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Abstract
In the Western world, nonalcoholic fatty liver disease 
(NAFLD) is considered as one of the most signi
ficant liver diseases of the twenty-first century. Its 
development is certainly driven by environmental 
factors, but it is also regulated by genetic background. 
The role of heritability has been widely demonstrated 

by several epidemiological, familial, and twin studies 
and case series, and likely reflects the wide inter-
individual and inter-ethnic genetic variability in systemic 
metabolism and wound healing response processes. 
Consistent with this idea, genome-wide association 
studies have clearly identified Patatin-like phosholipase 
domain-containing 3 gene variant I148M as a major 
player in the development and progression of NAFLD. 
More recently, the transmembrane 6 superfamily 
member 2 E167K variant emerged as a relevant 
contributor in both NAFLD pathogenesis and cardio
vascular outcomes. Furthermore, numerous case-
control studies have been performed to elucidate the 
potential role of candidate genes in the pathogenesis 
and progression of fatty liver, although findings are 
sometimes contradictory. Accordingly, we performed 
a comprehensive literature search and review on the 
role of genetics in NAFLD. We emphasize the strengths 
and weaknesses of the available literature and outline 
the putative role of each genetic variant in influencing 
susceptibility and/or progression of the disease.
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Core tip: Nonalcoholic fatty liver disease (NAFLD) is 
regarded as the most significant liver disease from the 
twenty-first century in the Western world. Although its 
development is surely driven by environmental factors, 
it is also regulated by genetic background. The role of 
heritability has been widely demonstrated by several 
studies, likely reflecting the diverse genetic variability 
in systemic metabolism and wound healing response 
processes. Accordingly, we performed a review of 
the literature on the role of genetics in NAFLD and 
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outlined here the putative role of each genetic variant 
in influencing susceptibility and/or progression of the 
disease.
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INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) consists of 
a spectrum of disorders characterized predominantly 
by macrovesicular hepatic steatosis in absence of 
significant alcohol consumption. In this context, 
it is correct to discriminate between a condition 
of simple fatty liver, where the only histological 
finding is the presence of steatosis, and a state of 
nonalcoholic steatohepatitis (NASH), featured by 
hepatocellular injury and inflammation, with or without 
fibrosis[1]. NAFLD is regarded as the most relevant 
liver disease of the twenty-first century. Indeed, it has 
been estimated that NAFLD affects approximately 1 
billion individuals worldwide[2]. It is the number one 
cause of altered aminotransferases in the Western 
world[3], where at least one third of the population 
is affected[4]. Importantly, a considerable proportion 
of NAFLD subjects (20%-30%) develop NASH, and 
this condition, as opposed to simple fatty liver, is a 
potentially progressive hepatic disorder that can lead to 
end-stage liver disease and hepatocellular carcinoma 
(HCC)[5]. In addition, several lines of evidence clearly 
demonstrated that all NAFLD/NASH patients are at 
high risk of cardiovascular diseases, type 2 diabetes 
(T2D), kidney failure, and colorectal cancer[6]. In 
this complex scenario, NAFLD development is surely 
driven by environmental factors - particularly dietary 
habits and a sedentary lifestyle - but it also requires a 
background of genetic susceptibility. Indeed, the real 
explanation for the wide inter-individual variability in 
the occurrence of NAFLD and progression to NASH - 
after correction for environmental factors - is provided 
by heritability. Much data has been accumulated over 
the years about the burden of heritability in NAFLD, 
as provided by epidemiological, familial, twin studies, 
and case series[7-10]. Furthermore, racial and ethnic 
differences have been reported in the prevalence 
of NAFLD, where it is most common in East Asian 
Indians, followed by Hispanics, Asians, Caucasians, 
and less frequently in African Americans[11-13]. In 
addition to differential exposure to metabolic risk 
factors, genetic variability in metabolism and wound 
healing response have surely influenced - at least in 
part - such differences. Not by chance, a great amount 
of evidence on the role of genetics in NAFLD/NASH has 

been produced during the last 10-15 years. Genetic 
studies can be divided into two categories: candidate 
gene studies and genome-wide association studies 
(GWAS). A GWAS is a hypothesis-free method for 
testing the association between all common variants 
in the human genome and polymorphic traits, such as 
diseases, drug response, and others. It is a powerful 
and statistically poorly biased method. On the other 
hand, candidate gene studies are generally derived 
from the results of previous genomic/proteomic 
and/or animal studies, where then a candidate gene 
is selected to investigate its putative role in the 
pathogenesis of a disease through a case-control 
single nucleotide polymorphism (SNP) study, with all 
potential methodological limits inherent to such type of 
study[14].

In this review, we have attempted to perform 
a comprehensive summary of the literature on the 
role of genetics in NAFLD/NASH, including the most 
recent evidence on genetic variants identified both 
by GWAS and candidate gene studies. Furthermore, 
we emphasize the strengths and weaknesses of the 
available literature for each variant, trying also to 
outline their putative role in NAFLD/NASH susceptibility 
and disease progression (Figure 1). Despite recent 
progress, several key issues remain to be addressed 
in the next years, particularly the details about the 
interaction between genetic background and acquired 
risk factors in disease pathogenesis and response to 
current treatments.

GENETIC VARIANTS AFFECTING NAFLD 
IDENTIFIED BY GWAS
Romeo et al[15] was the first to report that the 
rs738409 C>G SNP in the Patatin-like phospholipase 
domain-containing 3 (PNPLA3) gene, encoding the 
isoleucine to methionine variant at protein position 
148 (I148M), was strongly associated with increased 
liver fat content. Since then, several other pieces of 
evidence have highlighted the role of PNPLA3 in the 
development and progression of NAFLD. Furthermore, 
other SNPs have been identified by GWAS (table 1). 
Among them, transmembrane 6 superfamily member 
2 (TM6SF2) E167K variant is currently emerging as 
another relevant contributor both for NAFLD path
ogenesis and cardiovascular outcomes.

