to 
the cytoplasm. The nuclear-cytoplasm shuttling and 
occurrence of post-translational modification such as 
phosphorylation, indicates their primary role as signal 
transducers in numerous tissues during development 
and disease[16].

Class Ⅱb family includes HDAC6 and HDAC10. 
HDAC10 presents a leucin-rich domain at the 
C-terminal. Recent reports showed HDAC10 might be 
upregulated on human myeloma cell lines[17]. HDAC6 
is different from all other HDACs, as it harbours two 
deacetylase domains and a C-terminal zinc finger, being 
the important cytoplasmic deacetylase in mammalian 
cells[18]. Cytoskeletal proteins such as α-tubulin 
and cortactin, transmembrane proteins such as the 
interferon-α receptor, and chaperones are all targets of 
HDAC6[19,20]. 

Class Ⅲ HDACs comprises a group of protein 
called Sirtuins (SIRT1-7). Although they possess a 
deacetylase domain, they diverge from classical HDACs 
as their enzymatic activity requires the cofactor NAD+. 
This feature suggests their involvement in metabolic 
functions[21]. HDAC11 is the last discovered and the 
only member of Class Ⅳ HDACs[22]. This review will 
focus on the classical HDACs, class Ⅰ and Ⅱ HDACs. 
The protein length, cellular location and potential 
cellular functions of these HDACs can be referred to 
references[11,23]. 

HDACS AND ENDOTHELIAL CELL 
DIFFERENTIATION 
In response to vascular injury, endothelial cell (EC) 
migration and proliferation contribute to the repairing 
of the damaged EC or denuded endothelium. Recent 
reports show that circulating or local resident stem/
progenitor cell differentiation is also involved in this 
process[24]. Through modulating chromatin structures 
and non-histone transcription factors, HDACs are 
involved in the gene expression reprograming in 
multiple biological processes such as cell-cycle, 
cell differentiation and survival[25]. Therefore, the 
involvement of HDACs in EC differentiation is expected.

The first evidence came from studies with HDAC 
inhibitors (HDACi). HDACi decreases endothelial lineage 
commitment of endothelial progenitor cells[26,27]. Rössig 
et al[27] found that the suppressive effect of HDACi 
on EC differentiation was mediated by the down-
regulation of homeobox transcription factor HoxA9, 
which directs the transcription of EC markers such as 
eNOS, VEGFR2 and VE-cadherin, suggesting that the 

HDAC-dependent activation of Hox-A9 is essential for 
EC differentiation[27]. 

There is no direct evidence that HDAC1, 2 and 8 are 
involved in EC differentiation, although indirect evidence 
indicates that HDAC1 may suppress EC differentiation. 
Rajasingh et al[28] showed that HDACs inhibitor, 
trichostatin A, improved AceH3K9 and reduced HDAC1 
expression in bone marrow progenitor cells, leading to 
differentiation into myocytes and ECs, which suggests 
that HDAC1 plays a suppressive role in bone marrow 
progenitor cell differentiation toward EC lineage[28]. 
Different from other members within class Ⅰ HDACs, 
accumulating evidence suggests that HDAC3 possesses 
a pivotal function in stem cells differentiation into 
ECs, which is capable of repairing the damaged 
endothelium. VEGF is a well-known EC differentiation 
inducer. Xiao et al[29] reported that VEGF up-regulated 
HDAC3 in ESC-derived Sca1+ cells. Over-expression of 
HDAC3 via adenoviral gene transfer increased, while 
trichostatin A or HDAC3 siRNA abolished VEGF-induced 
EC marker expression in Sca1+ cells, suggesting 
HDAC3 may function downstream of VEGF signal 
pathway[29]. Our study[29] and reports from Illi B[30] 
demonstrated that laminar flow enhanced ESC-derived 
progenitor cell differentiation into EC lineage in an 
HDAC dependent manner. We found that laminar flow 
stabilized and activated HDAC3 through the Flk-1-PI3K-
Akt pathway in a ligand independent manner, which 
in turn deacetylated p53, leading to p21 activation, 
contributing to EC differentiation[31]. Similar mechanism 
is involved in VEGF-induced EC differentiation, in which 
HDAC3 modulates differentiation process via regulating 
non-histone proteins. Our recent study found that 
unconventional splicing of HDAC3 might change 
HDAC3 function, inducing endothelial-to-mesenchymal 
transition[32]. These reports suggest a critical role of 
HDAC3 in EC fate determination.

