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Abstract
Matrix metalloproteinases (MMPs) are a family of 

proteases using zinc-dependent catalysis to break 
down extracellular matrix (ECM) components, allowing 
cell movement and tissue reorganization. Like many 
other proteases, MMPs are produced as zymogens, 
an inactive form, which are activated after their 
release from cells. Hepatic ischemia/reperfusion (I/R) 
is associated with MMP activation and release, with 
profound effects on tissue integrity: their inappropriate, 
prolonged or excessive expression has harmful 
consequences for the liver. Kupffer cells and hepatic 
stellate cells can secrete MMPs though sinusoidal 
endothelial cells are a further source of MMPs. After 
liver transplantation, biliary complications are mainly 
attributable to cholangiocytes, which, compared with 
hepatocytes, are particularly susceptible to injury and 
ultimately a major cause of increased graft dysfunction 
and patient morbidity. This paper focuses on liver 
I/R injury and cholestasis and reviews factors and 
mechanisms involved in MMP activation together with 
synthetic compounds used in their regulation. In this 
respect, recent data have demonstrated that the role of 
MMPs during I/R may go beyond the mere destruction 
of the ECM and may be much more complex than 
previously thought. We thus discuss the role of MMPs 
as an important factor in cholestasis associated with 
I/R injury.
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Core tip: Induction of matrix metalloproteinases (MMPs) 
modulates the progression of liver damage such as 
ischemia/reperfusion (I/R) injury and acute allograft 
rejection. The high incidence of biliary complications, 
after liver transplantation, is due to a cascade of events 
leading to biliary lesions to which cholangiocytes are 
particularly susceptible. This paper, while focusing 
on liver I/R and cholestasis, reviews factors and 



mechanisms implicated in MMP activation/regulation 
together with the role of MMPs in biliary complications 
following I/R injury. Recent data support the view that 
MMPs play a dual role, both good and bad, in liver I/R 
depending on the length of time after damage.
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MATRIX METALLOPROTEINASES AND 
LIVER
Liver fibrosis arises from chronic damage to the liver 
associated with the over-accumulation of extracellular 
matrix (ECM) proteins, a characteristic of most types 
of chronic hepatic diseases[1] including: cholestatic 
liver diseases; primary biliary cirrhosis and secondary 
biliary cirrhosis; hepatotoxic diseases such as hepatitis 
B virus (HBV), hepatitis C virus (HCV), alcoholic liver 
disease (ALD), and non-alcoholic steatohepatitis 
(NASH)[2]. 

Advanced liver fibrosis disrupts the liver’s normal 
architecture; hepatocytes are replaced with abundant 
ECM causing hepatocellular dysfunction and portal 
hypertension. Hepatic stellate cells (HSCs) are a major 
fibrogenic cell type in the liver[3]. Following liver injury, 
HSCs undergo an activation process and change their 
phenotype from quiescent retinoid storing HSCs to 
collagen-producing and contractile myofibroblast-like 
cells[4]. Activated HSCs migrate and accumulate at the 
sites of tissue repair, secreting large amounts of ECM 
and regulating ECM degradation.

While the classic liver injury paradigm asserts that 
HSCs produce, remodel and turn over abnormal ECMs 
of fibrosis via MMPs, a recent paper by Calabro et 
al[5] has shown that MMPs are also secreted by other 
intrahepatic cell populations including hepatocytes.

Major changes in both quantity and composition of 
ECMs[6] and excessive ECM remodeling arises from a 
balance between increased synthesis and decreased 
degradation[7]. One class of zinc and calcium-dependent 
endopeptidases - matrix metalloproteinases (MMPs) 
and their tissue inhibitors (TIMPs) - plays a major 
role in the ECM remodeling[8]. Analysis of human and 
experimental animal fibrotic liver demonstrates an 
increase in a number of MMPs with a wide activity 
spectrum. Like many other proteases, MMPs are 
produced by activation of zymogens, which are 
released from cells[9-11]. Several different kinds of MMP 
have been identified (Table 1). Most of them can act on 
different collagen types, fibronectin, laminin, elastin, 
proteoglycans, and surface molecules such as growth 

