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Abstract 
AIM: To study the genesis of neointima formation in 
pulmonary hypertension (PH), we investigated the role 
of caveolin-1 and related proteins. 

METHODS: Male Sprague Dawley rats were given 
monocrotaline (M, 40 mg/kg) or subjected to hypobaric 
hypoxia (H) to induce PH. Another group was given M 
and subjected to H to accelerate the disease process (M 
+ H). Right ventricular systolic pressure, right ventricular 
hypertrophy, lung histology for medial hypertrophy 
and the presence of neointimal lesions were examined 
at 2 and 4 wk. The expression of caveolin-1 and its 
regulatory protein peroxisome proliferator-activated 
receptor (PPAR) γ, caveolin-2, proliferative and anti-
apoptotic factors (PY-STAT3, p-Erk, Bcl-xL), endothelial 
nitric oxide synthase (eNOS) and heat shock protein 
(HSP) 90 in the lungs were analyzed, and the results 
from M + H group were compared with the controls, M 
and H groups. Double immunofluorescence technique 
was used to identify the localization of caveolin-1 in 
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pulmonary arteries in rat lungs and in human PH lung 
tissue. 

RESULTS: In the M + H group, PH was more severe 
compared with M or H group. In the 4 wk M+H group, 
several arteries with reduced caveolin-1 expression in 
endothelial layer coupled with an increased expression 
in smooth muscle cells (SMC), exhibited neointimal 
lesions. Neointima was present only in the arteries 
exhibiting enhanced caveolin-1 expression in SMC. 
Lung tissue obtained from patients with PH also revealed 
neointimal lesions only in the arteries exhibiting endothelial 
caveolin-1 loss accompanied by an increased caveolin-1 
expression in SMC. Reduction in eNOS and HSP90 
expression was present in the M groups (2 and 4 wk), 
but not in the M + H groups. In both M groups and in 
the M + H group at 2 wk, endothelial caveolin-1 loss 
was accompanied by an increase in PPARγ expression. 
In the M + H group at 4 wk, increase in caveolin-1 
expression was accompanied by a reduction in the 
PPARγ expression. In the H group, there was neither a 
loss of endothelial caveolin-1, eNOS or HSP90, nor an 
increase in SMC caveolin-1 expression; or any alteration 
in PPARγ expression. Proliferative pathways were 
activated in all experimental groups. 

CONCLUSION: Enhanced caveolin-1 expression in 
SMC follows extensive endothelial caveolin-1 loss with 
subsequent neointima formation. Increased caveolin-1 
expression in SMC, thus, may be a prelude to neointima 
formation.

Key words: Endothelial cells; Neointima; Pulmonary 
hypertension; Smooth muscle cells 
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Core tip: Neointima in pulmonary hypertension (PH) is 
associated with poor prognosis. Caveolin-1, a cell membrane 
protein has a critical role in PH. We investigated the 
association of caveolin-1 and neointima formation in 
monocrotaline (MCT) + hypoxia-treated rats, and in 
human PH lung sections. The progressive caveolin-1 
reduction in endothelial cells is followed by an increased 
caveolin-1 expression in smooth muscle cells (SMC). 
In human PH as well as in the MCT + hypoxia model, 
neointima was observed only in the arteries exhibiting 
an increased caveolin-1 expression in SMC. Thus, the 
increased caveolin-1 expression in SMC may in part, 
facilitate neointima formation. 
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cells: Possible prelude to neointima formation. World J Cardiol 
2015; 7(10): 671-684  Available from: URL: http://www.
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INTRODUCTION
Pulmonary hypertension (PH) is a rare, but a progressive 
disease with a high morbidity and mortality rate. Al­
though considerable progress has been made in the 
field; the pathogenesis of PH, however, is not yet fully 
understood, which makes the design of preventive and 
curative treatment a daunting challenge. The advances in 
therapeutic modalities have improved the life expectancy 
as well as the quality of life; the pulmonary vascular 
remodeling, however, remains progressive[1]. A number 
of diverse diseases can develop PH, and several PH-
associated gene mutations are known to significantly 
increase the risk of familial PH[2,3]. Irrespective of the 
underlying disease, severe PH is typically characterized 
by endothelial dysfunction, impaired vasodilatation, 
increased vasoconstriction, cell proliferation, medial wall 
thickening, PH and right ventricular hypertrophy (RVH)[4]. 
The development of neointima and plexiform lesions in 
pulmonary arteries associate with poor outcomes although 
whether or not they are causative of disease or result from 
an abnormal hemodynamic milieu remains unclear in the 
human PH[5]. 