Class Ⅱ HDACs seem not directly involved in EC 
differentiation. Several groups tried to link class Ⅱ 
HDACs with EC differentiation, but no solid evidence 
has been obtained. In Spallotta et al[33,34]’s reports, 
nitric oxide induced a cross-talk between class I HDACs 
(HDAC3) and class Ⅱ HDACs (HDAC4 and 7), which 
might contribute to the neovascularization in ischemic 
tissue and skin repairing[33,34]. However, the effect 
of nitric oxide on EC differentiation may be largely 
derived from HDACs-mediated global hypoacetylation 
on pluripotency maintaining genes like Oct4, Nanog, 
KLF4, etc. Considering class Ⅱ HDACs have only weak 
deacetylase activity, the histone hypoacetylation might 
be mainly caused by HDAC3 in the complex. Reports 
from other groups indicate that HDAC7 may participate 
in EC proliferation and cell-to-cell contact but is not 
involved in EC differentiation[35,36]. A recent report from 
Song et al[37] showed that AMPK activation participated 
in endothelial colony forming cells differentiation. 
During this process, HDAC5 could be phosphorylated 
by AMPK. However, there is no direct evidence on the 
involvement of HDAC5. 
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HDACS AND CARDIOMYOCYTES 
DIFFERENTIATION
Cardiomyocytes (CMs) build the atria and ventricles of 
the heart, which are critical to the proper form during 
the beating of the heart. So the differentiation towards 
CMs is a prerequisite and an essential part of heart 
development[51].

The effect of class Ⅰ HDACs on CM differentiation 
seems a bit controversial, especially on HDAC1. 
Opposite effect of HDAC1 on CM differentiation has 
been reported by different groups. Dovey et al[52] 
reported that HDAC1 deficiency in ESCs increases CM 
marker expression in the embryoid bodies, suggesting 
a suppressive role of HDAC1 in CM differentiation. Lu 
et al[53,54] also reported that HDAC1 exerted negative 
effect on cardiac cell differentiation from mesenchymal 
stem cells under a myocardial microenvironment. The 
suppressive role of HDAC1 was further supported by 
Liu et al[55] as down-regulation of HDAC1 promoted 
cardiac cell differentiation. However, Hoxha et al[56,57] 
reported that HDAC1 knockdown decreased CMs 
marker expression in ES and induced pluripotent 
stem cells, suggesting a supportive role in CMs dif
ferentiation. HDAC1 favours stem cell differentiation 
via turning off pluripotency genes by modulating 
histone acetylation and DNA methylation. HDAC2 may 
play a positive role in CM differentiation, contributing 
to angiotensin Ⅱ-induced cardiac hypertrophy[58]. In 
contrast, HDAC3 suppresses CM differentiation through 
modulating transcription factor Tbx5, preventing the 
pre-maturation of cardiac progenitor cells[59]. 

Current reports revealed that Class Ⅱ HDACs 
mainly played a suppressive role in CMs differentiation. 
The inhibition of HDAC4 facilitates c-kit(+) cardiac 
stem cells to differentiate into cardiac lineage, leading 
to cardiogenesis and the restoration of cardiac 
function in myocardial infarction mouse model[60]. Ha 
et al[61] reported that retention of HDAC5 in nucleus 
suppressed cardiac foetal gene expression and CMs 
hypertrophy. Gene disruption studies from Chang et 
al[62] revealed that HDAC5 or 9 deficiency induced 
cardiac hypertrophy in mice. 

Depending on the stem cell source and stimulus, 
different HDACs may play different roles in stem cell 
differentiation toward different cell lineages. HDACs 
and their potential roles in cardiovascular lineage 
commitment are summarized in Table 1. Different 
HDACs (HDAC1, 2, 3, 4, 5, 7, 8) play different roles in 
stem cell differentiation toward different cell lineages, 
HDACs and their potential roles in cardiovascular 
lineage(ECs, SMCs, CSCs) commitment are summa
rized in Table 1.

