
Stem and immune cells in colorectal primary tumour: 
Number and function of subsets may diagnose metastasis

Rubén Varela-Calviño, Oscar J Cordero

Rubén Varela-Calviño, Oscar J Cordero, Department of 
Biochemistry and Molecular Biology, University of Santiago de 
Compostela, 15782 Santiago de Compostela, Spain

Author contributions: Varela-Calviño R and Cordero OJ wrote 
and edited the manuscript.

Conflict-of-interest statement: The authors declare that they 
do not have potential financial conflict of interest related to this 
manuscript.

Open-Access: This article is an open-access article which was 
selected by an in-house editor and fully peer-reviewed by external 
reviewers. It is distributed in accordance with the Creative 
Commons Attribution Non Commercial (CC BY-NC 4.0) license, 
which permits others to distribute, remix, adapt, build upon this 
work non-commercially, and license their derivative works on 
different terms, provided the original work is properly cited and 
the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/4.0/

Correspondence to: Oscar J Cordero, PhD, Department of 
Biochemistry and Molecular Biology, University of Santiago de 
Compostela, CIBUS Building, Campus Vida, 15782 Santiago de 
Compostela, Spain. oscarj.cordero@usc.es
Telephone: +34-881-816935 

Received: January 20, 2015
Peer-review started: January 22, 2015
First decision: March 6, 2015
Revised: May 20, 2015
Accepted: July 16, 2015
Article in press: July 17, 2015
Published online: July 27, 2015

Abstract
An important percentage of colorectal cancer (CRC) 
patients will develop metastasis, mainly in the liver, 
even after a successful curative resection. This leads to 
a very high mortality rate if metastasis is not detected 
early on. Disseminated cancer cells develop from 

metastatic stem cells (MetSCs). Recent knowledge has 
accumulated about these cells particularly in CRC, so 
they may now be tracked from the removed primary 
tumour. This approach could be especially important in 
prognosis of metastasis because it is becoming clear 
that metastasis does not particularly rely on testable 
driver mutations. Among the many traits supporting an 
epigenetic amplification of cell survival and self-renewal 
mechanisms of MetSCs, the role of many immune cell 
populations present in tumour tissues is becoming 
clear. The amount of tumour-infiltrating lymphocytes 
(T, B and natural killer cells), dendritic cells and some 
regulatory populations have already shown prognostic 
value or to be correlated with disease-free survival time, 
mainly in immunohistochemistry studies of unique cell 
populations. Parallel analyses of these immune cell 
populations together with MetSCs in the primary tumour 
of patients, with later follow-up data of the patients, will 
define the usefulness of specific combinations of both 
immune and MetSCs cell populations. It is expected that 
these combinations, together to different biomarkers 
in the form of an immune score, may predict future 
tumour recurrences, metastases and/or mortality in 
CRC. It will also support the future design of improved 
immunotherapeutic approaches against metastasis.
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Core tip: Metastasis relies on differentiation of some 
cancer stem cells in the primary tumour niche led 
by many micro-environmental signals. These signals 
include the participation of immune cell subsets such 
as tumour-infiltrating lymphocytes, dendritic cells 
and regulatory populations. Metastatic stem cells can 
be identified in the removed primary tumour. The 
study of the number and function of these immune 
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cell populations in parallel with metastatic stem cells 
(MetSCs) in the primary tumour, together with follow-
up data of patients, will define the usefulness of specific 
immune and MetSCs cell population combinations. 
This can be combined with defining new biomarkers as 
future predictors of tumour recurrences, metastases 
and/or mortality in colorectal cancer.
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INTRODUCTION
Even when a primary tumour has been perfectly 
removed by surgery, at the moment of diagnosis tumour 
cells may have disseminated and established themselves 
in distant locations (metastasis). Metastasis accounts 
for the vast majority of deaths from cancer. Metastasis 
is a complex phenomenon developing through several 
stages, such as the intravasation of cancer cells from the 
primary tumour, dissemination through the circulation 
and extravasation in different organs, survival on arrival 
and settlement into latency, and reactivation, division and 
colonization of the organ, generating a new macroscopic 
tumour. 

Migrant cancer cells that manage to settle in a distant 
tissue are known as disseminated tumour cells (DTCs)[1]. 
However not all DTCs are able to generate a new mac­
roscopic tumour and those having such potential are 
called metastatic stem cells (MetSCs)[2]. The properties 
that support the survival, self-renewal, dormancy, 
and reactivation of these MetSCs have been recently 
reviewed[2], with the most remarkable conclusion being 
that MetSCs cells have been identified as are cancer 
stem cells (CSCs).