In the monocrotaline (MCT) model, endothelial 
caveolin-1 loss and the activation of proliferative and 
anti-apoptotic pathways are observed before PH becomes 
evident. Concurrent loss of several endothelial cell 
(EC) membrane proteins including PECAM-1, soluble 
guanylate cyclase and Tie2 is suggestive of an extensive 
EC membrane damage. At 2 wk post-MCT, PH and RVH 
are observed, accompanied by a further disruption of EC 
as indicated by the loss of cytosolic proteins such as heat 
shock protein (HSP) 90, Akt and IκB-α[6-8]. Importantly, 
preventive measures restore endothelial caveolin-1 
resulting in the inhibition of proliferative pathways and 
attenuation of PH[9,10]. Caveolin-1 is a major scaffolding 
protein of caveolae (50-100 nm), a subset of lipid rafts 
in the plasma membrane of a number of different cell 
types including EC and smooth muscle cells (SMC). It 
plays a pivotal role in maintaining vascular homeostasis. 
It directly interacts with transducing molecules within 
caveolae and stabilizes them in an inactive form. It 
regulates cell proliferation, apoptosis, cell differentiation, 
cell cycle, and also eNOS function[11-13]. 

The presence of pulmonary arterial hypertension (PAH) 
in patients with CAV-1 mutation associated with reduced 
endothelial caveolin-1 expression, further supports a 
critical role of caveolin-1 in the lung vasculature[14,15]. 
Importantly, the loss of endothelial caveolin-1 and vWF 
accompanied by an increased caveolin-1 expression in 
SMC has recently been reported in children and adults with 
PAH associated with drug toxicity, congenital heart disease 
and idiopathic PAH (IPAH)[16-18]. Furthermore, pulmonary 
arterial SMC from the patients with IPAH revealed increased 
capacitative Ca2+ entry and DNA synthesis; both could be 
attenuated by silencing caveolin-1[18]. Thus, caveolin-1 
switches from being an anti-proliferative to a pro-
proliferative factor. Interestingly, the dual role of caveolin-1 
is a known phenomenon in cancer[19]. 
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Studies with rat models of PH using “VEGF receptor 
blocker (Sugen) + hypoxia”[20], MCT + pneumonectomy[21] 
and MCT + hypoxia[22] have shown severe PH with 
neointima and plexiform lesions, closely mimicking 
human PH. In these models, underlying EC damage is 
an important initial phase. We hypothesized that the 
extensive EC damage and/or loss might be a prerequisite 
for the increased caveolin-1 expression in SMC and 
subsequent development of neointima. To test this 
hypothesis, we treated rats with MCT and exposed them 
to hypobaric hypoxia (MCT + hypoxia) to accelerate the 
disease process. Hemodynamic data, lung histopathology, 
the expression of caveolin-1, and proliferative and anti-
apoptotic factors, endothelial nitric oxide synthase (eNOS) 
and HSP90 proteins were examined. We evaluated 
the expression of caveolin-2 because it co-localizes 
with caveolin-1[23], and the expression of peroxisome 
proliferator-activated receptor (PPAR) γ, because it 
regulates caveolin-1 expression[24,25], and its loss is 
implicated in the pathogenesis of PH[26,27]. In addition, we 
examined caveolin-1 expression in the lung tissue from 
patients with IPAH and heritable PAH (HPAH). 

MATERIALS AND METHODS 
Male Sprague-Dawley rats (150-175 g, Charles River 
Wilmington, MA) were maintained at 22 ℃ on a 12 
h light and dark cycle in the Animal Facility. They 
were allowed to acclimatize for 5 d, with free access 
to laboratory chow and water. The Protocols were 
approved by the Institutional Animal Care and Use 
Committee at New York Medical College (IACUC # 
4-1-0113), and conform to the guiding principles for 
the use and care of laboratory animals of the American 
Physiological Society, and the National Institutes of 
Health. Rats were divided into 4 groups: Gr1, Control 
rats maintained in room air; Gr2, rats received MCT (40 
mg/kg, sc), and kept in room air; Gr3, rats subjected 
to hypobaric hypoxia (atmospheric pressure 380 
mmHg); and Gr4, rats received MCT 40 mg/kg and were 
subjected to hypobaric hypoxia starting on day 1. The 
hypoxia chamber was opened twice per week for 15 
min to weigh the rats, replenish food and water, and to 
provide clean bedding similar to the other rats in room 
air. At the end of 2 and 4 wk, these rats were studied. 