PNPLA3
The PNPLA3 (also known as adiponutrin) gene encodes 
a transmembrane polypeptide chain exhibiting 
triglyceride hydrolase activity[16], which is highly 
expressed on the endoplasmic reticulum and lipid 
membranes of hepatocytes and adipose tissue[17]. 
PNPLA3 activity is regulated by glucose and insulin[18]

, 
mainly via pathways involving the sterol regulatory 
element binding protein-1c, as demonstrated both 
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in animal models and human hepatocytes[19]. The 
I148M variant - a SNP with a risk allele frequency 
of 21%-28% in European populations - impairs the 
phospholipase activity of the enzyme, thus reducing 
lipid catabolism, although it might also gain new 
functions[17] with a resulting increase in the synthesis 
of phosphatidic acid[20]. In addition, the PNPLA3 
variant has been associated with a loss of retinyl-
palmitate lipase activity in stellate cells[21]. Taken 
together, these data support a link between the 
PNPLA3 variant and the above reported wide spectrum 
of liver damage. As previously mentioned, the first 
report on the PNPLA3 I148M variant in NAFLD came 
from the GWAS by Romeo et al[15]. These authors 
identified the relationship between this SNP and liver 
fat content, and this association remained significant 
after adjusting for metabolic factors, ethanol use, and 
ancestry. Of great relevance, the link between PNPLA3 
I148M variant and NAFLD is not confounded by the 
presence of metabolic syndrome (MS) and its features; 
indeed, even if some authors reported an interplay 

between insulin resistance (IR) and the variant[22,23], 
most studies did not find such association, as 
confirmed by a recent meta-analysis[24]. Interestingly, 
this independent association between the PNPLA3 
I148M variant and NAFLD could be more relevant 
in women than in men, as highlighted by Speliotes 
et al[25] in a gender specific analysis performed on 
a histological NASH cohort. Beyond these gender 
differences, however, the PNPLA3 I148M variant 
could explain, at least in part, the variations in NAFLD 
prevalence across different multiple ethnicities. Indeed, 
the original report by Romeo et al[15] already found 
that the frequencies of the 148M allele matched the 
prevalence of NAFLD in the Dallas Heart Study[11], such 
that Hispanics had the highest frequency of the 148M 
allele (49%), followed by European Americans (23%) 
and African Americans (17%). These ethnic differences 
were subsequently confirmed by other investigators[26]. 
Over the last few years, several studies not only have 
further emphasized how the PNPLA3 I148M variant 
is associated robustly with liver fat content[27,28] 

Figure 1  Hematic overview of the main genetic variants potentially involved in nonalcoholic fatty liver disease/nonalcoholic steatohepatitis susceptibility 
and progression. GWAS: Genome-wide association studies; HCC: Hepatocellular carcinoma.
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Table 1  Genetic variants involved in susceptibility and/or progression of nonalcoholic fatty liver disease identified by genome-wide 
association studies
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but also revealed the link between the variant and 
the severity of liver injury, in terms of portal and 
lobular inflammation and Mallory-Denk bodies[29], 
presence of NASH, and severity of histological liver 
fibrosis[25,30] or liver stiffness measurement values[31]. 
This interplay between the PNPLA3 I148M variant 
and advanced fibrosis in patients with NASH has 
been further confirmed by a recent meta-analysis[32]. 
It is noteworthy that the role of PNPLA3 in NAFLD 
susceptibility and progression has been reported also 
in pediatric patients. In this line, the 148M allele was 
associated with higher liver fat content in Hispanic[33] 
and obese Taiwanese children[34], and with histological 
hallmarks of severity of liver injury - steatosis, 
hepatocellular ballooning and lobular inflammation, 
and presence of NASH and fibrosis - in Caucasian 
children and adolescents[35]. Interestingly, the PNPLA3 
genotype seems to influence steatosis development 
also in chronic hepatitis C (CHC) patients, and it has 
been independently associated with the progression 
of CHC, including fibrosis, cirrhosis, and HCC occur
rence[36,37]. Furthermore, it has been associated with 
susceptibility to steatosis in patients with chronic 
hepatitis B[38] and with cirrhosis and HCC development 
in patients with alcohol abuse[39,40]. Recently, the 
association between the PNPLA3 variant I148M and 
the risk of HCC development has been robustly 
validated in patients with NAFLD[41,42], and it has 
been estimated that the homozygous carriers of the 
p.148M mutation carry a 12-fold increased HCC risk 
as compared to p.I148 homozygotes[43]. Considering 
all the aforementioned effects of PNPLA3 genotype on 
not only NAFLD, but also on alcoholic liver disease and 
CHC, some authors have proposed defining a novel 
clinical entity based on the presence of PNPLA3 risk 
allele - PNPLA3-associated steatohepatitis (“PASH”) - 
i.e., patients with fatty liver disease in whom PNPLA3 