HDACS INHIBITORS
The role of HDACs in injured vessel repairing and stem/
progenitor cell differentiation derived originally from 

HDACS AND SMOOTH MUSCLE CELL 
DIFFERENTIATION 
Smooth muscle cells (SMCs) are the major cellular 
components within vessel wall, located in the tunica 
media controlling the calibre of the vessel. It is widely 
believed that in response to vascular injury SMCs in 
the tunica media undergo from contractile to synthetic 
phenotype change, followed by the migration into the 
intima and proliferation, contributing to the neointima 
formation. However, recent reports show that stem/
progenitor cell-derived SMCs play an important role in 
neointima formation and atherosclerosis, but the origin 
of the progenitor cells is controversial. Reports from 
Shimizu et al[38], Han et al[39] and Li et al[40] support 
the notion that the circulating bone-marrow-derived 
progenitor cells contribute to SMC differentiation and 
neointimation formation, but reports from Hu et al[41] 
and Tang et al[42] exclude the involvement of bone 
marrow-derived progenitor cells. They demonstrated 
that SMCs in the lesion area were mainly derived from 
local resident progenitor cells. 

HDACs play diverse roles in SMC differentiation 
depending on the HDAC species, stem cell source 
and stimulus, exerting promoting or suppressive 
effects. Except HDAC1, all other three members of 
class Ⅰ HDACs are reported to be involved in SMC 
differentiation. In response to oxidized lipids or 
PDGF, HDAC2 forms a complex with Class Ⅱ HDACs 
(HDAC4/5) to deacetylate histone H4 in SMC marker 
gene promoter region, thereby suppressing SMC 
differentiation[43,44]. Recently, Liu et al[45] reported that 
HDAC2 exerted suppressive effect on bone marrow 
mesenchymal stem cells to SMCs differentiation[45]. In 
contrast, HDAC3 and 8 may play a positive role in SMC 
differentiation. Loss of HDAC3 in neural crest caused 
deficiency of aortic arch artery SMCs in midgestation 
during embryonic development via down-regulation 
of Notch signalling, suggesting a positive regulatory 
role of HDAC3 in the neural crest-derived smooth 
muscle lineage[46]. Several reports demonstrate that 
HDAC8 is critical for SMC differentiation, therefore 
HDAC8 is even regarded as a novel SMC differentiation 
marker[13,47,48]. The involvement of class Ⅱ HDACs in 
SMC differentiation seems restricted to HDAC4, 5 and 
7. Different from the suppressive role of HDAC4 and 
5 from the reports by Yoshida et al[43,44], studies from 
Glenisson et al[49] revealed that HDAC4 is necessary for 
SMC marker expression in TGFβ1-induced myofibroblast 
differentiation[49]. Our group found that different 
isoforms of HDAC7 might play opposite function in 
SMC differentiation. During ESC differentiation toward 
SMC lineage, HDAC7 mRNA underwent further splicing, 
which was enhanced by PDGF. The full spliced HDAC7 
increased SMC marker expression through modulating 
the SRF-myocardin complex while the partially 
spliced HDAC7 decreased SMC marker expression by 
degrading myocyte enhancer factor 2C[50].
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investigations on HDACi, which are a large number of 
natural and synthetic compounds. Generally, HDACi can 
be divided into 4 classes according to their chemical 
structure: hydroxamic acids, short chain fatty acids, 
cyclic tetra-peptides, and benzamides[63]. These HDACi 
share the presence of an active group targeting a 
three-part structure consisting of a zinc-binding group 
of HDACs and inhibits their enzymatic activity. Some 
HDACi are able to discriminate HDACs among different 
classes and a few of them can even inhibit a single 
member[64,65]. In addition to suppress the deacetylase 
activity of HDACs, HDACi may exert functions in HDAC-
independent way, like through SP1[66]. HDACi has been 
shown to regulate multiple cellular processes, including 
cell apoptosis and survival, proliferation and growth 
arrest, senescence, differentiation, immunogenicity, 
etc. Some kinds of HDACi are used in clinical trials as 
therapeutic drug against cancers. Detailed information 
on this aspect won’t be discussed in this review. 

SUMMARY AND PERSPECTIVES
CVDs characterized by vascular injury are one of 
the greatest health challenges we have been facing 
for decades. During the development of CVDs, 

HDACs play a critical role in various signal pathways 
by modulating vascular cell homeostasis (e.g., pro
liferation, migration, and apoptosis of both ECs and 
SMCs) and stem cell differentiation towards vascular 
cells. HDAC3 and HDAC7 have been proved to be 
capable of directing stem cell differentiation towards 
ECs and SMCs respectively. Through modulating the 
homeostasis of acetylation status in histone and non-
histone proteins and regulating grow factor activities, 
HDACs participate in stem cell differentiation and 
vascular cell homeostasis. Targeting HDACs activities 
and their inhibitors’ effect on injured vessel and heart 
will undoubtedly provide new therapeutic strategies for 
the treatment of CVDs.
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