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Abstract
Genome wide association studies have associated 
single nucleotide polymorphisms within the gene locus 
encoding protein tyrosine phosphatase non-receptor 
type 2 (PTPN2) with the onset of inflammatory bowel 
disease (IBD) and other inflammatory disorders. 
Expression of PTPN2 is enhanced in actively inflamed 
intestinal tissue featuring a marked up-regulation in 
intestinal epithelial cells. PTPN2 deficient mice suffer 
from severe intestinal and systemic inflammation 
and display aberrant innate and adaptive immune 
responses. In particular, PTPN2 is involved in the 
regulation of inflammatory signalling cascades, and 
critical for protecting intestinal epithelial barrier 
function, regulating innate and adaptive immune 
responses, and finally for maintaining intestinal 
homeostasis. On one hand, dysfunction of PTPN2 has 
drastic effects on innate host defence mechanisms, 
including increased secretion of pro-inflammatory 
cytokines, limited autophagosome formation in 
response to invading pathogens, and disruption of 
the intestinal epithelial barrier. On the other hand, 
PTPN2 function is crucial for controlling adaptive 
immune functions, by regulating T cell proliferation and 
differentiation as well as maintaining T cell tolerance. 
In this way, dysfunction of PTPN2 contributes to the 
manifestation of IBD. The aim of this review is to 
present an overview of recent findings on the role of 
PTPN2 in intestinal homeostasis and the impact of 
dysfunctional PTPN2 on intestinal inflammation.

Key words: Protein tyrosine phosphatase non-receptor 
type 2; Inflammatory bowel disease; Chronic intestinal 
inflammation; Barrier function; Phosphorylation

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.3748/wjg.v22.i3.1034

1034 January 21, 2016|Volume 22|Issue 3|WJG|www.wjgnet.com

World J Gastroenterol  2016 January 21; 22(3): 1034-1044
 ISSN 1007-9327 (print)  ISSN 2219-2840 (online)

© 2016 Baishideng Publishing Group Inc. All rights reserved.

TOPIC HIGHLIGHT

Protein tyrosine phosphatase non-receptor type 2 and 
inflammatory bowel disease

2016 Inflammatory Bowel Disease: Global view

Marianne R Spalinger, Declan F McCole, Gerhard Rogler, Michael Scharl



© The Author(s) 2016. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Genetic variants and subsequently aberrant 
function of protein tyrosine phosphatase non-
receptor type 2 (PTPN2) have been associated with 
inflammatory bowel disease (IBD). Protein levels of 
PTPN2 are increased in the mucosa of IBD patients and 
PTPN2-deficient mice suffer from severe intestinal as 
well as systemic inflammation and feature alterations 
in innate and adaptive immune responses. In the 
innate immune system, dysfunction of PTPN2 results 
in increased secretion of pro-inflammatory cytokines, 
impairs autophagosome formation, and mediates 
disruption of epithelial barrier function. In the adaptive 
immune system, PTPN2 is involved in controlling T-cell 
proliferation, differentiation and promoting T-cell 
tolerance. Consequently, variants in PTPN2 importantly 
affect intestinal homeostasis and contribute to IBD 
pathogenesis.
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INTRODUCTION
Inflammatory bowel disease (IBD) with its sub-forms 
Crohn’s disease (CD) and ulcerative colitis (UC) are 
chronic inflammatory disorders of the gastrointestinal 
tract of multi-factorial aetiology. The current hypo
thesis suggests that an intestinal epithelial barrier 
defect coupled with a dysfunctional immune response 
of the innate as well as the acquired immune system 
to the commensal microbiota results in dysregulation 
of inflammatory events, and subsequent development 
of chronic intestinal inflammation[1]. This indicates 
that the regulation of intestinal epithelial barrier 
function, as well as of factors that regulate innate as 
well as adaptive immune responses, are crucial for 
maintaining intestinal homeostasis. The predisposition 
to develop IBD is partially genetically determined and 
genome wide association studies (GWAS) identified 
variations in more than 160 gene loci being associated 
with IBD[2] that contribute about 30% of disease 
aetiology. Many of the identified risk genes for IBD are 
critically involved in bacterial recognition, induction 
of antimicrobial factors, activation and modulation of 
innate as well as adaptive immune responses and in 
the maintenance of intestinal epithelial barrier function. 
Among IBD risk genes, the gene locus encoding 
protein tyrosine phosphatase non-receptor type 2 
(PTPN2) is of distinct interest, as several studies 
demonstrated a pivotal role for PTPN2 in the regulation 
of epithelial barrier properties and inflammatory 

responses[3-8]. Protein tyrosine phosphatases remove 
phosphate groups from tyrosine residues of their 
target proteins. As (tyrosine) phosphorylation is a 
fundamental mechanism of activation or deactivation 
of cell signalling molecules, tyrosine phosphatases 
regulate the functional activity of their targets. PTPN2 
in particular, is capable of dephosphorylating many 
protein tyrosine kinase-targets such as the insulin 
receptor, epidermal growth factor receptor (EGFR), 
Src family kinases as well as several Janus kinases 
and signal transducer and activator of transcription 
(STAT) family members[9-15]. Subsequently, PTPN2 
not only influences proliferation, differentiation and 
cell survival[16], but also partially determines how cells 
respond to inflammatory conditions[6,7].