appears to be a major driver of disease progression in 
combination with ethanol consumption and Western 
diet[44]. Furthermore, PNPLA3 genotype has been 
evaluated as a possible modifier of NAFLD-associated 
systemic alterations. Our group recently examined the 
presence of carotid atherosclerosis in a Sicilian NAFLD 
cohort and its relation with several SNPs, including 
PNPLA3[45]. We found that the prevalence of carotid 
plaques and intima media thickness thickening was 
significantly higher in PNPLA3 GG compared to CC/CG 
genotype, particularly among patients under 50 years. 
This finding was also confirmed in a validation cohort 
from Northern Italy, where PNPLA3 GG genotype was 
independently associated with intima media thickness 
progression. Recently, Musso et al[46] associated the 
PNPLA I148M variant with the presence of chronic 
kidney disease, a well-known marker of a higher 
cardiovascular risk in NAFLD. Finally, a recent study by 
Sevastianova et al[23] evaluated whether weight loss 
was able to decrease liver fat in homozygous carriers 
of the G allele of PNPLA3; investigators found that 
liver fat content decreased significantly more in the 
148MM group than in the 148Ⅱ after a short course 
of low carbohydrate diet, although 148Ⅱ and 148MM 
patients lost similar amounts of body weight. Overall, 
although the major role of PNPLA3 in susceptibility and 
progression of fatty liver has been widely elucidated, 
further research is needed to fully understand the 
role of PNPLA3 genotype on systemic alterations and 
treatment outcomes in patients with NAFLD/NASH.

TM6SF2
One of the most recently described and intriguing 
genetic factors in NAFLD scenario is the nonsy
nonymous variant rs58542926 (c.449 C>T) within 
a gene of mostly unknown functions called TM6SF2 
at the 19p13.11 locus, which encodes an E167K 

Gene SNP Association with

PNPLA3, patatine-like phospholipase domain containing 3 rs738409 Steatosis
NASH/necroinflammation

Severity of fibrosis
HCC development

TM6SF2, transmembrane 6 superfamily member 2 rs58542926 Steatosis
NASH/necroinflammation

Severity of fibrosis
Reduced cardiovascular risk

NCAN, neurocan rs2228603 Steatosis
PPP1R3B, protein phosphatase 1 regulatory subunit 3b rs4240624 Steatosis
GCKR, glucokinase regulatory protein rs780094 Steatosis

Severity of fibrosis
LYPLAL1, lysophospholipase-like 1 rs12137855 Steatosis
FDFT1, farnesyl diphosphate farnesyl transferase 1 rs2645424 NAFLD activity score
PDGFA, platelet-derived growth factor alpha rs343062 Severity of fibrosis
COL13A1, collagen type XIII alpha1 rs1227756 Lobular inflammation
LTBP3, latent transforming growth factor-beta-protein 3 rs6591182 Lobular inflammation
EFCAB4B, EF-hand calcium binding domain 4B rs887304 Lobular inflammation
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SNP: Single nucleotide polymorphism; NASH: Nonalcoholic steatohepatitis; NAFLD: Nonalcoholic fatty liver disease; HCC: Hepatocellular carcinoma.
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amino acid substitution. This variant is in strong 
linkage disequilibrium with other variants around 
the 19p13.11 locus that were previously reported 
by another GWAS (see further) to be risk factors for 
NAFLD[47], suggesting that the new and old signals 
could be the same, even if conditional analyses 
indicate that TM6SF2 rs58542926 may be the real 
causal variant underlying the association at this locus. 
The first evidence on this new SNP originated from 
three independent groups. Kozlitina et al[48] performed 
an exome-wide association study in a multiethnic, 
population-based cohort derived from the Dallas 
Heart Study, identifying the association between 
hepatic triglycerides content - evaluated by proton 
magnetic resonance spectroscopy - and the TM6SF2 
variant rs58542926. In addition, the investigators 
highlighted the association between the TM6SF2 
variant with higher serum alanine aminotransferase 
(ALT) and aspartate aminotransferase (AST) levels 
- as surrogate for NASH - and with reduced plasma 
levels of triglycerides and low-density lipoprotein 
(LDL)-cholesterol. Finally, they performed a functional 
analysis for the TM6SF2 in mouse models by silencing 
the gene via adeno-associated viral vectors. Silencing 
of the gene showed a 3-fold increase in hepatic 
triglycerides levels and a decrease in plasma levels of 
triglycerides, LDL- and high-density lipoprotein (HDL)- 
cholesterols and very low density lipoprotein (VLDL). 
Overall, their results demonstrated that the TM6SF2 
gene regulated hepatic triglyceride secretion and 
that the functional impairment of TM6SF2 promoted 
NAFLD. The second study conducted by Mahdessian 
et al[49] reported a positive correlation between hepatic 
TM6SF2 mRNA and plasma triglycerides levels and 
identified the subcellular localization and function 
of TM6SF2. Indeed, TM6SF2 was mainly localized 
in the endoplasmic reticulum and endoplasmic 
reticulum-Golgi intermediate compartment in human 
hepatoma cells. The TM6SF2 silencing in hepatoma 
cell lines reduced the expression of genes involved 
in the synthesis of triglycerides and the secretion 
of triglycerides-rich lipoprotein, demonstrating 
that TM6SF2 not only regulated hepatic lipoprotein 
secretion but also the hepatic synthesis of triglycerides. 
The third study reported by Liu et al[50] analyzed 
the relationship between the TM6SF2 rs58542926 
SNP and the severity of liver disease in patients 
with biopsy-proven NAFLD. The authors found that 
the TM6SF2 rs58542926 SNP was associated with 
necroinflammation, ballooning, and advanced liver 
fibrosis. Taken together, these three studies provided 
evidence that the TM6SF2 variant was associated with 
the development of NAFLD/NASH via the deregulation 
of hepatic lipid metabolism. However, not all the 
authors reported unequivocal findings. Two studies, 
one from China[51] and one from South America[52], 
have been unable to replicate the relationship bet
ween TM6SF2 and NAFLD. This may be due ethnic 
differences in the frequency of carriage of the SNP and 