Most cancers display a hierarchical organization that 
resembles that of their tissue of origin. CSCs is the only 
cell type there with long-term self-renewal potential, the 
microenvironment niche sustaining this potential. They 
are the phenotypic and functional equivalent of normal 
stem cells but with the inconvenience of having acquired 
oncogenic mutations. Both CSCs and non-CSCs can 
display a migratory behaviour at the invasive front of 
primary tumours frequently associated with an epithelial 
to mesenchimal transition. MetSCs may derive from non-
stem cell DTCs that reacquire the competence to initiate 
tumour growth after a period of latency, however this 
process of phenotypic plasticity is neither totally accepted 
nor well-understood[2-4]. However, the majority of extrav­
asation and settlement survivors in the host tissue that 
endow tumour-initiating capacity (i.e., MetSCs) are 
CSCs[5]. 

It can be deduced from the data above that MetSCs-
cells harbouring the signaling pathways capable to 

initiate metastasis- already exist in the primary tumour 
and MetSCs can be tracked from the removed primary 
tumour. This approach would be specifically important 
for metastasis diagnosis since it is becoming clear 
that metastasis does not particularly rely on driver 
mutations. Therefore, genomic biomarkers are not 
actually useful for metastasis diagnosis. Environmental 
and tumour environmental signals do provide the 
epigenetic amplification for cell survival and self-renewal 
mechanisms[6].

METASTATIC STEM CELLS IN 
COLORECTAL CANCER
Colorectal cancer is the third most prevalent tumour 
worldwide. In developed countries, around a 30%-50% 
of patients who were through a successful curative 
resection still relapse or develop metastases, mainly in 
the liver. These patients show a very high mortality rate 
if those metastases are not detected early[7].

In CRC many lines of evidence support that MetSCs 
are already present in the primary tumour. A first line of 
evidence comes from marking of tumour cell populations 
with lentivirus, which has allowed the clonal analysis 
of human colorectal cancer (CRC) cells, showing that 
metastases arise from primary tumour cells that display 
long-term self-renewal capacity, are quiescent, and 
resistant to chemotherapy (i.e., CSCs)[8,9].

A second line of evidence comes from experiments 
with genetic mouse models. Upon acquiring activating 
mutations in the Wnt pathway, intestinal stem cells 
generated adenomas[10]. Another lineage-tracing analysis 
showed that a stem cell population resembling those 
present in normal intestinal mucosa not only sustained 
the long-term growth of these benign lesions[11-13], but 
also of late stage CRCs and even liver metastases[14-16]. 
In mice, cell populations characterized by the expression 
of stem cell markers isolated from human primary 
tumour samples (CRC and other epithelial tumours) were 
capable of generating metastasis when transplanted[17-19]. 
The last line of evidence comes from the clinic, since high 
expression of adult stem cell markers in primary tumours 
have been associated with poor prognosis and metastatic 
relapse[14,15,18,19].

BIOMARKERS OF METASTATIC STEM 
CELLS
An important current question is which stem cell markers 
should be used for CSCs characterization and whether 
MetSCs are in fact a CSCs subset that can be tracked 
using present knowledge.

We have just demonstrated that soluble CD26 
levels (sCD26) are a much better serum biomarker for 
the detection of CRC metastasis or tumour recurrence 
when compared to other markers in clinical use such 
as CEA, CA-19.9 or CA-72.4[7] levels. At the same 
time, others have demonstrated the relationship 
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between the presence of CD26+ cells, detected by 
immunohistochemistry in primary CRC tumour biopsies 
and prognosis of metastasis[20]. It is plausible these 
results are related to the CD26+ CSC population capable 
of generating metastasis when transplanted in mice[18]. 
This population comprised CD133+, CD44+ and CD26+ 
cells isolated from the primary tumour. However, although 
they majorly encompass the known features of CSCs, 
they were not the only CSCs present in the primary 
tumour biopsies. In fact, due to plasticity in CD133 and 
CD44 expression, these markers do not seem the most 
appropriate at least as MetSCs markers[21-24]. Another 
candidates for CRC MetSCs characterization have been 
described including CD166, CD29, CD24, Lgr5, EpCAM, 
ALDH1, CDCP1, CXCR4, CC188[21,23] and ephrin type B 
receptor 2 (EphB2)[25], although many of these markers 
are also expressed in normal colonic stem cells (i.e., Lgr5, 
ALDH1, or CD29) complicating the distinction between 
CSCs and normal stem cells. Despite this, most of these 
markers are co-expressed in the primary tumour, so 
it is expected that a particular biomarker combination 
can be used to identify MetSCs in CRCs. This will help 
to understand the function of these CSCs and identify 
new therapeutic targets as well as to play a significant 
role in clinical disease management[26]. From our present 
knowledge, CRC MetSCs should be found among the 
high-expressing Wnt targets Lgr5++ and EphB2++ cell 
population[25,27] also co-expressing CD133+ and CXCR4+, 
markers of a well known metastasic cell population 
with a recently discovered autofluorescent subcellular 
compartment[4]. This autofluorescence results from the 
accumulation of riboflavin in ATP-dependent ABCG2 
transporter-coated vesicles exclusively located within the 
cytoplasm of cells across different human tumour types 
with CSC features[4]. It is possible that CD26, intriguingly 
related to some extent to the CXCR4/SDF-1 axis[28], 
could also be included among these markers.