In this review we will summarize the most recent 
knowledge about the role of PTPN2 in the pathogenesis 
of chronic intestinal inflammation, in particular IBD.

GENETIC VARIANTS WITHIN THE PTPN2 
GENE ARE ASSOCIATED WITH IBD
The gene locus encoding PTPN2 has emerged as a site 
of important clinical significance due to the association 
of a number of SNPs in the PTPN2 locus (18p11) with 
chronic inflammatory conditions such as CD, UC, type 
1 diabetes and celiac disease[17-19]. The rs2542151 
SNP is the most widely identified and best analysed 
PTPN2 SNP associated with IBD. The Welcome Trust 
Case Control Consortium (WTCCC) study published 
the initial findings of a genetic association between the 
rs2542151 SNP in PTPN2 and CD (P = 4.6 × 106; OR 
= 1.3)[20]. Follow-up studies confirmed this association 
and also identified links between the rs2542151 SNP 
with CD and UC[18,21-25]. Additional SNPs in the PTPN2 
gene locus have also been associated with IBD and 
disease outcomes. This includes the rs7234029 SNP 
that has a potential association with a stricturing 
disease phenotype in CD subjects (P = 6.62 × 10-3), 
and may be linked to early onset CD [P = 1.30 × 
10-3; OR = 1.35 (1.13-1.62)] and UC [P = 7.53 × 
10-2; OR = 1.26 (0.98-1.62)][26]. The rs1893217 SNP 
was originally reported to be associated with type 1 
diabetes, however it has emerged as a candidate SNP 
in both adult [P = 1.29 × 10-14; OR = 1.25 (1.18-1.32)] 
and early-onset pediatric CD (P = 0.005) as well as UC 
[4.78 × 10-5; OR = 1.12 (1.06-1.18)], although the 
effect of this SNP on PTPN2 gene and protein function 
remains to be determined[17,18,27]. Nevertheless, a first 
study points towards the presence of a loss-of-function 
PTPN2 protein in variant carrying cells[28].

PROTEIN STRUCTURE AND SPLICING 
VARIANTS OF PTPN2
PTPN2 - also known as T-cell protein tyrosine pho
sphatase (TCPTP) as it was originally cloned from a 
T-cell cDNA library - is almost ubiquitously expressed in 
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embryonic and adult tissues[29,30]. PTPN2 is a cytosolic 
tyrosine phosphatase that, in addition to an N-terminal 
phosphatase domain, harbours a nuclear localization 
sequence (NLS)[31]. As a consequence, PTPN2 is able to 
dephosphorylate and thereby inactivate its targets not 
only in the cytosol, but also after translocation to the 
nucleus. This is of interest, as among the substrates of 
PTPN2 are the STAT family of transcription factors[13], 
which are found in the nucleus after activation. 

In humans two functional variants of PTPN2 exist, 
which originate from alternative splicing. The larger 48 
kD form is restricted to the endoplasmic reticulum (ER) 
by a hydrophobic C-terminus that masks the NLS. 
The enzymatically more active 45 kD variant lacks the 
hydrophobic C-terminus and can transit to the nucleus 
via the NLS and is thus regarded as the mobile form of 
PTPN2[32,33]. In response to an appropriate stimulus the 
45 kD form can exit the nucleus and dephosphorylate 
target substrates in the cytoplasm and at the plasma 
membrane[15]. 

PTPN2 controls innate host defence mechanisms
Studies with mice demonstrated that PTPN2 is a key 
negative regulator of cytokine signalling. Ptpn2-/- animals 
develop progressive systemic inflammatory disease as 
indicated by chronic myocarditis, gastritis, nephritis, 
and sialadenitis as well as elevated serum levels of 
interferon-gamma (IFN-g) IL-12, tumour necrosis factor 
(TNF) and nitric oxide. These inflammatory mediators 
are mainly produced by mononuclear cells. Interestingly, 
Ptpn2-/- mice also exhibit increased sensitivity to the 
bacterial cell wall component lipopolysaccharide (LPS) 

in vivo, and in vitro cultured macrophages from Ptpn2-/- 
mice are hypersensitive to (LPS)[4]. Further, loss of 
PTPN2 results in pronounced IFN-g mediated barrier 
disruption in epithelial cell cultures[8]. Taken together, 
this demonstrates a crucial role of PTPN2 in innate 
immune functions (Figure 1).