factors or selectins. 
MMP activity is regulated at three levels: gene 

transcription; posttranslational activation of zymogens, 
and interactions of secreted MMPs with specific 
inhibitors TIMP[12]. However, specific MMP inhibitors 
do not simply block protease activity but, on the 
contrary, the role of TIMPs is to modulate MMP 
functioning. Different protease activation occurs as 
a response to liver injury[13]. Usually, while injured 
cells release proteases, healthy cells release TIMPs; 
put another way, inhibitors are secreted by the cells 
surrounding these producing proteases[14-17]. Thus, 
high level of TIMPs occur simultaneously to an increase 
in proteases; in other words, both proteases and 
inhibitors could be produced by the same cell type at 
the same time[13]. TIMP concentrations and MMP/TIMP 
ratios are critical in this respect: a high MMP/TIMP ratio 
activate MMPs, while a low MMP/TIMP ratio lead to the 
opposite effect[18]. 

The uncontrolled ECM remodeling plays a central 
role in pathological changes leading to fibrosis[1,7]. 
A change in quality and quantity of matrix proteins 
occurs during fibrogenesis, resulting in excessive 
accumulation of fibrous tissue and an increase in ECM 
density[19] (Figure 1).

Several animal models of liver fibrosis have been 
developed, each of these with its strengths and 
weaknesses[20]. Bile duct ligation (BDL) has been 
used as an experimental model for chronic liver injury 
because of its closeness to hepatocyte damage, 
hepatic stem cell activation and the liver fibrosis found 
in human cholestatic liver disease[21].

The present study reviews and discusses the 
published articles searched on PubMed, MEDLINE, 
Google Scholar, and Google databases using specific 
keywords to identify articles related to MMPs in 
cholestasis and I/R injury. These keywords were “liver” 
and “MMPs,” “cholestasis” and “ischemia/reperfusion”. 
The search included letters to the editor, case 
reports, review articles, original articles, and meeting 
presentations published in the English-language 
literature from January 2000 to February 2015.

MMPs AND LIVER I/R
During liver resection, transplantation and trauma a 
prolonged oxygen deficiency is observed; the following 
oxygen restoration always induces reperfusion injury. 
In particular, the sequence of events that occurs 
during I/R injury is represented by an early increase 
in oxidative stress, liver sinusoidal endothelial cell 
damage, Kupffer cell activation and further release 
of reactive oxygen species, all of which in turn leads 
to marked tissue damage and liver remodeling[22]. 
MMPs are enzymes primarily involved in connective 
tissue remodeling; their inappropriate, prolonged or 
excessive expression has harmful consequences[23]. 
I/R is associated with gene expression, activation 
and release of MMPs, which have profound effects 
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on tissue integrity[22,24] (Figure 2). A main role seems 
to be played by MMP-2 (gelatinase A; EC 3.4.24.24) 
and MMP-9 (gelatinase B; EC 3.4.24.35). These two 
gelatinases are the two main components of the 
space of Disse[25] and they are critically involved in 
the degradation of collagen Ⅳ and fibronectin[26]. 
Hence, increased activity of these MMPs may cause 
liver injury, with alterations of the sinusoidal cells and 
remodeling of the stromal structure. Already in 1997, 
Upadhya et al[27] demonstrated that MMP content, 
following release of MMP-2 and MMP-9 during cold 
preservation using rat and human liver perfusates, 
was dependent on the length of cold storage. Other 
data have since confirmed and extended the role of 
MMPs in hepatocyte cell death after prolonged cold 
storage and subsequent reperfusion[28]: the protective 
effects obtained using MMP inhibitors led the authors 
to suggest their addition to the liver preservation 
solution[28] (Table 2).

I/R injury is also typical of other pathological 
conditions in which the ischemic phase takes place 
under normothermic conditions. In particular, increased 
liver MMP-9 expression has been reported after 
normothermic I/R injury[29]. Moreover, serum MMP-9 
has been found to be associated with the progression 
of liver damage in I/R injury[30], acute allograft 

rejection[31] and chronic viral hepatitis[32]. Some reports 
have suggested that specific MMP inhibitors decrease 
liver injury after normothermic ischemia associated 
with a concomitant reduction in inflammatory cytokine 
release[24,33] (Table 2). Other evidence has suggested 
that targeting MMP-9, using an anti-MMP neutralizing 
monoclonal antibody, leads to protection against 
damage after warm liver I/R; this approach appears 
to be more effective than using MMP inhibitors[23] 
(Table 2). Furthermore, experimental data suggest 
that MMP inhibition might be a promising approach in 
the context of pharmacological strategies designed to 
limit post-ischemic hepatic damage both in whole liver 
transplantation and in acute “small-for-size” liver graft 
injury[34].