METASTATIC TRAITS IN PRIMARY 
TUMOURS
As mentioned above, cell subsets with gene expression 
signatures to mediate dissemination, survival capability 
on arrival to distant organs, and entering a dormant state 
in many cases[2,6-8] before metastatic spreading, have 
been repeatedly identified in primary tumours[4,25-28]. 
These traits may be used to predict future relapses 
before dissemination. 

However, (1) there is only a very small percentage 
of cancer cells with these properties; and (2) these cells 
are originated by the epigenetic amplification caused 
by many supporting pathways[2,6]. Little is known about 
these pathways despite its major clinical importance, 
since killing latent MetSCs by depriving them of that 
support seems the most attractive therapeutic approach. 

A likely site for selection of metastatic traits in primary 
tumours is at the invasive front, the intersection of an 
advancing tumour mass and the surrounding stroma. 

Cancer cells at the invasive front of primary tumours 
are exposed to the stresses of invading surrounding 
tissue, of hypoxia, and of the immune surveillance. This 
complex milieu includes cancer-associated fibroblasts 
(CAFs), newly generated blood vessels[29], tumor-
associated macrophages, myeloid progenitor cells, 
and blood platelets. Various stromal cell types produce 
cytokines such as Wnt, Notch, tumour necrosis factor-
alpha (TNF-α), transforming growth factor-beta (TGF-β), 
hepatocyte growth factor and hedgehog, which support 
the survival and fitness of CSCs[16,30-32]. Under selective 
pressure, these signals skew the heterogeneous cancer 
cell population towards a preponderance of clones 
primed for survival, self-renewal, invasiveness, migration, 
and the stress of infiltrating distant tissues (i.e., future 
MetSCs). 

In fact, it seems that when the stroma of a primary 
tumor is rich in cells and signals resembling those of a 
particular distant tissue, cancer cell clones selected in 
this primary tumour could be primed to thrive in that 
particular tissue[2,29,30]. For example, cells and signals in a 
colorectal gut tumour resembling the liver environment 
will induce metastasis of this CRC in the liver[33].

At the same time, some already cited tumour-
derived soluble factors together with other signals such 
as VEGF, SDF-1, IL-10, and enzymes such as indolea­
mine 2, 3-dioxygenase or cyclooxygenase-2, or the 
adenosine pathway, are well known factors responsible 
for the expansion of induced-T regulatory T cells (iTreg) 
in tumour-bearing hosts[34-37] as well as for inducing 
the accumulation of immature dendritic cells (iDCs), 
which in turn promote the expansion of iTreg[38]. Both 
phenotypically and functionally, iTreg cells are distinct 
from natural Treg (nTreg) and accumulate both in 
tissues and peripheral blood of cancer patients. These 
iTreg are presumably responsible for the suppression of 
anti-tumour functions of immune cells migrating to the 
tumour site, thus promoting tumour escape from the 
host immune response[35]. 

IMMUNE SURVEILLANCE IN 
COLORECTAL CANCER
From the point of view of the three immune hallmarks 
of cancer stating that tumours (1) are able to thrive 
in a chronically inflamed microenvironment; (2) can 
evade immunorecognition; and (3) are able to suppress 
immune reactivity[39], CRC is particularly known for the 
many evidences connecting tumourigenesis and inflam
mation, such as the decreased incidence of tumours 
in individuals under non-steroidal anti-inflammatory 
drug treatment, the increased incidence of tumours 
in overweight patients, and its relationship with com­
mensal bacteria. We have reviewed recently these 
facts altogether affecting inflammation both locally and 
systemically[40]. 