PTPN2 regulates inflammatory responses
An important function of PTPN2 is to dephosphorylate 
STAT1 leading to its inactivation[13]. Upon ligand 
binding, cytokine-receptor associated kinases 
phosphorylate STAT molecules, which subsequently 
dimerize and translocate to the nucleus, where 
they act as transcription factors. PTPN2 counteracts 
the activity of receptor-associated kinases by de-
phosphorylation of STAT molecules, ultimately 
repressing cytokine signalling[14]. One inflammatory 
molecule that crucially depends on STAT activation is 
IFN-γ. Not surprisingly, recent data have demonstrated 
that PTPN2 regulates IFN-γ-induced signalling and 
effects in cell models of inflammation. Treatment of 
human intestinal epithelial cells with IFN-γ increases 
PTPN2 mRNA and protein levels, elevates enzymatic 
PTPN2 activity, and causes cytoplasmic accumulation 
of PTPN2. These effects are mediated via the 
cellular energy sensor, adenosine-monophosphate 
activated protein kinase. In these cells, knockdown 
of PTPN2 resulted in increased STAT1 and STAT3 
phosphorylation upon IFN-γ treatment[8]. Further, in 
PTPN2 deficient human THP-1 monocytic cells, IFN-
g-induced activity of the mitogen-activated protein 
kinase (MAPK) family member, p38, and secretion of 

1036 January 21, 2016|Volume 22|Issue 3|WJG|www.wjgnet.com

Figure 1  Effect of loss of protein tyrosine phosphatase non-receptor type 2 on innate immune functions in the intestine. When protein tyrosine phosphatase 
non-receptor type 2 (PTPN2) is lost either by genetic deletion in the mouse or due to genetic variants in inflammatory bowel disease (IBD) patients, several aspects 
of innate immunity are affected, ultimately resulting in inflammation. Depicted are mechanisms that play pivotal roles in intestinal homeostasis. B: B cell; DC: Dendritic 
cell; IFN: Interferon; M: Macrophage; NO: Nitric oxide; T: T cell; TNF: Tumour necrosis factor; IL: Interleukin.
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of cytoplasmic compartments, damaged organelles, 
and/or misfolded proteins. In autophagosomes, 
target proteins/organelles are sequestered into 
double-membrane-enclosed vesicles and delivered 
to lysosomes for final degradation[37-39]. Stress 
conditions, such as starvation or hypoxia, enhance 
autophagy, and numerous pathologies, including 
cancer or neurodegeneration have been linked with 
aberrant autophagy function[40]. Of note for intestinal 
homeostasis, autophagy is also critically involved in host 
defence against intracellular pathogens such as Listeria 
monocytogenes (LM) or Salmonella typhimurium[41-43]. 
Previous data have clearly demonstrated that the 
presence of genetic variations within autophagy genes 
results in defective bacterial handling, prolonged 
intracellular survival of pathogenic bacteria and an 
elevated inflammatory response[41-43]. 

Recent data demonstrated that PTPN2 not only 
regulates cytokine-induced activation and expression 
of autophagy-related molecules, but is also involved 
in the regulation of autophagosome formation in 
intestinal epithelial cells[44]. siRNA-induced knock-
down of PTPN2 in intestinal epithelial cells inhibits the 
expression of several autophagy-associated molecules, 
including beclin-1, ATG5, ATG7, ATG12, ATG16L1 and 
IRGM in response to IFN-γ and TNF treatment. Of 
note, reduced protein levels of all of these autophagy 
markers have also been observed in intestinal tissue 
samples derived from patients with active CD when 
compared to tissue samples from non-IBD control 
patients[44]. 

On a functional level, loss of PTPN2 in human 
intestinal epithelial cells reduced autophagosome 

monocyte chemo-attractant protein and interleukin 
(IL)-6 were enhanced[6]. Additionally, PTPN2 regulates 
signalling responses to the bacterial cell wall com
ponent muramyl-dipeptide (MDP), which is a NOD2 
ligand in human monocytes, both in intestinal epithelial 
cells and monocytic cells. Loss of PTPN2 results in 
enhanced IFN-γ, but reduced IL-8 and TNF secretion in 
MDP-treated THP-1 cells. This might be due to the fact 
that dysfunction of PTPN2 in human monocytes causes 
enhanced MAPK signalling in response to MDP. Of note, 
PTPN2 dysfunction also resulted in enhanced cleavage 
of caspase-1 and increased IL-1β secretion, indicative 
of increased inflammasome activation in response 
to MDP[28]. TNF induces PTPN2 protein and mRNA 
levels in human intestinal epithelial cells via an NF-κB-
dependent mechanism. PTPN2 in turn regulates TNF-
induced ERK- and p38-MAPK activity as well as IL-6 
and IL-8 secretion[7]. Further studies also demonstrated 
that PTPN2 controls TNF-induced IL-6 secretion in 
mouse embryonic fibroblasts[12], and in synovial 
fibroblasts from rheumatoid arthritis patients[34]. 
Additionally, PTPN2 has also been demonstrated to 
play a critical role in regulating ER stress responses in 
intestinal epithelial cells and monocytes, while it also 
controls cytokine secretion in response to ER stress 
triggers[35,36]. These findings strongly suggest that 
PTPN2 is crucial for controlling cytokine secretion from 
intestinal epithelial cells, fibroblasts and mononuclear 
cells. Figure 2 gives an overview on cellular pathways 
that are regulated by PTPN2.