to the analysis of underpowered cohorts. Conversely, 
another study from China[53] confirmed, once again, 
the association between the TM6SF2 167K allele and 
NAFLD after adjusting for age, sex, body mass index, 
and presence of T2D. Thus, the reasons for such 
discrepancies have not yet been elucidated fully. The 
most interesting aspect about this variant, however, 
lies in its key role for the elucidation of the mechanistic 
basis of progressive NAFLD and for the development 
of a novel point of view on the association between 
NAFLD and cardiovascular disease. Consistent with 
this line, Dongiovanni et al[54] found that 188 (13%) 
out of 1201 subjects who underwent liver biopsy for 
suspected NASH were carriers of the E167K variant 
and that they had lower serum lipid levels than 
noncarriers, more severe steatosis, necroinflammation, 
ballooning, and fibrosis and were more likely to 
have NASH and advanced fibrosis after adjusting 
for metabolic factors and the I148M PNPLA3 risk 
variant. In addition, E167K carriers had lower risk of 
developing carotid plaque; in Swedish obese subjects 
assessed for cardiovascular outcomes, E167K carriers 
had higher ALT and lower lipid levels but also a lower 
incidence of cardiovascular events. Consequently, 
carriers of the TM6SF2 E167K variant seem to be 
more at risk for progressive NASH, but at the same 
time they could be protected against cardiovascular 
diseases. Furthermore, Musso et al[46] found that the 
TM6SF2 T allele was associated with higher eGFR 
and with a lower prevalence of albuminuria and 
chronic kidney disease - another known marker of an 
increased risk for cardiovascular disease in NAFLD. In 
other words, TM6SF2 may act as a switch gene able to 
disconnect the risk of NAFLD/NASH progression from 
cardiovascular risk.

Other genetic variants influencing NAFLD identified by 
GWAS
In 2011, Speliotes et al[47] aimed to discover additional 
genetic variants influencing NAFLD susceptibility using 
a genome wide analysis of hepatic steatosis assessed 
by computed tomography (CT) in large population 
based samples. First, authors confirmed the prominent 
role of rs738409 of PNPLA3 as the main genetic risk 
factor for NAFLD. In addition, they identified four 
other SNPs. These were localized in or near the genes 
neurocan (NCAN - rs2228603), protein phosphatase 
1, regulatory (inhibitor) subunit 3B (PPP1R3B - 
rs4240624), glucokinase regulator (GCKR - rs780094), 
and lysophospholipase-like 1 (LYPLAL1 - rs12137855). 
NCAN, GCKR, and LYPLAL1, together with PNPLA3, 
were associated with both increasing CT hepatic 
steatosis and histological NAFLD, whereas PPP1R3B 
was associated with CT-assessed steatosis but not 
histological NAFLD. NCAN is involved in mechanisms 
of cell adhesion and in lipoprotein metabolism, and 
its locus was subsequently casually related to the 
TM6SF2 minor allele (see above). LYPLAL1 likely 
exerts a complementary function to the PNPLA3 

Macaluso FS et al . Genetic background in NAFLD



11093 October 21, 2015|Volume 21|Issue 39|WJG|www.wjgnet.com

protein in trigliceride catabolism. The protein product 
of GCKR has been proposed to interfere with glucose 
and lipid homeostasis via the interaction with hepatic 
glucokinase and the consequent increased activity of 
the enzyme[55], ultimately raising the hepatic glycolytic 
flux, de novo lipogenesis, and triglyceride levels[56]. 
Several genetic association studies have confirmed the 
connection between GCKR rs780094 and NAFLD[57-60], 
including progression of the disease and fibrosis[61]. 
These findings were further confirmed by a recent 
meta-analysis[62] that demonstrated a similar effect 
size of such association in both Asian and non-Asian 
populations.

Finally, Chalasani et al[63] reported another 
GWAS in 2010, identifying other variants conferring 
susceptibility to occurrence of NAFLD and disease 
progression. On a cohort of patients with biopsy-
proven NAFLD, investigators demonstrated an 
association between severity of histological NAFLD 
activity score and SNP rs2645424 in the gene 
encoding farnesyl diphosphate farnesyl transferase 
1 - an enzyme involved in cholesterol biosynthesis. 
Strangely, they did not identify PNPLA3 as a risk factor. 
However, other associations were reported, including 
SNP rs343062 on chromosome 7 (near platelet-
derived growth factor alpha gene) with the degree of 
fibrosis; SNP rs1227756 on chromosome 10 in the 
collagen type XIII alpha1 (COL13A1) gene, rs6591182 
on chromosome 11 (near latent transforming growth 
factor-beta-protein 3 gene), and rs887304 on 
chromosome 12 in EF-hand calcium binding domain 
4B (EFCAB4B) gene with lobular inflammation; and 
SNP rs2499604 on chromosome 1, rs6487679 on 
chromosome 12, rs1421201 on chromosome 18, and 
rs2710833 on chromosome 4 with serum levels of ALT. 
However, all of them require extensive validation in 
larger cohorts.

POTENTIAL GENETIC FACTORS 
INFLUENCING NAFLD/NASH IDENTIFIED 
BY CANDIDATE GENES STUDIES
Several genes have been identified as potential 
candidates in the pathogenesis and progression of fatty 
liver. In order to give a schematic overview, we roughly 
divided all candidate genes into two categories: genes 
influencing glucidic or lipid metabolism - directly or 
indirectly involved in fatty liver development (table 
2) - and genes involved in mechanisms of liver injury 
(table 3).