According to this activation of the immune system, 
cells of the innate immune system such as neutrophils[41], 
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also with high mutational load were detected[50,63,64]. 
Coherently, the microsatellite instability-high phenotype 
present in 15% of early CRC confers good prognosis[50,65]. 
Therefore these so-called tumour-specific somatic 
mutations are potentially the best targets for adoptive T 
cell therapy, although there are many open questions like 
how many somatic mutations create suitable epitopes[66]. 
However, at the same time these tumours have clearly 
adapted to this immune pressure because many CRCs 
express no or reduced levels of HLA-I[67-69]. Although this 
is a classical mechanism of transformed cells to avoid the 
host immune response[70,71], there are conflicting results 
regarding CRC expression of HLA class I antigens as 
associated with poor prognosis[72], probably because NK 
cells are important effectors in the anti-tumour response 
against CRC (see below).

During an immune response CD4+ T lymphocytes 
can differentiate into two broad phenotypic subtypes: T 
helper 1 (Th1) or Th2[73,74]. These two different subtypes 
secrete different types of cytokines, and consequently 
activate different types of immune responses. Th1 
lymphocytes secrete IFN-γ and TNF-α, which produce 
the activation of CTLs, NK cells, macrophages and 
monocytes, all of which contribute to a cellular immune 
response that is effective against tumour cells. However, 
Th2 lymphocytes secrete a different set of cytokines 
such as IL-4, IL-5, IL-10 or IL-13, all of which deviate 
the response to a humoral immune response, and this 
kind of immune response is less effective at eliminating 
cancer cells[73-75]. A shift towards a Th2 response has 
been shown in CRC patients, with reduced levels of Th1 
cytokines and normal or elevated levels of Th2 cytokines, 
an imbalance that becomes more significant the further 
the disease progresses[76-78], with levels of the Th1 
cytokines having a prognostic value in terms of patient 
survival[73]. 

The mechanism through which CRC cells can shift 
the T cell immune response could be due in part to 
the secretion of cytokines that inhibit the development 
of Th1 responses, such as TGF-β and IL-10, either by 
the CRC cells themselves or CAFs[79]. Among the roles 
assigned to TGF-β in cancer development[79-85], it has 
been cited the inhibition of T lymphocyte proliferation 
and differentiation preventing naïve T cells from acquiring 
effector functions[86] and the inhibition of the ability of 
TILs to kill cancer cells as well as tumour-specific CD8+ 
cytotoxic responses[87], although recently discovered 
stromal factors such as tumour-derived exosomes 
carrying death receptor ligands directly contribute to 
apoptosis of activated effector CD8+ T cells[88]. IL-10 
immunosuppresses TILs[89] but this immunosuppressive 
effect is mainly indirect and mediated by DCs and Treg 
lymphocytes (see below)[90,91].

In addition, although the role of other T helper 
populations, Th17 and Th22, in the development of 
CRC is still unclear, it seems that decreased Th17 and 
Th22 responses are associated with the development of 
CRC[92].

macrophages[42], natural killer (NK) cells[43] or DCs[44] 
as well as cells of the adaptive immune system such 
as CD4+ helper and CD8+ cytotoxic T lymphocytes 
(CTLs)[45,46] accumulate in sites of CRC development. 
Although immune cells release inflammatory mediators 
(see above) with proangiogenic and prometastasic 
effects[47] to the reactive stroma, at the same time 
tumour-infiltrating lymphocytes (TILs) in CRC have been 
shown to inhibit tumour growth and are associated with 
improved prognosis[46-52].

The concept of cancer immunoediting[53] has been 
divided into three phases namely elimination, equilibrium 
and escape[54]. In the elimination phase or cancer 
immunosurveillance, immune cells detect and eliminate 
transformed cells but this elimination could be incomplete 
in which case some tumour cells remain either dormant 
or continue to evolve accumulating further changes 
that can modulate the expression of tumour-associated 
antigens (TAAs) or other factors that increase their 
fitness. During this time the immune system still exerts a 
selective pressure eliminating some transformed clones 
but if this elimination is again incomplete, the process 
results in the selection of tumour cell variants (MetSCs 
among them) which are able to resist, avoid or suppress 
the anti-tumor response, leading to the escape phase[54].