Human lung tissue was obtained from PAH patients at 
the time of post-mortem autopsy or lung transplantation; 
control tissue was obtained from healthy subjects who 
died due to traumatic injuries. Vanderbilt Pulmonary 
Hypertension Research Cohort study participants were 
recruited via the Vanderbilt Pulmonary Hypertension 
Center. The Vanderbilt University Medical Center 
Institutional Review Board approved all study protocols 
(IRB #9401). All participants, or their surrogate 
custodians as appropriate, gave informed written consent 
to participate in genetic and clinical studies. PAH was 
defined either by autopsy results showing plexogenic 
pulmonary arteriopathy in the absence of other causes 
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such as congenital heart disease, or by clinical and 
cardiac catheterization criteria. These criteria included 
a mean pulmonary artery pressure ≥ 25 mmHg with 
a pulmonary capillary wedge or left atrial pressure 
≤ 15 mmHg, and exclusion of other causes of PH in 
accordance with accepted international standards of 
diagnostic criteria[2]. HPAH was considered the type 
of PAH if a subject met one or both of the following 
criteria: (1) family history of two or more subjects with 
confirmed PAH according to international standards 
of diagnostic criteria; or (2) detection of a mutation 
in a PAH-specific gene, such as BMPR2. The majority 
of lung tissue specimens available for this study from 
PAH patients were from subjects deceased prior to 
the discovery of the BMPR2 gene and other genes 
that could be considered PAH-specific genes which 
are mutated in association with HPAH. Included in this 
study were 7 patients: 3 with IPAH and 4 with HPAH. 
The age ranged from 29 to 55 years except for one 
patient who was 6 years old diagnosed with HPAH. 

Chemicals and antibodies
All chemicals including MCT were purchased from 
Sigma Aldrich, St Louis, MO. Antibodies: caveolin-1α 
(sc894), PPARγ (sc7273), HSP90 (sc13119) purchased 
from Santa Cruz laboratories, Santa Cruz, CA. PY-
STAT3 (Tyr705, 9145), Bcl-xL (2764), p-Erk (Thr202/
Tyr204, 4370), and Erk (4695) from Cell Signaling, 
Beverley, MA, β actin (A5441) and a-actin (C6198) 
from Sigma, caveolin-2 (610684), eNOS (610297) and 
STAT3 (610190) from BD Transduction, Palo Alto, CA. 

Measurement of right ventricular systolic pressure
Rats anesthetized with pentobarbital (60 mg/kg, ip), 
were ventilated through a tracheostomy (roughly 
equivalent to 70-80 breaths/min)[6]. A thoracotomy 
was performed; and right ventricular systolic pressure 
(RVSP) measured with a small needle attached to a 
tubing (PE50).  After perfusing the lungs with normal 
saline, heart and lungs were removed. Right lung was 
frozen and stored at -80 ℃. The heart and the left lung 
were kept in 10% buffered formaldehyde. 

Estimation of right ventricular hypertrophy
The ratio of the right ventricle (RV) and the left 
ventricle including septum (LV) was used to assess 
right ventricular hypertrophy (RVH)[6,7]. In addition, the 
ratio of RV (mg)/final body weight (FBW, g) and the 
ratio of LV (mg)/FBW (g) were calculated. 

Estimation of protein expression
Proteins (50-100 μg) from lung supernatants were used 
to examine the expression of proteins of interest[6,7]. 
The antibodies used were caveolin-1 (1:5000), 
Caveolin-2 (1:500), PPARγ (1:100), PY-STAT3 (1:200), 
Bcl-xl (1:200), p-Erk (1:2000), eNOS (1:400), or 
HSP90 (1: 3000). Loading protein was evaluated 
using β actin (1:10000), STAT3 (1: 2000) or Erk 
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(controls, 63 ± 3 g; MCT, 38 ± 3 ga; hypoxia, 39 ± 2 
ga). In the MCT + hypoxia group, there was a further 
reduction in the weight gain (6 ± 7 ga,c). There was no 
mortality in any of the groups. aP < 0.05 vs controls, cP 
< 0.05 vs MCT and hypoxia groups. 