That MMPs are secreted by Kupffer cells and 
hepatic stellate cells (HSCs) is a well-established 
fact[35]. MMP-9 are predominantly expressed in Kupffer 
cells, MMP-2 in HSC while MMP-3 and MMP-10 in 
hepatic stellate cells as well. Membrane type-1 MMP is 
found in significant amount in all liver cells.

However, another source of MMPs in the rat liver are 
sinusoidal the endothelial cells (SECs)[36]. In particular, 
the ability of HSCs to produce significant amounts of 
matrix degrading enzymes and their inhibitors has 
been demonstrated by Knittel et al[37]. In addition, 
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Table 1  Classification and characteristics of the main matrix metalloproteinases

MMP (class and number) Name Extracellular Matrix substrate

Collagenases
   MMP-1 Collagenase 1 Collagen Ⅰ, Ⅱ, Ⅲ, Ⅶ, Ⅷ and Ⅹ, gelatin, proteoglycans, tenascin, entactin
   MMP-8 Collagenase 2 Collagen Ⅰ, Ⅱ, Ⅲ, V, Ⅷ and Ⅹ, gelatin, aggrecan
   MMP-13 Collagenase 3 Collagen Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅸ and Ⅹ, fibronectin, gelatin, tenascin, aggrecan, osteonectin
Gelatinases
   MMP-2 Gelatinase A Collagen Ⅰ, Ⅳ, V, Ⅶ, Ⅸ and Ⅹ, gelatin, proteoglycans, elastin, fibronectin, laminin, aggrecan, versican, 

osteonectin
   MMP-9 Gelatinase B Collagen Ⅳ, V, Ⅶ, Ⅹ and ⅩⅣ, gelatin, proteoglycans, elastin, aggrecan, versican, osteonectin
Stromelysins
   MMP-3 Stromelysins 1 Collagen Ⅲ, Ⅳ, V, and Ⅸ, gelatin, proteoglycans, tenascin, fibronectin, laminin, aggrecan, versican, osteonectin
   MMP-10 Stromelysins 2 Collagen Ⅲ, Ⅳ and V, gelatin, proteoglycans, aggrecan, elastin, casein
   MMP-11 Stromelysins 3 Collagen Ⅳ, fibronectin, laminin, gelatin, transferrin
Membrane type
   MMP-14 MT1-MMP Collagen Ⅰ, Ⅱ and Ⅲ, fibronectin, vitronectin, tenascin, laminin, proteoglycans, aggrecan, elastin, casein, 

entactin
   MMP-15 MT2-MMP Fibronectin, tenascin, laminin
   MMP-16 MT3-MMP Collagen Ⅲ, fibronectin, casein, gelatin
   MMP-17 MT4-MMP ND
   MMP-24 MT5-MMP Activator of proMMP-2
   MMP-25 MT6-MMP Collagen Ⅳ, fibronectin, gelatin, fibrinogen
Others
   MMP-7 Collagen Ⅳ and Ⅹ, gelatin, proteoglycans, tenascin, fibronectin, laminin, aggrecan, osteonectin, entactin, 

casein, tranferrin, integrin b4
   MMP-12 Collagen Ⅳ, gelatin, proteoglycans, fibronectin, laminin, entactin, casein, vibronectin, elastin
   MMP-19 ND Aggrecan, cartilage oligomeric matrix protein (COMP)
   MMP-20 Enamelysin Amelogenin
   MMP-23A MMP-21 ND
   MMP-23B MMP-22 ND
   MMP-26 Matrilysin 2 Collagen Ⅳ, fibronectin, casein, fibrinogen
   MMP-27 ND ND
   MMP-28 Epilysin Casein

ND: Not Determined; MMP: Matrix metalloproteinase.
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hepatic MMPs, released from isolated rat SECs after 
preservation in cold Euro-Collins and UW solutions, 
increase as the length of time associated with cold 
preservation increases[27]. Hamada et al[23] have shown 
that MMP-9 expressed by leukocytes is also a key 
factor in cell transmigration and activation leading 
to liver injury. MMP-2 and MMP-9 are expressed not 
just in nonparenchymal liver cells but also in different 
subsets of leukocytes (T cells, neutrophils, monocytes, 
macrophages)[26]. 