PTPN2 regulates autophagosome formation
Autophagy is a fundamental process for bulk degradation 

Figure 2  Signaling pathways affected by protein tyrosine phosphatase non-receptor type 2. Depicted are pathways that play important roles in intestinal 
homeostasis, factors with red margins are directly influenced by protein tyrosine phosphatase non-receptor type 2 (PTPN2). ASC: Apoptosis-associated speck 
containing protein; eIF2a: Eukaryotic translation initiation factor 2A; ER: Endoplasmatic reticulum; ERK: Extracellular-stress activated kinase; ICAM-1: Intercellular 
adhesion molecule-1; IFN: Interferon; IL: Interleukin; MCP1: Monocyte-chemoattracting protein 1; MDP: Muramyl-dipeptide; NLRP: Nod-line receptor protein; NOD2: 
Nucleotide oligomerization containing 2; PERK: Protein Kinase RNA-like endoplasmic reticulum kinase; STAT: Signal transducer and activator of transcription.
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formation in response to TNF and IFN-γ co-treatment. 
PTPN2-deficient cells featured only a small number of 
LC3B+ vesicles and TNF+IFN-γ co-treatment caused 
the formation of fewer, but larger LC3B+ vacuoles that 
were localized close to cell borders[44]. The appearance 
of such abnormal, large autophagic vacuoles has been 
regarded as a marker of an ineffective formation of 
dysfunctional autophagosomes due to a defective 
autophagy process in these cells[45]. Similar findings 
were observed in MDP-treated human monocytes[28]. 
Interestingly, the effects of PTPN2 on autophagosome 
formation seem to be mediated by controlling the 
phosphorylation status of the EGF receptor and 
subsequently of PI3K, Akt and mTOR activity[44]. 
More recent data found a role for STAT3 in inhibition 
of autophagy (summarized in[46]), hence increased 
STAT3 activation upon loss of PTPN2 might provide 
an additional mechanism how loss of PTPN2 affects 
autophagy. 

In primary colonic lamina propria fibroblasts (CLPF) 
isolated from CD patients, presence of a disease-
associated PTPN2 variant exerts similar effects to siRNA-
induced loss of PTPN2 expression[44]. In particular, CLPFs 
featuring the CD-associated PTPN2 variant revealed 
reduced basal levels of PTPN2 protein when compared 
to PTPN2-WT fibroblasts and the TNF+IFN-γ-induced 
increase in PTPN2 protein was absent. As in intestinal 
epithelial cells, PTPN2 dysfunction also prevented 
the cytokine-induced increase in the expression of 
autophagy markers, such as IRGM, and also resulted 
in diminished formation of autophagosomes in PTPN2-
variant carrying CLPF[44].

Impaired autophagy has been described to 
result in defective handling of invading bacteria[42,43] 
and defective handling of luminal and/or invading 
bacteria might critically contribute to the onset of IBD. 
Studies using GFP-labelled Listeria monocytogenes 
have demonstrated that loss, or genetically-caused 
dysfunction of PTPN2, results in impaired auto
phagosome formation and defective clearance of 
invading bacteria. Collectively, these data suggest 
that the presence of the CD-associated PTPN2 variant 
within intestinal cells could critically contribute to the 
onset of IBD by causing a defective innate immune 
response to invading bacteria[44].

PTPN2 maintains intestinal barrier function 
PTPN2 is expressed in both, hematopoietic as well as 
non-hematopoietic cells. In the healthy intestine, where 
highest PTPN2 expression is found in immune cells, 
PTPN2 is also detectable in intestinal epithelial cells[8,44]. 
In active lesions of CD patients, colonic PTPN2 mRNA 
and protein expression is increased, with expression 
being most prominent in the epithelium[7,8]. Consistent 
with this, we have shown that in intestinal epithelial 
cell lines the IBD-associated inflammatory cytokines 
IFN-γ and TNF are capable of increasing expression 
of PTPN2[7,8]. This suggests that these inflammatory 
cytokines induce expression of a negative regulator of 