At 4 wk (n = 7-11), the mortality in the MCT 
and the MCT + hypoxia groups were 22% and 30% 
respectively, but none in the hypoxia alone group. 
Weight gain in the hypoxia group was comparable to 
the controls (97 ± 7 g vs hypoxia 94 ± 4 g, P = NS). 
The weight gain in the MCT group was significantly 
reduced (68 ± 7 ga) and a further reduction was noted 
in the MCT + hypoxia group (45 ± 5 ga,c). aP < 0.05 vs 
controls, cP < 0.05 vs MCT. 

Hemodynamic data
At 2 wk, RVSP and RV/LV ratio were significantly 
higher in the MCT, hypoxia and MCT + hypoxia groups 
compared with the controls (Figure 1, top panel); with 
a further increase at 4 wk (Figure 1, bottom panel). 
The ratios of RV (mg)/FBW (g) confirmed increased 
RVH in the MCT + hypoxia groups at 2 and 4 wk 
compared with the MCT and hypoxia alone groups. RV 
(mg)/FBW (g) ratio: 2 wk; C, 0.5 ± 0.01, MCT, 1.02 ± 
0.57a, Hypoxia, 1.19 ± 0.057a, MCT + Hypoxia, 1.54 
± 0.04a,c, 4 wk; C, 0.55 ± 0.019, MCT, 1.15 ± 0.56a, 

(1:2000) as appropriate. Protein bands visualized by 
chemiluminescence are expressed as % normal.

Lung histopathology and double immunofluorescence
Five to 6 μm lung sections were cut from the paraffin 
blocks, which were processed form the lung tissue 
preserved in 10% formaldehyde. Hematoxylin/eosin and 
elastic van Gieson stains were used for histopathological 
evaluation. Double immunofluorescence study (on all 
sections) was carried out at New York Medical College 
Facility, using caveolin-1 and α-actin antibodies as 
described previously[6,7]. Immunofluorescence was 
evaluated using a laser scanning confocal microscope.

Statistical analysis
The data are expressed as means ± SEM. Differences 
among multiple means were determined by one way 
Anova analysis using SPSS program. Specific differences 
were determined using Scheffe’s test with < 0.05 as 
significant. 

RESULTS
Weight gain 
At 2 wk (n = 5-8), the weight gain in the MCT and 
hypoxia groups was lower compared with the controls 
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Figure 1  This figure depicts right ventricular systolic pressure and right ventricular hypertrophy in controls, monocrotaline, hypoxia and monocrotaline 
+ hypoxia at 2 (n = 5-8) and 4 wk (n = 6-10). aP < 0.05 vs C, cP < 0.05 vs M and H. RVSP: Right ventricular systolic pressure; C: Controls; M: Monocrotaline; H: 
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compared with the controls (Figure 4). 
At 4 wk, caveolin-1 and caveolin-2 were significantly 

reduced in the MCT group. In the hypoxia group, 
the expression of caveolin-1 was comparable to the 
controls; however, the expression of caveolin-2 was 
reduced, but not as low as seen in the MCT group. 
Importantly, in the MCT + hypoxia group, caveolin-1  
expression was significantly increased compared with 
the MCT group (81% ± 3.9% vs 17% ± 3.6%, P < 
0.05), although still low compared to the controls (81% 
± 3.9% vs 100% ± 0%, P < 0.05). However, despite 
an increased caveolin-1 expression in this group, 
caveolin-2 showed a further reduction (Figure 4). 

Localization of caveolin-1
Experimental groups: At 2 wk post-MCT, only 
23% ± 0.87% of arteries exhibited the presence 
of endothelial caveolin-1. Consistent with previous 
observations[7]; in the current study, the endothelial 
caveolin-1 loss at 2 wk was not associated with an 
increased caveolin-1 expression in SMC. The MCT 
+ hypoxia group showed a further reduction in the 
endothelial caveolin-1 expression (11% ± 1%). A few 

hypoxia, 1.05 ± 0.08a, MCT + hypoxia, 1.59 ± 0.01a,c. 
aP < 0.05 vs C, cP < 0.05 vs MCT or hypoxia group. 
The LV (mg)/FBW (g) ratio, however, was not different 
in any of the experimental groups compared with the 
controls (data not shown). 