Interestingly, recent data have demonstrated that 
the role of MMPs during I/R might be more complex 
than the mere destruction of the ECM or leucocyte 
recruitment to hepatic parenchyma[38]: the results have 
demonstrated that, although liver injury decreases in 
MMP-9-/- mice at 24 h after reperfusion, liver recovery 
after 72 h of reperfusion was significantly delayed in 
MMP-9-/- mice when compared with WT mice[38,39]. 
Thus, MMP-9 seems to play a dual role in liver I/R 
injury that varies with reperfusion times. 
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Figure 1  Mechanisms of hepatic fibrogenesis. IL-6: Interleukin-6; INF-γ: Interferon-γ; TGF-β1: Transforming growth factor-β1; EGF: Epidermal growth factor; 
IGF: Insulin-like growth factor; TNF-α: Tumor necrosis factor-α; HSC: Hepatic stellate cell; CTGF: Connective tissue growth factor; TIMP-1: Tissue inhibitor of 
metalloproteinase Type1; TIMP-3: Tissue inhibitor of metalloproteinase Type3; MMPs: Matrix metalloproteinases; ECM: Extracellular matrix.
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Figure 2  Time-course of matrix metalloproteinase expression following 
ischemia/reperfusion injury. In response to injury, pro-inflammatory cytokines, 
which promptly increase, induce expression of matrix metalloproteinases 
(MMPs) expression by hepatic cells including hepatic stellate cells (HSCs). The 
MMPs secreted by HSCs degrade the normal extracellular matrix (ECM) in the 
space of Disse.

G
en

e 
ex

pr
es

si
on

 (
A.

U
.)

MMP-3
MMP-9
MMP-13 MMP-2

MMP-11
MMP-12
MMP-14
TIMP-1
TIMP-2

Pro-inflammatory 
cytokines

0                              2                           4                              6

Days after I/R



Pro-inflammation mediators and 
MMPs in I/R
MMP expression and activity in liver I/R injury are 
topics under continuous development as are the 
factors involved in their activation. The mechanisms 
of I/R-induced liver injury include sequestration of 
inflammatory cells in the liver which causes oxygen 
radicals, nitric oxide (NO) and TNF-α to rise sharply[40]. 
In particular, research into the activation of Kupffer 
cells in I/R injury, which induces the production of 
proinflammatory cytokines including TNF-α and 
interleukin-1β (IL-1β), has led to an elucidation of the 
regulatory activity of cytokines on MMP expression 
and further suggested distinct roles for TNF-α and 
TGF-β1[41,42]; the early matrix degradation following 
liver damage may be enhanced by TNF-α, whereas the 
reduced matrix degradation observed during chronic 
tissue injury may be due to the TIMP-mediated action 
of TGF-β1 (Table 3). We recently demonstrated that the 
release of TNF-α, which occurs during the early stage 
of reperfusion after partial hepatic I/R injury, is related 
to an increase of MMP activity both in the ischemic 
region and in the non-ischemic lobe[43]. Furthermore, 
the increase in serum TNF-α after hepatic I/R is also 
correlated with MMP activation in the lung, a distant 
organ[44]. 

Other evidence has also shown that MMP expression 

by HSCs is regulated in a cytokine-specific pattern. 
Since TNF-α causes a marked stimulation of MMPs, 
it may well be that TNF-α and HSC are involved in 
initial matrix breakdown after liver injury. This initial 
matrix breakdown may be essential for early tissue 
repair reactions triggered by tissue inflammation when 
acute hepatic damage occurs[42]. Moreover, other data 
suggest that inflammatory cytokines such as TNF-α 
have a role in ECM degradation after liver I/R injury 
and that hepatic TNF-α expression runs parallel to MMP 
induction[26].

Recently, using an orthotropic liver transplant 
model in Zucker-obese rats, the administration of the 
proteosomal inhibitor, bortezomib, was shown to inhibit 
MMP activation and reduce serum proinflammatory 
cytokines including TNF-α and IL-1β[45] (Table 2).