It has been shown that CRC induces an immuno­
suppression state, marked by reduced secretion in 
patients of several cytokines such as IFN-γ or TNF-α by 
monocytes/macrophages. As this immunosuppression 
was reversible after resection of the affected tissue[55], 
this data held the promise of immunologically targeting 
tumour cells, provided the mechanisms of immune 
escape and tumour-induced immune suppression are 
overcome.

T CELLS
As previously mentioned, human CRC tissue is infiltrated 
by a variety of immune cells often in the margins of the 
transformed tissue, in the invasive front. Several studies 
have characterized the lymphocyte infiltration of CRC 
and confirmed the concept of prognostic impact of these 
TILs[45,56]. In most cases, the lymphocytes infiltrating the 
cancer tissue, and most frequently the area along the 
invasive margin, are either CD4+ and/or CD8+ T cells[57]. 

Despite their low numbers, CD8+ T lymphocytes 
infiltrating the neoplastic epithelium are positively 
correlated with longer disease-free survival time[52,56-58] 
and in fact, the density of T CD8+ and CD45+ lympho­
cyte infiltration was recently shown to have a better 
prognostic value than the classic tumor node metastasis 
classification factor[59]. Previous data have shown that 
these TILs have antitumor activity[60,61], and some TAAs 
have been identified as potential targets of cytotoxic CD8+ 
T lymphocyte responses[60-62]. Later, T cell responses 
against mutated normal antigens such as those of the 
microsatellite instable (MSI) subgroup of CRC or the 
small subgroup of tumours with no signs of MSI but 
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B CELLS
Many of the TAAs identified in CRC so far, potential 
targets of cytotoxic CD8+ T lymphocyte responses, 
has been done by the identification of auto-antibodies 
present in the plasma of cancer patients compared to 
healthy donors, and although the clinical significance 
of those serologically-defined antigens still have to be 
demonstrated, several are attractive candidates for 
cancer vaccines[60]. Interestingly, antibody responses 
against some TAAs correlate with CD8+ responses 
in those patients[61,62], supporting the idea that the 
immune response taking place in CRC patients requires 
coordinated CD4+, CD8+ and B cell responses, turning 
Th2 anti-tumour responses a not so negative factor as 
previously supposed[73]. However, tumour-infiltrating 
CD20+ B cells (TIL-B) have being poorly investigated 
despite their described positive prognostic value[93]. 
Engagement of tumour-reactive B cells may be an 
important condition for generating potent, long-term T 
cell responses against cancer[94].

DENDRITIC CELLS 
Dendritic cells are key antigen-presenting cells that play 
a central role in the induction of immune responses 
including anti-tumour responses[95,96]. It has been shown 
that CRC patients have DCs infiltrating the tumour 
mass or the surrounding tissue forming clusters with 
T lymphocytes[97] and that this infiltration seems to 
correlate with a better prognosis[98,99]. In fact, activated 
and matured DCs induce an antigen-specific response 
leading to T cell proliferation and differentiation into 
helper and effector lymphocytes[100]. 

However, CRC tumour cells are able to impair the 
function of these cells. In vivo tumour-infiltrating DCs 
show an immature phenotype[101] and iDCs presenting 
self-antigens to both CD4+ and CD8+ T cells induce 
tolerance in those lymphocytes[102,103]. In this direction, 
tissue culture media from CRC explants inhibits DC 
maturation with reduced levels of CD54, CD86, HLA-DR 
and CD83, and induces IL-10 secretion while inhibiting 
secretion of IL-12p70, factors that inhibit Th1 immune 
responses and probably protect the tumour from a 
potent immune response[104]. Moreover, as mentioned 
before, iDCs correlate with infiltration and the expansion 
of iTregs[35,103]. 

NK CELLS
NK cells play a major role in the immune response to 
CRC[59] and are a prognostic factor[105]. 

NK cells are typically defective in infiltrating solid 
tumors with only 30% of patients showing NK infiltration 
and with only a 9% with more than four NK cells, as it 
has been shown in a large cohort[106]. Tumour cells has 
several mechanisms to inhibit recruitment and activation 
of NK cells[107-109], but this fact does not have a direct 
effect on tumor progression per se[107] probably explaining 

why the presence of NK cells in combination with CD4+ 
T lymphocytes in colorectal tumours had no detectable 
effect on the clinical course of the disease[43,106].