Histopathology
Experimental groups: Increased pulmonary arterial 
medial wall thickening is present in all the experimental 
groups at 2 and 4 wk (Figure 2, panels A and B). Panel 
C shows neointima in small arteries at 4 wk in the MCT 
+ hypoxia group. 

Humans: Pulmonary arteries from IPAH and HPAH 
patients show varying degrees of medial wall thickening, 
neointima and luminal narrowing (Figure 3). 

Caveolin-1 and caveolin-2 expression
The expression of both caveolin-1 and caveolin-2 was 
significantly reduced in the MCT and MCT + hypoxia 
groups at 2 wk. In the hypoxia alone group, caveolin-1 
expression was not reduced; however, the caveolin-2 
expression was slightly but significantly reduced 
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Figure 2  Pulmonary arteries (experimental groups). A and B: Pulmonary arteries (size 200-317 μm) from the controls and different experimental groups (elastic 
van Gieson stain): At 2 and 4 wk, arteries from MCT (M), hypoxia (H) and MCT + hypoxia (M + H) exhibit increased medial wall thickening compared with the control (C). 
Magnification = × 100; C: Arteries (size 100-155 μm) from 4 wk M + H group showing the presence of neointima. Fragmentation of internal elastic lamina can be seen 
in these arteries. Magnification = × 400. 
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Figure 3  Pulmonary arteries (Human). A and B:  Pulmonary arteries (size 134-323 µm) from a control, IPAH and HPAH patients. Control artery is thin walled. 
The arteries from patients exhibit varying degrees of muscular thickening, neointima and significant narrowing of the lumen; C: Larger arteries exhibiting vascular 
remodeling, extensive neointima formation and narrowing of the lumen.

A

B

Figure 4  Western blots and bar graphs showing the expression of caveolin-1, caveolin-2 and β actin in controls, monocrotaline, hypoxia and monocrotaline + 
hypoxia at 2 (n = 3-6) and 4 wk (n = 5-8). aP < 0.05 vs C, cP < 0.05 vs M. C: Controls; M: Monocrotaline; H: Hypoxia; M + H: Monocrotaline + hypoxia.
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observed in 24% ± 3.5% of arteries. Importantly, 
in the MCT + hypoxia group, 61% ± 2% of arteries 
displayed increased caveolin-1 in SMC, consistent with 
the observed increase in total caveolin-1 expression 
in the lungs. However, the neointimal layer revealed 
scant expression of caveolin-1. Interestingly, in the 
hypoxia group, there were a few arteries with endo­
thelial caveolin-1 loss (90% ± 0.89% vs C, 100% ± 
0%, P < 0.05); and a smaller number of arteries (1.2% 

arteries displaying endothelial caveolin-1 loss exhibited 
increased expression of caveolin-1 in SMC (2.9% ± 
0.25%). Expression of endothelial caveolin-1 in the 
hypoxia group, however, was not different compared 
with the controls (Figure 5, top panel). 

At 4 wk, in the MCT and MCT+ hypoxia groups, 
endothelial caveolin-1 was expressed in 13% ± 1.4% 
and 8% ± 0.79% of arteries respectively. In the MCT 
group, increased caveolin-1 expression in SMC was 
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Figure 5  Immunofluorescence study depicting the expression of caveolin-1 (green) and smooth muscle α actin (red) in pulmonary arteries from controls, 
monocrotaline, hypoxia and monocrotaline + Hypoxia groups at 2 and 4 wk. The accompanying bar graphs (n = 4-5) shows the % arteries exhibiting the 
presence of caveolin-1 in endothelium (EC) and in smooth muscle layer (SMC). aP < 0.05 vs C. C: Controls; M: Monocrotaline; H: Hypoxia; M + H: Monocrotaline + 
hypoxia.
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expression of PPARγ in the 2 wk hypoxia group (Figure 
7). 

At 4 wk, in the MCT group, a reciprocal increase 
in PPARγ expression accompanied the caveolin-1 
loss. Importantly, in the MCT + hypoxia group, the 
increased total caveolin-1 expression in the lungs 
correlated with a reduction in the expression of PPARγ. 
In the hypoxia group, the expression of caveolin-1 was 
slightly decreased (90% ± 0.89%), and the PPARγ 
expression, however, was not altered (Figure 7). 