Significantly, some experiments have also been 
performed to test the role of inducible nitric oxide 
synthase (iNOS) expression on the modulation of 
MMP-9 activity in hepatic I/R injury. Using both mice 
lacking the gene encoding for iNOS and mice treated 
with a selective iNOS inhibitor, the authors concluded 
that MMP-9 activity was induced by iNOS-derived NO 
and that this also led to detachment of hepatocytes 
from the ECM and cell death, in addition to increasing 
leukocyte migration through ECM barriers[46] (Table 3).

Fibronectin (FN) is involved in leukocyte adhesion, 
migration and activation. Amersi et al[47] reported 
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Table 2  Synthetic compounds involved in matrix metalloproteinase regulation

Compounds Mechanism involved MMPs involved I/R model Ref.

Bortezomib Downregulation of pro-inflammatory 
(IL-1β, TNF-α and IFN-γ) and pro-
fibrotic (VEGF, TGF-β, HGF, bFGF) 

factors

MMP-2
MMP-9

Steatotic orthotopic liver transplant Tiriveedhi et al[45],
Transpl Immunol 2014 

KMUP-1 
(NO-donor)

Protects from apoptosis-associated 
free radical generation and pro-

inflammation

MMP-9 Hypoxic 
HepG2 cells 

Kuo et al[90],
 Int J Imm Pharm 2013

CS-1 peptide Blocks fibronectin α4β1 and decreases 
the release of pro-inflammatory 

mediators

MMP-9
MT-1-MMP/

MMP-14

Cold ischemia Duarte et al[91],
Am J Transpl 2012

CTT peptide Reduction in TNF-α, IL-1, IL-2 and 
IFN-γ

MMP-9 Acute small-for-size liver graft Ma et al[34], Am J Transpl 2010

Cyclic RGD peptide Depresses inflammatory mediators 
(IFN-γ)

MMP-9 Steatotic 
Cold ischemia

Fondevila et al[92],
Am J Transpl 2009

ONO-1714 iNOS inhibitor MMP-9 Warm ischemia Hamada et al[46], 
Am J Pathol 2009

RXP409 Inhibitory effects on MMP activity MMPs Cold ischemia Defamie et al[28],
Hepatology 2008

Anti-MMP-9 Decrease in expression of TNF-α, IL-2 
and IFN-γ 

MMP-9 Warm ischemia Hamada et al[23], 
Hepatology 2008

CS-1 peptide Blocks FN α4β1 integrin and its FN 
ligand

MMP-9 Steatotic orthotopic liver transplant Moore et al[29], Am J Pathol 2007

ONO-4817 Reduction in TNF-α, IL-1β MMP-2 and 
MMP-9

Warm ischemia Shirahane et al[33],
Surgery 2006

NAC Reduction in free radicals MMP-9 Warm ischemia Chen et al[93], 
Transpl Proc 2005

BB3103 Prostaglandin PGE(1) protection MMP-2 Cold ischemia Yang et al[94], Microvasc Res 2002
RXPO3 Protects from necrosis/apoptosis MMP-3-9-11-13 Warm ischemia Cursio et al[24], FASEB J 2002

MMP: Matrix metalloproteinase; CS-1: Connecting segment-1; FN: Fibronectin; TNF-α: Tumor necrosis factor; TGF-β: Transforming growth factor β; IFN: 
Interferon; iNOS: Inducible nitric oxide synthase; IL: Interleukin.



that blocking the interaction between FN and the 
integrin α4β1, the integrin receptors expressed on 
leukocytes, led to improved liver function in steatotic 
liver transplantation. Based on this evidence, they 
demonstrated that this is linked to a reduction 
in MMP-9 expression/activation on leukocytes of 
steatotic liver grafts[29]. MMP-9 expression during 
hepatic I/R was shown to be associated with massive 
leucocyte infiltration, extensive FN deposition and 
proinflammatory release, thus emerging as an 
important mediator of leukocyte traffic in liver I/R 
injury[48] (Table 3).

All this shows that numerous and rather complex 
mechanisms affect MMP modulation: for a list of 
endogenous compounds involved in MMP regulation 
see Table 3.