their own signalling in an apparent negative feedback 
loop. While expression of PTPN2 is increased in CD, 
the impact of non-coding SNPs appears to manifest 
in a loss of enzymatic activity or efficacy[28]. Loss of 
PTPN2 expression has been shown to have dramatic 
consequences for intestinal epithelial cells and their 
ability to form an effective barrier. Knockdown of PTPN2 
in intestinal epithelial cells resulted in a pronounced 
decrease in trans-epithelial resistance in response to 
IFN-γ coupled with a higher increase in expression of 
the cation-selective pore-forming molecule, claudin-2[8]. 
Claudin-2 expression is elevated in colonic tissues in 
IBD patients, especially in UC, and functionally this 
could contribute to symptoms of disease by permitting 
increased paracellular passage of sodium ions into 
the intestinal lumen, thus leading to intestinal fluid 
loss associated with IBD[47-49]. In addition, PTPN2-
deficient cells also displayed increased macromolecule 
permeability following IFN-g treatment as determined 
by increased apical-to-basolateral passage of FITC-
dextran across polarized intestinal epithelial cell 
monolayers[8]. Due to the width of the pore size 
generated by claudin-2 being insufficient to permit 
passage of FITC-dextran (10 kD), this strongly suggests 
that additional mechanisms capable of modifying tight 
junction components responsible for regulation of 
macromolecule permeability are recruited by IFN-γ in 
cells lacking PTPN2[5]. Conclusive evidence of this has 
not yet been achieved: PTPN2 knockdown did not cause 
further decreases in expression of the tight junction 
proteins occludin or ZO-1 by IFN-γ. On the other hand, 
a possible influence of PTPN2 on re-localization of 
tight junction proteins has not been investigated[8]. 
These data suggest that PTPN2 plays an important 
role in protecting intestinal epithelial barrier function. A 
protective role for PTPN2 in intestinal barrier function 
has also been indicated in vivo. Ptpn2 knockout mice 
suffer from systemic inflammation, hematopoietic 
defects, increased levels of pro-inflammatory cytokines, 
splenomegaly and diarrhea, and die within 3-5 wk 
after birth[50,51]. Murine bone marrow chimeric studies 
indicated that the inflammation and mortality were 
governed by loss of PTPN2 in the non-hematopoietic 
compartment[4]. Studies using heterozygous (Ptpn2+/-) 
mice demonstrated no overt inflammatory phenotype 
and normal survival rates. However, Ptpn2+/- mice are 
more susceptible to dextran sulfate sodium (DSS)-
induced colitis, suggesting that PTPN2 deficiency 
increases the susceptibility to agents that disrupt the 
epithelial barrier[52].

PTPN2 regulates electrolyte transport 
Another important epithelial function that plays a critical 
role in intestinal homeostasis is appropriate regulation 
of electrolyte transport. This is essential for absorption 
and secretion of electrolytes and fluids as well as for 
the absorption of nutrients, maintenance of luminal 
pH and preserving the sterility of intestinal crypts[53]. 
In IBD, epithelial electrolyte transport is suppressed, 
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contributing to overall fluid loss due to decreased 
absorptive capacity. This creates an environment 
conducive to increased bacterial interactions with the 
intestinal epithelium[54-56]. PTPN2 has been shown to 
play a role in regulating fluid secretion. Specifically, 
PTPN2 knockdown in T84 colonic epithelial cells ac
centuated EGF inhibition of Ca2+-stimulated chloride 
secretion thus promoting EGFR suppression of elec
trolyte secretion[57]. Thus, it is possible that PTPN2 
mutations resulting in a loss of enzymatic activity could 
mediate elevated or prolonged EGFR phosphorylation 
and exacerbate overall dysregulation of intestinal fluid 
homeostasis.

PTPN2 CONTROLS ADAPTIVE IMMUNE 
FUNCTIONS
Many of the signalling cascades involved in innate 
immunity, are also of fundamental importance for 
adaptive immune cells. For example STAT molecules, 
which are an important target of PTPN2, are crucially 
involved in T and B cell differentiation and matura
tion[58,59]. PTPN2 protein had initially been termed 
T cell protein tyrosine phosphatase (TCPTP), which 
reflects the original cellular compartment of detection 
and characterization[60,61]. Subsequently a number of 
functions for PTPN2 in the adaptive immune system 
have been described. Similar to the innate immune 
system PTPN2 also exerts an anti-inflammatory role, 
both in the T and B cell compartments. Aside from 
anomalies in bone marrow development and changes in 
innate immunity[50], Ptpn2‑/- mice show severe alterations 
in the adaptive immune system including splenomegaly, 
lymphadenopathy and altered T and B cell functions[50]. 
These data indicate an important role of PTPN2 in the 
adaptive immune system and in the maturation/function 
of B and T cells and subsequently in autoimmunity. 