Genes influencing glucidic or lipidic metabolism with a 
potential role in NAFLD pathogenesis
ectonucleotide pyrophosphatase/phospho­
diesterase1 or plasma cell antigen-1 and 
insulin receptor substrate 1: Insulin resistance - 
the hallmark of NAFLD pathophysiology - is strongly 

related to disease progression. Not by chance, SNPs 
of genes included in the hepatic insulin signalling 
pathway have consistently been reported to influence 
IR and to be potential causes of hepatic injury[64]. 
Among them, the ectonucleotide pyrophosphatase/
phosphodiesterase1 (ENPP1)/plasma cell antigen-1 
Lys121Gln SNP enhances the interaction between the 
ENPP1 membrane glycoprotein and the insulin receptor, 
resulting in inhibition of insulin receptor activity. This 
SNP has been associated with an increased risk of 
T2D[65]. Furthermore, the loss-of-function Gly972Arg 
SNP of IRS-1 - part of the machinery involved in the 
insulin signaling pathway - decreases activity of IRS-1, 
thereby inhibiting insulin receptor autophosphorylation 
and activity[66] and thus increasing the risk of IR and 
T2D[67]. Dongiovanni et al[68] analyzed the role of 
these two SNPs in influencing liver damage in 702 
patients with biopsy-proven NAFLD from Italy and the 
United Kingdom, finding that both were independently 
associated with a marked reduction of insulin signaling 
activity and with increased the severity of liver fibrosis. 
Interestingly, the effect of the ENPP1 and IRS-1 SNPs 
on the severity of liver fibrosis was independent of 
ethnic background, as it was observed in patients from 
both Italy and the United Kingdom, thus emphasizing 
how hepatic IR has a causal role in the progression of 
liver damage in NASH.

Adiponectin: Adiponectin is a relevant adipocytokine 
associated with IR and T2D[69]. Several papers have 
demonstrated a significant decrease in the serum 
levels of adiponectin in NASH patients[70] and a reduced 
expression of its receptor in livers with NASH compared 
to those with simple steatosis[71]. Furthermore, 
adiponectin has been associated with liver fibrosis and 
inflammation[72,73], suggesting that it might be directly 
or indirectly involved in NASH pathogenesis. Variants in 
adiponectin (ADIPOQ) - the gene encoding adiponectin 
- have been investigated in order to find potential 
associations with NAFLD and its severity. Musso et al[74] 
showed that the at-risk ADIPOQ SNPs 45TT and 276GT 
were significantly more prevalent in NAFLD than in the 
general population and that they were associated with 
the severity of liver disease and with an atherogenic 
postprandial lipoprotein profile in NASH, independent 
of fasting adipokine and lipid levels. Consistent with 
this line, a Japanese study highlighted how such 
SNPs were associated with IR and progression of liver 
fibrosis in NAFLD Japanese patients[75]. However, these 
findings were not replicated in other cohorts. Although 
hypoadiponectinemia and IR were observed also in 
Chinese NAFLD patients, the 45TT and 276GT SNPs 
were not directly associated with NAFLD, even if they 
might have indirect effects on systemic metabolism 
and/or NAFLD pathogenesis by influencing serum 
ALT, body mass index, IR, and plasma adiponectin 
concentration[76]. It is possible that ethnic differences 
could explain the discrepancies among these studies.

Macaluso FS et al . Genetic background in NAFLD
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leptin receptor: Leptin is a hormone synthesized by 
adipocytes that regulates food intake, insulin action, 
thermogenesis, and the immune system[77]. Several 
studies[78,79] have demonstrated the association 
between serum leptin levels and risk of NASH, 
although results have been sometimes conflicting[80]. 
Accordingly, the leptin receptor has been investigated 
due to its potential relevance in the modulation of 
leptin sensitivity: common variants in the human 
leptin receptor (LEPR) gene have been related with 
obesity and lipid metabolism[81], IR and T2D[82], and 
NAFLD[83-86]. The LEPR G3057A variant has been 
associated with the risk of NAFLD in Chinese diabetic 
patients[83], whereas Swellam et al[84] showed that 
NAFLD occurrence was associated with another SNP 
in LEPR - rs6700986 - in an Egyptian cohort. Further
more, Zain et al[85] investigated the relationship 
between polymorphisms in LEPR and NAFLD across 
different Asiatic ethnic groups (Malayan, Indian, and 
Chinese). Two SNPs (LEPR rs1137100 and rs1137101) 

were associated with susceptibility to NAFLD and 
NASH; and, intriguingly, analysis of gene-gene inter
action showed a potential interplay between the LEPR 
and PNPLA3 genes. Finally, Lys656Asn SNP of LEPR 
was associated with metabolic factors - namely IR, 
obesity parameters, and glucose levels - in patients 
with NAFLD[86]. Thus, LEPR variants may be involved 
in the occurrence and progression of NAFLD by 
influencing insulin sensitivity and/or lipid metabolism, 
even if further evidence should be provided to reinforce 
such observations.

Resistin: Resistin (RETN) is an adipokine with relevant 
metabolic actions and a potential role in NAFLD 
pathogenesis. Indeed, murine models showed that 
RETN is able to modulate lipid metabolism and hepatic 
IR[87,88] and may also participate in inflammatory 
cascade reactions known to be involved in NASH 
development[89] and in processes of fibrogenesis[90]. 
Many SNPs of RETN gene have been investigated as 

Gene Functions of encoded protein SNP

ENPP1, ectonucleotide pyrophosphatase/
phosphodiesterase1 or PC-1

Interaction with the insulin receptor with consequent reduction of insulin receptor activity rs1044498