Proliferative and anti-apoptotic pathways
As shown in Figure 8, both at 2 and 4 wk, the activation 
of p-Erk and PY-STAT3, and increased Bcl-xL expression 
were present in all experimental groups. 

eNOS and HSP90 expression
Although eNOS expression in the 2 wk-post MCT 
group was not significantly reduced compared with 
the controls, the expression of HSP90, however,  was 
reduced (P < 0.05 vs controls). Expression of eNOS 
was increased in the hypoxia group, but the HSP90 
expression was unaltered. In the MCT + hypoxia 
group, an increased eNOS expression, and a normal 
HSP90 expression were observed (Figure 9). 

At 4 wk, in the MCT group, eNOS and HSP90 levels 
were reduced. In the hypoxia and MCT + hypoxia 

± 0.58%) with endothelial caveolin-1 loss, exhibited 
an increased caveolin-1 expression in SMC (Figure 5, 
bottom panel). 

Human lungs: The control pulmonary arteries showed 
well preserved caveolin-1 in the endothelial layer. 
Arteries from IPAH and HPAH patients showed varying 
degrees of alterations in caveolin-1 expression not 
unlike what was noted in the 4 wk MCT + hypoxia 
group, such as endothelial caveolin-1 loss, increased 
caveolin-1 expression in SMC and the presence of 
neointima (Figure 6). 

Caveolin-1 and PPARγ expression
At 2 wk, caveolin-1 loss in the MCT and MCT + 
hypoxia groups was accompanied by an increase in 
the expression of PPARγ (P < 0.05 vs controls, Figure 
7). Since our previous studies had shown caveolin-1 
loss at 48 h after MCT injection, we investigated the 
expression of PPARγ and caveolin-1 at 48 h (n = 4) and 
1 wk (n = 4). At 48 h post-MCT, caveolin-1 expression 
was reduced to 56% ± 1.4% (P < 0.05 vs controls) 
associated with a PPARγ expression of 118% ± 9% (P 
= ns vs control). At 1 wk post-MCT, a further reduction 
in caveolin-1 (38% ± 1%) was associated with an 
increase in the expression of PPARγ (203% ± 22%, P 
< 0.05 vs control). No alterations were observed in the 
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not decreased[32]. In-vitro studies have shown that 
in response to cyclic stretch, caveolin-1 in SMC shifts 
to non-caveolar sites, mediates Erk activation and 
participates in cell proliferation. Interestingly, SMC not 
expressing caveolin-1 fail to proliferate when subjected 
to cyclic stretch[33,34]. It is likely, that the extensive 
damage and/or loss of EC, leads to  the exposure of 
SMC to direct shear stress and pressure, resulting in 
the caveolin-1 shift from caveolae to non-caveolar 
sites, thus altering caveolin-1 function. 

In the hypoxia group, at 2 wk, there was no 
endothelial caveolin-1 loss, indicating that there was no 
physical disruption of EC. During hypoxia, caveolin-1 
forms a tight complex with eNOS[19,35], leading to the 
dysfunction of both factors. Removal of hypoxia[36,37] 
or eNOS/caveolin-1 complex disruption attenuates 
PH[38]. At 4 wk, the total caveolin-1 expression in 
the lungs was not altered, but immunofluorescence 
studies revealed a small loss in endothelial caveolin-1 
accompanied by 1.2% of arteries exhibiting increased 
caveolin-1 expression in SMC. It is noteworthy that 
in infants with respiratory distress syndrome or 
bronchopulmonary dysplasia, PH in the absence of EC 
disruption, does not lead to endothelial caveolin-1 loss 
or increased caveolin-1 expression in SMC. However, 
accompanying inflammation results in endothelial cell 
membrane disruption and endothelial caveolin-1 loss 
with subsequent increased caveolin-1 expression in 
SMC[16]. These studies suggest that the endothelial 
disruption and the endothelial caveolin-1 loss may be 
necessary for the increased caveolin-1 expression in 
SMC. 

Caveolin-2 loss concomitant with caveolin-1 loss 
has been shown in the experimental models of PH, 

groups, eNOS and HSP90 levels were not altered 
(Figure 9). 