CHOLESTASIS AND MMPs 
Biliary obstruction leads to a cholestatic inflammatory 
and fibrogenic process. Current evidence indicates 
that MMPs are of central importance for cholestatis-
induced fibrosis but only limited evidence is currently 
available on their precise cellular origin and regulation 
within the damaged liver. Some authors have shown 
that marked alterations in the expression of MMPs and 
their inhibitors take place within the first week after 
BDL[49,50]. Specifically, they found that the proteolytic 
activities of MMP-2 and MMP-9 increased 2 d after 
BDL, peaked at day 10, and remained high throughout 
the study period[49]. The increase in gelatinase 
activities was accompanied by an increase in TIMP 
mRNA transcripts while no corresponding increase in 
TIMP protein activity was detected. This appears to 
arise from the formation of TIMP/MMP complexes. 

These findings suggest that complex changes in the 
local MMP/TIMP balance may underlie the pathological 
mechanisms of BDL fibrosis.

More recent publications support the view that 
analysis of the MMP activation not just 1-2 wk after 
BDL but even a few days after occlusion has a crucial 
role to play[51]. Ferrigno et al[50] have reported a 
marked alteration in gelatinase activity after BDL 
showing that this increase takes place in the first few 
days after BDL mainly in the right lobe. They also 
observed an increase in MMP-2 and MMP-9 that occurs 
significantly in the right lobe, more than in the median 
lobe and left lobe.

Although liver fibrosis has long been considered 
irreversible, recent studies suggest potential reversi
bility of liver fibrosis once the pathological trigger is 
removed[52]. Studies in patients with chronic hepatitis 
successfully treated with antivirals suggest recover 
even in cirrhotic patients[53]. In experimental models, 
reversibility of liver fibrosis depends on the degree of 
pre-established fibrosis. In an experimental model 
of cholestasis-induced fibrosis, MMP activity was 
upregulated in bile duct ligated rats treated with IFNα-
2a. Bile duct ligation, itself, promoted MMP activity in 
both liver tissue and NPCs (non parenchymal cells) 
isolated from the same tissue[54]. 

In an elegant study, Popov et al[55] have shown 
that macrophages upregulate MMPs and become 
fibrolytic effector cells on apoptotic cholangiocyte 
engulfment in vitro, suggesting that phagocytosis-
associated MMP induction in macrophages contributes 
significantly to biliary fibrosis reversal. A relevant 
finding of this study is the description of the subset 
of MMPs differentially regulated at the peak of matrix 
remodeling and degradation. In their study, the study 
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Table 3  Endogenous factors associated with matrix metalloproteinase modulation

Factors MMPs Involved I/R Model Ref.

FN-α-β1 MMP-9
MT1-MMP/MMP-14

Cold ischemia Duarte et al[91], Am J Transpl 2012
Coito[48], Curr Opin Organ Transplant 2011 

Moore et al[29], Am J Pathol 2007
Fondevilla et al[95], Transplant Proc 2005

Amersi et al[47], Am J Pathol 2003
Tenascin-C MMP-9 Warm ischemia Kuriyama et al[96], Hepatology 2011
iNOS MMP-9 Warm ischemia Hamada et al[46], Am J Pathol 2009
TNF-α MMP-2 and MMP-9 Warm ischemia Feng et al[39], J Surg Res 2013

Palladini et al[43], Toxicol and Pathol 2012
Khandoga et al[26], J Leukoc Biol 2006
Chen et al[93], Transplant Proc 2005

IL-1β MMP-2 and MMP-9 Warm ischemia Shirahane et al[33], Surgery 2006
IL-6 MMP-9 Warm ischemia Hamada et al[46], Am J Pathol 2009
IFNα-2a MMP-2 and MMP-9 Cholestasis Bueno et al[54], J Hepatol 2000
CD62 MMP-2 and MMP-9 Warm ischemia Khandoga et al[26], J Leukoc Biol 2006
Plasmin MMP-9 Cholestasis Martínez-Rizo et al[97], Liver Int 2010
TGF-β MMP-9 Warm ischemia Feng et al[39], J Surg Res 2013

MMP-13 Cholestasis Aldaba-Muruato et al[98], Can J Physiol Pharmacol 2012
IL-10 MMP-2 and MMP-9 Warm ischemia Feng et al[99], Int Immunopharmacol 2012

MMP: Matrix metalloproteinase; TNF-α: Tumor necrosis factor; iNOS: Inducible nitric oxide synthase; IL: Interleukin; IFNα-2a: Interferon α- 2a; TGF-β: 
Transforming growth factor β; FN: Fibronectin.



of expression patterns during biliary fibrosis reversal 
in vivo suggested that MMPs, with the exception of 
MMP-2, that have a profibrogenic role[56], and MMP-13, 
that could be involved in removal of the fibrotic matrix.