IRS-1, insulin receptor substrate 1 Part of the machinery involved in insulin pathway as transductor of insulin receptor 
signaling

rs1801278

ADIPOQ, adiponectin Relevant adipocytokine associated with insulin resistance, type 2 diabetes, and NAFLD 
pathogenesis

rs2241766
rs1501299

LEPR, leptin receptor Receptor of leptin, a hormone synthesized by adipocytes that regulates food intake, insulin 
action, thermogenesis, and immune system

rs62589000
rs6700986
rs1137100 
rs1137101
rs8179183

RETN, Resistin Adipocytokine involved in lipid metabolism, hepatic insulin resistance, inflammatory 
cascade reactions, and fibrogenesis

rs3745367

PEMT, phosphatidylethanolamine
N-methyltransferase

Enzyme involved in the de novo synthesis of phosphatidylcholine in the liver, a biochemical 
pathway essential for VLDL formation

rs7946

FATP5, Fatty Acid Transport Protein 5 Transporter involved in the hepatic uptake of fatty acids rs56225452
ADRB2 and ADRB3, b-adrenergic receptor 
2 and 3

b-adrenergic receptors, with several functions including regulation of basal metabolism 
and induction of lipolysis

rs4994
rs1042714
rs2053044
rs11168070
rs11959427
rs1042711

PPARα, peroxisome proliferative 
activated receptor α

Transcription factor whose activation improves steatosis, inflammation, and fibrosis in pre-
clinical models of NAFLD

rs1800206

PPARGC1A, peroxisome proliferator-
activated receptor g coactivator 1-α

PGC-1α, involved in mitochondrial functions, oxidative stress, gluconeogenesis, and 
lipogenesis

rs8192678
rs2290602

PPARg, peroxisome proliferative activated 
receptor g

Transcription factor whose activation improves IR, restores adipose tissue insulin 
sensitivity, and decreases fatty free acids flux to the liver

rs1801282

APOE, apolipoprotein E Mediator of remnant lipoprotein binding to LDL receptors to favor the clearance of 
chylomicrons and VLDL

N/A

APOC3, apolipoprotein C-Ⅲ A constituent of plasma VLDL, chylomicrons, and HDL-C that inhibits lipoprotein lipase 
and triglycerides clearance

rs2854116
rs2854117

MTTP, microsomal triglyceride transfer 
protein

Transfer protein involved in apoB-lipoprotein assembly rs1800591
rs1800804
rs1057613 
rs3805335 

LPIN1, lipin 1 Phosphatase specifically involved in metabolic pathways between adipose tissue and liver rs13412852
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potential risk factors for MS and its components[91]. 
A Chinese study[92] investigated the role of the RETN 
intronic +299G/A SNP in a NAFLD setting and found 
that patients with both T2D and NAFLD had the 
highest plasma RETN levels compared with diabetic 
patients without evidence of NAFLD and with controls. 
Furthermore, the AA genotype at the +299 site of 
the RTEN gene was found to be an independent risk 
factor for the development of NAFLD in T2D patients 
at multivariate analysis. However, further studies are 
needed to confirm this simple association.

phosphatidylethanolamine N-methyltransferase: 
Phosphatidylethanolamine N-methyltransferase (PEMT) 
is a relevant enzyme involved in the de novo synthesis 
of phosphatidylcholine in the liver[93], a biochemical 
pathway essential for VLDL formation. Thus, PEMP 
is involved in the flux of lipid between the liver and 
plasma, where lack of phosphatidylcholine caused 
severe steatosis in mice models[94]. A higher frequency 
of a nonsynonymous sequence variation (V175M) in 
the PEMT gene, which results in a loss-of-function 
in the encoded protein, was reported in patients 

with biopsy-proven NAFLD compared with subjects 
with normal hepatic triglyceride content assessed by 
magnetic resonance or by liver biopsy[95]. Similarly, 
Dong et al[96] found that the occurrence of the V175M 
variant allele was significantly more frequent in 107 
Japanese patients with biopsy-proven NASH than 
in 150 healthy controls. Conversely, Jun et al[97] did 
not find any difference in PEMT genotype frequency 
between NAFLD patients and controls, and Romeo et 
al[98] demonstrated a lack of any association between 
the V175M allele and hepatic triglyceride content - 
assessed by proton magnetic resonance spectroscopy 
- in their cohort derived from the Dallas Heart Study, 
a population-based sample from Dallas, Texas[99]. 
Overall, the available evidence is not enough to firmly 
consider PEMT as a relevant genetic factor for NAFLD 
susceptibility and more studies are needed in this 
setting.

Fatty acid transport proteins: Fatty acid transport 
proteins (FATPs) are critically involved in the uptake 
of fatty acids[100], and two different FATP isoforms are 
expressed in the liver, namely FATP2 and FATP5[101]. 

Gene Functions of encoded protein SNP

TNF-α, tumor necrosis factor-α Proinflammatory cytokine also involved in the regulation of insulin resistance, 
release of free fatty acids, and apoptosis in hepatocytes

rs1800629
rs361525
rs1799964
rs1800630

TRAIL, TNF-related apoptosis -inducing ligand Protein functioning as a ligand that induces celluar apoptosis rs6763816
rs4491934