PTPN2 in B cell development
As alluded to above, B cell development is crucially 
affected by PTPN2. Ptpn2 knock-out mice develop an 
early bone marrow B cell deficiency which is caused by 
a block of the transition from pre-B cells to immature 
B cells[3]. The impairment of Pre-B to immature B cell 
transition is associated with the secretion of abnormally 
high amounts of IFN-γ by bone marrow stromal cells. 
High levels of IFN-g in turn result in phosphorylation 
of STAT1 in the pre-B cell compartment[62]. As STAT1 
activity impairs pre-B cell differentiation to immature B 
cells, and blocks IL-7 induced pre-B cell proliferation[63], 
loss of PTPN2 crucially influences this developmental 
stage. Reduced numbers of immature B cells have 
been associated with the survival of auto-reactive B 
cells, which are normally deleted at this stage due 
to competition for B cell survival factors. Therefore, 
loss of PTPN2 might result in increased levels of 
potentially auto-reactive B cells, however experimental 
evidence is still missing. In contrast to pre-B cells, 

IFN-γ signalling and STAT activation plays an important 
mitogenic and differentiation-inducing role in mature B 
cells. In the germinal centre, where B cells proliferate 
and differentiate with the help of CD4+ T cells into 
antibody-secreting plasma cells, high IFN-γ levels 
(and subsequent STAT1 phosphorylation) promote 
IgM and IgG secretion, while it represses the switch 
to IgA production[64]. Therefore it is likely, that loss of 
PTPN2 might also influence the terminal stage of B 
cell differentiation and IgA production. Of note, IgA 
is secreted in large amounts at mucosal surfaces and 
seems to play a role in bacterial handling[65]. 

PTPN2 in T cells
T cells express especially high levels of PTPN2[3], 
suggesting a pivotal role of this phosphatase in T cell 
development/function. Besides the above-mentioned 
role of PTPN2 in regulating STAT molecules, PTPN2 is 
also a key negative regulator of T-cell receptor (TCR) 
signalling: PTPN2 dephosphorylates and thereby 
inactivates Src family kinases. Src family kinases 
mediate signalling downstream of the TCR, hence 
PTPN2 directly influences how T cells respond to 
antigens[66]. By interfering with TCR signalling, PTPN2 
attenuates T cell activation and proliferation and in 
general limits antigen-induced responses. Of note, TCR 
signalling strength determines the fate of activated T 
cells: on one hand, strong TCR signalling is involved 
in priming cytotoxic CD8+ T cells to pathogens and 
pathologic antigens, while on the other hand, low 
levels of TCR signalling induces peripheral tolerance to 
self-antigens and commensal microbes in the gut. Due 
to enhanced TCR signalling strength, PTPN2-deficient 
CD8+ T cells loose tolerance to low-affinity TCR ligands 
- ligands often found in the body’s own tissues. 
Therefore, enhanced TCR signalling strength enables 
T cells to react against tissues such as pancreatic β 
cells in an auto-reactive manner, finally resulting in 
the development of diabetes even in the absence of 
CD4+ T cells[67]. Thus, PTPN2 variants can re-direct a 
normally tolerogenic CD8+ T cell response into an auto-
reactive and destructive response. 

Correspondingly, a deficiency of PTPN2 was reported 
to enhance naive T cell responses to low-affinity 
ligands[66]. This may partially be associated with the fact 
that STAT3 and STAT5 are further substrates for de-
phosphorylation by PTPN2. Wiede et al[66] reported that 
in the periphery, PTPN2 deficiency resulted in a memory 
phenotype of CD4+ T cells. In their mouse model the 
number of T cells with an effector/memory phenotype 
increased progressively from 4 to 12 wk of age, which 
was paralleled by a decrease in naive T cell numbers. 
This may lead to a selection of high-affinity, potentially 
self-reactive T cells, which represents another pathway 
of autoimmune disease induction by a lack of PTPN2 
function. In contrast, loss of PTPN2 function did not 
influence the number and function of regulatory T cells 
(Treg) under physiological conditions in this study[67].
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The signalling pathways that are regulated by 
PTPN2 in innate immune cells, also affect T cell fate: 
Up-regulation of IFN-γ, IL-12, and other inflammatory 
cytokines, plays an important role for T cell activation[3]. 
Further, IL-6-mediated STAT3 activity is important for 
the development of IL-17 producing T cells[68]. As STAT3 
is also a known target of PTPN2, it might well be, that 
loss of PTPN2 might influence the development of these 
potentially pathogenic T helper cells.

Normal PTPN2 function seems to have an important 
role in T cells to prevent auto-reactivity. Of interest, 
naive CD8+ T cells that leave the thymus express high 
levels of PTPN2[69]. When PTPN2 is missing in these 
cells, they undergo rapid proliferation and acquire an 
antigen-experienced effector phenotype, especially 
when transferred into T- and B cell deficient hosts. 
This increase in lymphopenia-induced proliferation 
is mediated by elevated TCR-dependent responses, 
which are associated with the development of 
autoimmunity[69]. Tolerance to self- and commensal-/
food-derived antigens is important for intestinal 
homeostasis. The function of PTPN2 in preventing 
excessive activation/proliferation of naïve T cells might 
therefore be very crucial for preventing aberrant 
intestinal inflammation.