Pro-inflammation mediators and 
MMPs in cholestasis
During cholestasis a marked increase in liver and 
serum bile acid levels occurs, leading to acute liver 
toxicity, bile duct cells proliferation, and fibrosis 
progressing to cirrhosis[57-59]. However, the molecular 
mechanisms of liver injury induced by obstructive 
cholestasis remain unclear. Previous research has 
suggested a predominant hypothesis: inflammatory 
cell-mediated liver necrosis, and not bile acid-induced 
apoptosis, may be directly involved in cholestatic liver 
damage[60]. However, a recent study[61] indicates that 
bile acid composition between humans and rodents 
is different and that mechanisms of cholestasis in 
humans are different from rodent models.

In humans, during obstructive cholestasis, bile 
leaking back into the parenchyma can cause direct 
bile acid-induced necrosis, which, through release of 
damage-associated molecular patterns can initiate an 
inflammatory response.

Neutrophil accumulation has been directly imp
licated in the pathogenesis of early cholestatic liver 
injury[62,63]. After obstruction of the bile duct, an intense 
increase in biliary ductal pressure is produced[64] and 
this is quickly followed by ECM changes[65].

The accumulation of toxic bile acids induces hepatocyte 
injury, in part by activating death receptors[66]. This 
event triggers a secondary phase in which infiltration 
of inflammatory cells, activation of Kupffer cells 
and transformation of stellate cells to activated 
myofibroblasts occur, along with a MMPs-induced 
remodeling of the ECM. This structural hepatic changes 
further promotes liver injury and enhances hepatocyte 
apoptosis[67].

An increase in myeloperoxidase activity[68] and 
the formation of intracellular chlorotyrosine adduct 
in hepatocytes[62,63] are associated with neutrophil 
accumulation after bile duct ligation. The neutrophil-
derived hypochlorous acid can induce liver injury by 
intracellular oxidative stress[69], prevented by inhibition 
of NADPH oxidase that protects against neutrophil 
cytotoxicity[70,71]. Furthermore, Nox1 and Nox2, hepatic 
NADPH oxidases respectively located in hepatic stellate 
cells and Kupffer cells, participate to BDL-induced 
fibrosis[72,73], though their role to the early liver injury 
has not yet been defined. Yang et al[74] suggest that 
the neutrophil-mediated liver injury is induced by 
MMP-induced cleavage of osteopontin (OPN), acting 
as an early pro-inflammatory signal after BDL in mice. 
In the cleavage of OPN into its pro-inflammatory 
form, MMP-3 and MMP-7 have a prominent role[75]. 
Yang et al[74] also reported that BDL induces MMP-3 
early in the liver and, in addition, MMP-2, -3 and -9 

activities increase in bile. Thus, probably, MMP-3 and 
other MMPs released into bile, activate OPN as potent 
chemoattractant for neutrophils. It is well known that 
MMPs are also involved in the modulation of cytokine 
and chemokine activity. MMPs can both generate 
chemotactic gradients by activating chemokines and 
cytokines, and inactivate these pro-inflammatory 
mediators[76]. The obstruction of the bile duct, induces 
an increase in biliary duct pressure, injuring the biliary 
epithelial cells. OPN and MMPs are released into 
bile and MMPs activates OPN, producing the factors 
attracting neutrophils. The high pressure in the biliary 
system occurring in BDL, provokes ruptures in the 
Canals of Hering. This process results in infiltration of 
bile into the parenchyma[77] and is facilitated by the 
expression on hepatocytes of intercellular adhesion 
molecule-1 (ICAM-1), induced by bile acids (BAs) into 
the parenchyma.