DISCUSSION 
The significant aspect of our study is the progressive 
disruption and loss of endothelial caveolin-1, activated 
proliferative pathways leading to PH in the MCT 
model. By 4 wk, a further reduction in endothelial 
caveolin-1 is accompanied by an increased caveolin-1 
expression in SMC, observed in 24% of the arteries. 
The total caveolin-1 expression, however, remained 
significantly low. Exposure of MCT-treated rats to hypoxia 
accelerated the disease process. An increased number 
of arteries exhibited augmented caveolin-1 expression 
in SMC associated with an increase in total caveolin-1 
expression. Importantly, some of the arteries exhibiting 
an increased caveolin-1 expression in SMC displayed 
neointima with scant caveolin-1. Furthermore, lung 
sections from patients with IPAH as well as HPAH 
showed similar changes, i.e., endothelial caveolin-1 
loss, increased caveolin-1 in SMC. Neointimal lesions 
were seen only in arteries with increased caveolin-1 
expression in SMC. 

Neointima and plexiform lesions have been described 
in rodent PH models such as Sugen + hypoxia and 
pneumonectomy + MCT[20,21,28]. In the Sugen + hypoxia 
model, the initial EC apoptosis is followed by cellular 
proliferation and angiogenesis deregulation resulting in 
plexiform lesions with significantly reduced caveolin-1 
expression[29,30]. The reduced expression of caveolin-1 in 
plexiform lesion is supported by the electron microscopic 
examination showing a lack of caveolae[31]; the total 
caveolin-1 protein levels in the lungs, however, are 
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factors[11,42]; and the rescue of caveolin-1 as a preventive 
measure in the MCT model, inhibits the activation 
of proliferative pathways and attenuates PH[9,10]. 
Interestingly, in the presence of caveolin-1 in hypoxia 
groups and MCT + hypoxia group at 4 wk, proliferative 
pathways were activated; which strongly suggest that 
caveolin-1 is dysfunctional in these groups. 

In the 4 wk MCT group, the expression of eNOS 
and HSP90 was significantly reduced, but was normal 
in the MCT + hypoxia groups. In addition, caveolin-1 
expression in native EC and in neointimal cells was 
sparse in the latter group. Strong eNOS expression 
and low caveolin-1 expression have been reported in 
the plexiform lesions[39,43], besides, oxidant stress is 
a critical feature in patients with IPAH[44]. The major 
cause of PH in caveolin-1 knockout mice is thought to 
be eNOS uncoupling and subsequent oxidative and 
nitrosative stress; and PH is attenuated by caveolin-1 
re-expression, eNOS inhibition or treatment with 
superoxide dismutase mimetic[45,46]. Furthermore, EC 
from patients with IPAH show caveolin-1 degradation 
induced by sustained eNOS and Src signaling[47]. It 

and the rescue of caveolin-1 restores caveolin-2 
expression[10,39]. Caveolin-2 is expressed in a number 
of cell types including EC and SMC, and it colocalizes 
with caveolin-1 and necessitates caveolin-1 for its 
transport to caveolae[23]. However, caveolin-2 is not 
necessary for caveolar localization of caveolin-1; but 
the co-expression of caveolin-1 and 2 results in a more 
efficient formation of caveolae[40,41]. In the present 
study, MCT-treated rats exhibited a significant loss of 
caveolin-2 concomitant with the loss of caveolin-1. In 
the MCT + hypoxia group at 4 wk, despite an increase 
in the total caveolin-1 expression, a significant loss 
of caveolin-2 was present, which supports the view 
that the major part of caveolin-1 in SMC may not be 
localized in caveolae. In the hypoxia group, despite the 
presence of caveolin-1, some loss of caveolin-2 was 
observed, suggesting that a part of caveolin-1 may not 
be available for caveolin-2 localization. 

All experimental groups (MCT, hypoxia and MCT 
+ hypoxia) at 2 and 4 wk revealed the activation of 
PY-STAT3, pERK1/2 and Bcl-xL. Caveolin-1 is a well 
known inhibitor of pro-proliferative and anti-apoptotic 
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formation. In the hypoxia group, in the absence of 
endothelial disruption or the endothelial caveolin-1 loss, 
there was neither an increased expression of caveolin-1 
in SMC nor neointima.  These results suggest that the 
endothelial cell integrity may be an important factor 
that determines the course of the disease. 
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