IL-6, interleukin-6 Proinflammatory cytokine produced by adipocytes, hepatocytes, and immune cells 
also involved in the modulation of insulin resistance

rs1800795

IL-1b, interleukin-1b Member of IL-1 family cytokine, mainly produced by adipose tissue rs16944
TLR4, toll-like receptor 4 Receptor involved in the interaction with bacterial endotoxins capable to favor 

hepatic injury and a proinflammatory systemic status
rs4986790

IL28B, interleukin-28B Cytokine belonging to the type Ⅲ Interferon family rs12979860
SOD2, superoxide dismutase 2 Manganese-dependent mitochondrial enzyme involved in protection from cellular 

injury induced by superoxide radicals
rs4880

CYP2E1, cytochrome P450 2E1 Part of the cytochrome P450 complex rs2031920
UCP3, uncoupling protein 3 Mitochondrial anion carrier involved in the metabolism of superoxide radicals and 

in the modulation of lipid homeostasis
rs1800849
rs11235972

UCP2, uncoupling protein 2 Similar to uncoupling protein 3 rs695366
MTHFR, methylenetetrahydrofolate reductase Enzyme involved in the methylation of homocysteine to methionine rs1801133

rs1801131
GCLC, Glutamate-cysteine ligase catalytic subunit Limiting enzyme in the formation of glutathione, a relevant endogen antioxidant rs17883901
HFE, hemochromatosis Crucial protein for the regulation of iron homeostasis via the modulation of the 

expression of hepcidin
rs1800562
rs1799945

TMPRSS6, trans-membrane protease serine 6 Matriptase-2, which cleaves the membrane-bound hemojuvelin, the co-receptor 
required for hepcidin expression in the liver

rs855791

KLF6, kruppel-like factor 6 One of the Kruppel-like factors, a family of transcriptional factors that regulate 
cellular proliferation, differentiation, and apoptosis

rs3750861

TGF-b1, transforming growth factor b1 In the liver, a promoter of hepatic fibrosis via the activation of hepatic stellate cells rs1800471
ATⅡ, angiotensin Ⅱ Part of the renin-angiotensin system, also advocated as an inducer of TGF-b1 

production and accumulation of extracellular matrix in the liver
rs699

AGTR1, Angiotensin Ⅱ Type 1 Receptor Type 1 Receptor of Angiotensin Ⅱ rs3772622 
rs3772633 
rs2276736 
rs3772630 
rs3772627
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Mice models have emphasized the role of FATP5 in 
increasing the hepatic uptake and trafficking of fatty 
acids, so that gain-of-function polymorphisms may 
result in increased steatosis[102]. Auinger et al[103] 
investigated the consequences of the rs56225452 
FATP5 promoter polymorphism on lipid and glucose 
metabolism and on features of MS in a cohort derived 
from the Metabolic Intervention Cohort Kiel - a 
prospective population-based cohort study of the 
town of Kiel, in Germany, on natural incidence of the 
MS[104] - and subjects with histologically proven NAFLD. 
Triglycerides, ALT, and postprandial insulin levels were 
higher in subjects with the A allele compared with GG 
homozygotes in the Metabolic Intervention Cohort 
Kiel cohort, whereas in NAFLD patients, the A allele 
was associated with higher ALT only. However, the 
impact of body mass index on the severity of steatosis 
differed according to FATP5 promoter SNP, suggesting 
that this polymorphism may be associated with MS 
and - probably indirectly - with liver damage in NAFLD. 
Additional independent studies are needed to fully 
clarify this interesting, even if still unclear, association.

β-adrenergic receptors: β-adrenergic receptors 
(ADRB) play an important role in regulating basal 
metabolism, mostly by stimulating lipid mobilization 
through lipolysis. Several polymorphisms have 
been detected in ADRB genes that influence IR, 
hypertriglyceridemia, and features of MS[105-108]. These 
polymorphisms were evaluated in NAFLD settings, 
although with conflicting results. A Japanese study 
involving 63 patients with biopsy-proven NASH analyzed 
a W64R codon substitution in ADRB3 gene: the R allele 
frequency in patients with NASH was significantly higher 
compared with controls[109]. Other authors examined 
two nonsynonymous polymorphisms involving the 
ADRB2 gene (Gln27Glu and Arg16Gly): no significant 
association with fatty liver was observed for the 
Arg16Gly allele, whereas the Gln27Glu heterozygotes 
showed a higher prevalence of fatty liver compared with 
those without the mutation at univariate analysis, even 
if this association was not confirmed at multivariate 
analysis[106]. Loomba et al[110] have published the 
most relevant study on ADRB2 in 2010. The authors 
evaluated whether common variants at ADRB2 gene 
in twins were associated with plasma γGT levels - a 
well-known significant predictor of the MS as well as 
NAFLD[111,112]. Interestingly, five SNPs in ADRB2 were 
associated with levels of γGT, and ADRB2 haplotypes 
displayed pleiotropic effects on γGT and triglyceride 
levels, suggesting that adrenergic pathways may act as 
a link between genetic susceptibility to NAFLD and MS.

peroxisome proliferative activated receptor α, 
peroxisome proliferative activated receptor γ, 
and peroxisome proliferator-activated receptor 
γ coactivator 1-α: Peroxisome proliferative activated 
receptor (PPAR) α is a transcription factor belonging, 
together with PPARγ and PPARβ/δ, to the NR1C 