Biliary complication during 
ischemia/reperfusion injury
The development of biliary complications after liver 
transplantation is a major clinical problem, due to its 
relatively high frequency, complications, morbidity 
and even mortality. The formation of strictures in the 
liver bile ducts is accompanied by tissue remodeling in 
which MMP-2 and MMP-9 are considered to play a key 
role in connective tissue remodeling processes in the 
liver. The mechanisms by which ischemia/reperfusion 
(I/R) lead to liver injury are complex and multifactorial; 
these events also involve profound changes in MMP 
expression[24]. Based on the above considerations, 
further evaluation of a possible link between MMP-2 
and 9 gene polymorphisms and non-anastomotic biliary 
strictures after liver transplantation might help explain 
MMP involvement[78]. Ten Hove et al[78] have shown that 
MMP-2 polymorphism is significantly associated with 
biliary strictures: genetically determined reduced 
MMP-2 tissue remodeling contributes to the develop
ment of biliary complications. 

Reperfusion of liver grafts after cold preservation 
is associated with diminished bile production both in 
clinical liver transplantation and experimental models. 
Indeed, biliary complications represent a major 
surgical problem with an incidence of up to 30% 
after liver transplantation[79-81]. Cholangiocytes play a 
substantial role in the damage caused by preservation 
in hypothermic conditions: compared to hepatocytes 
and Kupffer cells, they are particularly susceptible 
to injury, and, in particular, to injury induced by cold 
hypoxia[82]. Hence, biliary strictures that occur after 
transplantation often require endoscopic, radiological 
and surgical procedures[83-85] designed to avoid graft 
dysfunction and/or re-transplantation.

Post-transplant biliary complications are usually 
classified into two types: (1) anastomotic strictures 
and (2) non-anastomotic strictures. Anastomotic 
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strictures of the biliary tree are located where bile duct 
anastomosis occurred and are generally well treated 
by stent placement[86]. Their incidence is between 5% 
and 10%[82]. Non-anastomotic strictures may be either 
extrahepatic (Type Ⅰ) or intrahepatic (Type Ⅱ). Arising 
from hepatic artery thrombosis, stenosis or ischemic 
cholangiopathy, they account for 10%-25% of stricture 
complications after liver transplantation[82]. In addition, 
ischemic cholangiopathy seems to be associated with 
prolonged periods of cold ischemic storage, delayed 
arterization of the graft or transplant from a donor 
after cardiac death (DCD) indicating that I/R injuries 
play a key pathogenetic role[82].

Clinical evaluation of biliary complications after 
liver transplantation has shown that a storage time 
of over 10-12 h leads to biliary strictures and other 
complications in more than 25% of liver transplant 
recipients[87]: a retrospective review of liver transplant 
patients demonstrated that liver grafts procured from 
DCDs showed a higher re-transplantation rate due to 
ischemic tract biliary lesions combined with severe 
intrahepatic cholestasis[88]. A meta-analysis and meta-
regression of outcomes including biliary complications 
in donation after cardiac death liver transplantation 
published in 2014 confirmed and extended the finding 
that an increase in biliary complications, graft loss and 
mortality occurs with DCD liver transplantation[89]. 
Nevertheless the use of these organs needs to be 
balanced against the risk of recipients dying while on 
the waiting list[89].

CONCLUSION
Data from humans and experimental models supports 
the view that MMPs play a crucial role as modulators of 
tissue development, remodeling and repair in response 
to infection, disease of injury. Currently, it has been 
evaluating whether MMPs merely have a structural 
role in matrix remodeling, or they also have a role in 
regulating access to signaling molecules. One of the 
most important findings in MMP biology has been the 
realization that extracellular proteolysis is not only a 
mechanism that destroys structure or information. 
Instead, various studies have demonstrated that MMPs 
can release growth factors from the ECM and cell 
surfaces, activating latent proteins and generating new 
bioactive molecules through proteolysis.

Reperfusion damage is dependent on the degree 
of injury in previous phases and involves complex 
mechanisms and mediators that are not as yet 
completely understood. 

Changes in extracellular MMP activities already 
occur in the early phases of reperfusion and are 
coupled with morphological changes to hepatic tissue, 
the biliary tree included. Significantly, as recent 
data have clarified, the multifactorial mechanisms 
of MMP modulation are associated to a possible 
dual role for MMPs during I/R injury; hence, only a 
detailed time-course evaluation of events occurring 

during reperfusion will provide specific indications for 
appropriate pharmacological treatments.
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