However, in CRC the infiltration of both NK cells and 
CD8+ T cells was associated with prolonged patient 
survival in the same study, suggesting NK-CD8+ cell 
crosstalk in the tumor microenvironment[106]. These data 
agree with the fact that ex vivo activation and expansion 
of both NK and CTLs followed by their intraveneous 
infusion in patients with stage Ⅳ colon cancer improved 
their quality of life[110], or the fact that one of the 
mechanisms of action of cetuximab, a monoclonal 
antibody against the epidermal growth factor receptor 
widely used for the treatment of metastatic CRC (mCRC), 
is antibody-dependent cell-mediated cytotoxicity, 
triggered by Fc-gamma-R on NK cells[59,111].

Of the utmost importance is the fact that NK cells 
play a crucial role in preventing recurrence[112] probably 
because they are able to target CSCs/MetSCs[113]. 

REGULATORY CELLS
Treg cells characterized by the expression of CD25 
and the transcription factor Foxp3 are critical for the 
prevention of autoimmunity and the regulation of imm­
une responses to foreign and self-antigens[114]. Adaptive 
iTreg, a distinct population from nTreg, accumulate in 
tissues and the peripheral blood of cancer patients. 
In many of those human cancers high densities of 
such Tregs in the tumor correlates with poor disease 
outcome[115].

However, they are associated with an improved 
survival rate of CRC patients[115,116], or other carcinoma 
with prominent inflammatory infiltrates (i.e., certain 
types of breast cancer), despite iTreg contrasted fun­
ctionality[117,118]. A hypothesis has been put forward to 
explain this apparent contradiction indicating that those 
Foxp3+ Tregs infiltrating the tumour mass were already 
in the healthy colorectal tissue to suppress excessive 
inflammation and immune responses resulting from the 
commensal microflora[103,119]. 

It has been hypothesized that these cells posses a 
contextual plasticity controlled and driven by the tissue 
microenvironment[103]. The main question is which 
factors or signals in the microenvironment regulate Treg 
functions thereby preventing adverse effects of chronic 
inflammation or autoimmunity[120]. It seems that the 
cellular content of the CRC infiltrate do that by silencing 
the tolerogenic pathway of plasmacytoid DCs[121]. These 
cells, different to myeloid DCs, additionally promote 
tolerance and Treg differentiation and suppressor 
functions in the solid tumour presumably via the Nrp-1/
semaphorin-4ª pathway (plasmacytoid DCs are one of 
the major sources of semaphorin-4ª), and the infiltrate 
would block this pathway[120]. Thus, it is important 
monitoring not only for the frequency but also for the 
functionality of iTreg in cancer.

In addition, the presence of other regulatory popul­
ations such as natural killer T (NKT) cells or Bregs can 
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not be excluded since the nature of the regulatory 
cell types that dominate in any given tumour is not 
totally understood[122,123]. The role played by regulatory 
type Ⅰ and Ⅱ NKT cells has been studied in syngeneic 
mice models of colorectal and renal cancer. In those 
models, having both type Ⅰ and Ⅱ NKT cells or neither 
of them, Treg depletion was sufficient to protect against 
tumour outgrowth, however in those mice lacking only 
type Ⅰ NKT cells, Treg blockade was insufficient to protect 
mice pointing to an important role played by type Ⅱ NKT 
cells in suppressing tumour growth[123].

HYPOTHESIS
An important reduction in the level of serum sCD26 
in patients with non-metastasic CRC makes sCD26 
a promising candidate for a future serum screening 
test[124]. We have previously suggested that these altered 
levels in CRC could be due to alterations in the number 
or frequency of lymphocyte populations expressing this 
biomarker[7,125].

We pretend to analyze by flow cytometry the 
expression of CD26 in the different leukocyte cell 
populations mentioned above that could be identified 
in primary CRC tissue biopsies. These analyses will be 
combined in parallel with the analysis of the known 
markers for MetSCs in cells of the same tissue[48,126]. 
All this information, together with the follow-up of 
the patients for up to 5 years, will help to define the 
usefulness of different cell population combinations, 
both immune and CSCs, and/or biomarkers. These 
combinations will assemble an immune score[59,101] that 
functions as predictor of future tumour recurrences, 
metastases and/or mortality in CRC. At the same time, 
this increased knowledge will support a better design 
of future immunotherapeutic approaches against 
metastasis.

Moreover, from a methodological point of view, the 
use of flow cytometry allows very potent qualitative 
and quantitative multiparametric analyses, contributing 
with new information to classical and modern[57,58,127] 
anatomopathological studies where no in situ information 
is lost.
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