PTPN2 in adaptive immunity during intestinal 
inflammation
As described above, loss of PTPN2 crucially affects 
B and T cell function. Few studies, however, have 
addressed the functional consequences of the resulting 
changes in the setting of intestinal inflammation. In 
a recent study using mice featuring loss of PTPN2 in 
CD4+ cells, we addressed how loss of PTPN2 function 
in T cells affects intestinal inflammation. We found 

that loss of PTPN2 specifically in T cells resulted 
in enhanced induction of Th1 and Th17 cells, but 
impaired induction of Tregs when colitis was induced 
by DSS administration. Ultimately, mice lacking PTPN2 
in T cells suffered from more severe colitis[70]. Further, 
transfer of PTPN2 deficient naïve T cells into mice 
lacking B and T cells resulted in pronounced weight 
loss and colitis severity when compared to transfer of 
PTPN2 competent naïve T cells[70]. Of note, this was 
again attributed to enhanced emergence of Th1 and 
Th17 cells but reduced induction of Treg cells.

In line with the findings in mice lacking PTPN2 in T 
cells, CD patients featuring a loss-of-function PTPN2 
variant exhibit enhanced Th1 and Th17 cell markers in 
serum and intestinal tissue samples, when compared 
with PTPN2 wild-type patients, while reduced Treg 
markers are found in these patients[70]. Our findings in 
mice lacking PTPN2 in CD4+ cells and the observation 
in CD patients with loss-of-function PTPN2 variant 
contrasts the situation under physiological conditions 
described by Wiede et al[66], where Treg function/
numbers are not changed upon loss of PTPN2. This 
indicates that under inflamed conditions, PTPN2 has 
slightly different functions for Th cell differentiation, 
and PTPN2 activity seems to be especially important 
for induction of regulatory mechanisms in the 
inflamed intestine. The observed alterations in T cell 
differentiation finally resulted in increased susceptibility 
to intestinal inflammation supporting the role for 
PTPN2 in IBD pathogenesis. Additionally, mice with loss 
of PTPN2 in CD4+ cells displayed intestinal dysbiosis. 
Detailed analysis of the microbiome revealed that the 
resulting dysbiosis is comparable with that observed 
in CD patients. We also detected inflammatory 
infiltrates in liver, kidney, and skin and elevated auto

Figure 3  Loss of protein tyrosine phosphatase non-receptor type 2 affects several aspects of T cell development. Loss of protein tyrosine phosphatase non-
receptor type 2 (PTPN2) in innate immune cells results in enhanced secretion of pro-inflammatory cytokines, including IFN-γ, IL-6 and IL-1β. In CD4+ T cells, these 
cytokines are involved in driving Th1 and Th17 development. Loss of PTPN2 in CD4+ T cells further potentiates the IFN-γ/IL-6-induced activation of STAT1/STAT3, 
what further strengthens the development of Th1/Th17 cells. Further, loss of PTPN2 results in enhanced TCR signaling strength what drives aberrant activation and 
proliferation of naïve T cells and escape of auto-reactive T cells from negative selection. Ultimately, this leads to the generation of increased levels of effector and 
memory T cells. DC: Dendritic cell; IFN: Interferon; M: Macrophage; TNF: Tumour necrosis factor; IL: Interleukin; STAT: Signal transducer and activator of transcription; 
TCR: T-cell receptor.
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antibody levels in mice with dysfunctional PTPN2. 
These observations (summarized in Figure 3) strongly 
indicate a systemic loss of tolerance in PTPN2-deficient 
animals and suggest how PTPN2 might contribute to 
the onset of auto-inflammatory diseases, as well as 
intestinal inflammation[70]. 

On the side of B cells, no functional studies have 
been addressed to investigate the effect of loss of PTPN2 
on intestinal inflammation. However, as loss of PTPN2 
in B cells might affect terminal B cell differentiation, it 
would be of great interest to determine whether loss of 
PTPN2 specifically in B cells might affect colitis severity. 
As STAT1 is involved in suppressing the switch from IgG 
to IgA production from plasma cells, and PTPN2 controls 
STAT1 activation, it is very likely that B cell specific loss 
of PTPN2 affects IgA production. IgA is crucially involved 
in controlling invasive microbes in the intestine, hence 
PTPN2-mediated changes in IgA production might 
strongly affect colitis severity, but this has not yet been 
addressed.

Despite the important role of PTPN2 and the finding of 
relevant variants in autoimmune diseases and CD and 
UC, a detailed analysis of modifications of T and B cell 
functions by those variants on intestinal inflammation 
has not been performed yet. Animal models may not 
be optimally suited as there are complex interactions 
between the immune cells and also between adaptive 
and innate immune mechanisms.

CONCLUSION
Loss of PTPN2 expression/function has consequences 
for several aspects of innate and adaptive immunity 

including epithelial barrier function, autophagy, and T 
cell development/activation (summarized in Figure 4).

Given that PTPN2 represents a point of convergence 
for multiple aspects of intestinal homeostasis it may 
therefore play a key role in multiple IBD-associated 
physiological events and thus, like other IBD candidate 
genes, make a greater cumulative contribution to IBD 
pathogenesis than suggested by the genetic prevalence 
of PTPN2 SNPs in sampled populations. On one hand, 
clinically relevant loss-of-function mutations in the 
PTPN2 gene may contribute, at least in part, to the 
development of IBD and other chronic inflammatory 
intestinal diseases via a compromised epithelial barrier. 
Indeed, given that increased intestinal permeability is 
a feature of IBD, type 1 diabetes and celiac disease, 
this may be one avenue to explore commonality in 
the aetiology of these conditions arising from PTPN2 
mutations. On the other hand, PTPN2 also crucially 
affects immune functions. This involves autophagy, 
a pathway that appears to play an important role 
in IBD pathogenesis. As autophagy affects bacterial 
handling in both, intestinal epithelial cells and innate 
immune cells such as monocytes, macrophages and 
dendritic cells, this might additionally contribute to 
the association of PTPN2 with IBD. Loss of functional 
autophagy results in increased bacterial burden and 
thus prolonged activation of the immune system. Loss 
of autophagosome formation due to PTPN2 dysfunction 
might therefore crucially affect the ability of the innate 
immune system to clear penetrating bacteria. As loss 
of PTPN2 additionally increases the cellular response 
to inflammatory cytokines, this reduced ability to react 
towards invading bacteria, leads to the generation of 

Figure 4  Protein tyrosine phosphatase non-receptor type 2 influences pathways involved in inflammatory bowel disease pathogenesis. A: Protein tyrosine 
phosphatase non-receptor type 2 (PTPN2) dephosphorylates JAK1/2 and STAT1/3/5 to control inflammatory cytokine signaling; B: PTPN2 promotes autophagy 
induction in response to invading bacteria; C: In epithelial cells PTPN2 protects against inflammation-induced barrier defects; D: In T cells, PTPN2 counteracts TCR 
associated kinases and thereby reduces the reaction towards cognate antigens. IL: Interleukin; JAK: Janus activated tyrosine kinase; Lck: Lymphocyte tyrosine 
kinase; NOD2: Nucleotide oligomerization domain containing protein 2; STAT: Signal transducer and activator of transcription; TCR: T cell antigen receptor.
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a highly pro-inflammatory cytokine milieu. Coupled 
with enhanced TCR signalling strength, and the role 
of PTPN2 in preventing proliferation of auto-reactive 
T cells, this might crucially contributes to loss of 
tolerance against bacterial antigens in the intestine. 
Taken together, the involvement of PTPN2 in such 
diverse aspects of (intestinal) immune homeostasis 
can explain the association of PTPN2 variants with IBD 
as well as several other auto-inflammatory disorders.

In this review, we summarized the many aspects 
how PTPN2 affects intestinal homeostasis. By controlling 
important pro-inflammatory signalling cascades, such 
as the IFN-γ-STAT1 and the IL-6-STAT3 pathways, as 
well as MAPK induction, PTPN2 prevents exacerbated 
inflammatory reactions. Inflammatory cytokines, 
such as TNF and IFN-γ, induce PTPN2 expression, 
what results in their own negative regulation; PTPN2 
is therefore regarded as a classical negative feedback 
mediator of inflammatory signalling. PTPN2 further 
controls the inflammatory response towards bacterial 
products including LPS and the NOD2-ligand MDP. 
Another important aspect of PTPN2 function is the 
promotion of autophagy, which especially in intestinal 
epithelial cells and macrophages is importantly involved 
in removal of invading bacteria. In epithelial cells, 
PTPN2 has the additional important function to prevent 
inflammation-induced epithelial barrier defects, and it is 
crucially involved in electrolyte balance. 

Besides this role in innate host defence mecha
nisms, PTPN2 also exerts crucial roles in adaptive 
immunity, where it is involved in maturation of naïve 
B cells and in T cell proliferation and differentiation. 
PTPN2 controls TCR signalling strength and thus 
prevents aberrant proliferation/activation. In CD8+ T 
cells, loss of PTPN2 results in increased proliferation 
and emergence of auto-reactive cells. In CD4+ cells on 
the other hand, PTPN2 is involved in controlling CD4+ T 
cell differentiation into the Th1/Th17 subsets.

These different aspects how PTPN2 is involved in 
regulating innate immune functions and host defence 
mechanisms, as well as adaptive immune reactions, 
explain the association of variants in PTPN2 with 
IBD, as well as its role in several other inflammatory 
disorders.
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