nuclear receptor subfamily. PPARα activation improves 
steatosis, inflammation, and fibrosis in pre-clinical 
models of NAFLD[113], whereas PPARγ improves IR 
and has been reported to restore adipose tissue 
insulin sensitivity and decrease fatty free acids flux 
to the liver[114]. Regarding PPARα SNPs and NAFLD, a 
Chinese study evaluated the frequency of the val227ala 
variant on patients with NAFLD compared with control 
subjects[115]. As the distribution of PPARα val227ala 
polymorphism was significantly different between the 
two groups, the authors hypothesized that the Val227 
isoform - the one predominant in NAFLD subjects - has 
lower activity than the Ala227 isoform, thus resulting 
in a reduced lipid catabolism and an increased risk for 
NAFLD. Another PPARα variant examined in a setting of 
NAFLD is the loss-of-function Leu162Val. Dongiovanni 
et al[116] did not find any association between this SNP 
and the risk of NAFLD occurrence and histological 
severity, although it was independently related to IR. 
The same study also assessed the Pro12Ala loss-of-
function SNP in PPARγ2 gene. Even if this polymorphism 
had been identified as an important mediator for the 
development of obesity, IR, and T2D[117], no significant 
association with NAFLD susceptibility and severity was 
found. Importantly, this SNP was not even associated 
with IR in this cohort. Similar conclusions were argued 
by a recent meta-analysis[118] including 1697 cases 
and 2427 controls derived from eight studies[116,119-125]. 
no clear evidence of an association between the 
Pro12Ala polymorphism and susceptibility to NAFLD 
emerged. The protein PGC-1a is encoded by the 
peroxisome proliferator-activated receptor γ coactivator 
1-α (PPARGC1A) gene and regulates mitochondrial 
functions, oxidative stress, gluconeogenesis, and 
lipogenesis[126]. The Gly482Ser SNP in PPARGC1A 
gene has been repeatedly associated with T2D, hyper
tension, and obesity in clinical studies[127-129] and also 
with an impaired capability of PGC-1α to decrease fat 
deposition in cultured hepatocytes[130]. In this line, it 
was also associated with the development of NAFLD 
in Taiwanese obese children after controlling for body 
mass index, sex, and PNPLA3 genotype[131]. Yoneda et 
al[132] examined 15 SNPs in PPARGC1A in the Japanese 
population; they found that rs2290602 SNP was 
associated with NASH, with an odds ratio (OR) of 2.73 
for the T allele. In addition, AST and ALT values of 
NAFLD patients with the TT genotype were significantly 
higher than those of patients with the GT or GG allele. 
However, this association was not further confirmed; 
a study among the Chinese Han people did not find 
any association between rs2290602 SNP in PPARGC1A 
gene and NAFLD[133].

apolipoprotein E and apolipoprotein C-Ⅲ: 
Apolipoprotein E plays a key role in the metabolism of 
cholesterol and triglycerides. Indeed, it mediates the 
binding of the remnant lipoproteins to LDL receptors 
to favor the clearance of chylomicrons and VLDL from 
the bloodstream. Two SNPs within the apolipoprotein 
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E (APOE) gene have been identified, resulting in three 
different alleles (e2, e3, e4) and six APOE genotypes 
with different binding powers[134]. Some association 
studies investigated the role of APOE genotypes on 
NAFLD/NASH susceptibility with conflicting results. The 
APOE 3/3 genotype was associated with an increased 
risk of NASH in a cohort of Turkish patients[135], 
whereas the APOE 3/4 genotype had a protective 
effect[136]. Conversely, Lee et al[137] showed no 
significant difference in APOE genotypes distribution 
among 116 Korean NAFLD patients and 50 controls. 
However, a protective effect of the e4 allele on fatty 
liver disease was later shown by Yang et al[138] on a 
large Korean population. Finally, an Italian hospital-
based case-control study including 310 NAFLD cases 
and 422 controls showed that APOE e4 allele carriers 
had a 2-fold reduction of NAFLD risk compared with 
e3 homozygotes[139]. The discrepancies between 
these studies might be attributable to several factors, 
including different sample sizes, ethnic variability, 
possible inclusion of alcohol consumers, and lack of 
clear adjustments for potential metabolic confounders. 
Apolipoprotein C-Ⅲ is a major constituent of plasma 
VLDL, chylomicrons, and HDL-C, which inhibits 
lipoprotein lipase and triglyceride clearance[140]. Two 
SNPs in the promoter region of the APOC3 gene - 
-482C > T and -455T > C, which are in strong linkage 
disequilibrium with each other - have been repeatedly 
associated with MS and coronary artery disease[141]. 
Based on these findings, several studies investigated 
the association between SNPs of APOC3 gene and 
NAFLD occurrence, although with conflicting results. 
Petersen et al[142] firstly reported that ApoC3 T-455C 
and C-482T promoter SNPs predispose Indian men to 
liver fat accumulation by altering lipid metabolism and 
IR. Similar positive results were obtained in Indian[143] 
and Southern Han Chinese cohorts[144]. However, this 
association was not further replicated in other studies 
conducted on Italian[145], British[145], American[146], 
Finnish[147], German[148], Belgian[149] and Chinese Han[150] 
subjects. A recent meta-analysis confirmed the absence 
of a robust association and, therefore, the lack of a 
causal pathogenetic role of APOC3 gene polymorphisms 
in patients with NAFLD[151]. These contrasting findings 
raise doubts about the methodology and quality of 
some of these studies, particularly about the methods 
used to diagnose NAFLD and to adjust for confounders.

microsomal triglyceride transfer protein: Micro
somal transfer tryglicerides protein is a transfer protein 
involved in apoB-lipoprotein assembly[152]. A large 
number of common genetic polymorphisms in the 
microsomal triglyceride transfer protein (MTTP) gene 
have been identified. The G allele of MTTP - 493 G>T 
polymorphism has been associated with impaired 
MTTP transcription, and, thus, with a reduced export 
of triglycerides from hepatocytes and increased 
susceptibility to NAFLD[153]. Accordingly, the G allele 
frequency was significantly higher in Japanese patients 

with NASH, and the severity of NASH was higher in 
patients with the G/G genotype than in patients with 
the G/T genotype[154]. Similarly, the -493 G/G genotype 
was reported to be associated with more severe liver 
disease and a more atherogenic lipoprotein profile in 
an Italian cohort[155]. Furthermore, in diabetic French 
patients, this SNP was associated with elevated 
ALT as a surrogate marker for NASH[156]. However, 
other studies did not confirm these reports. Oliveira 
et al[157] did not find any association between - 493 
G>T polymorphism and NAFLD in a Brazilian cohort. 
Similarly, Peng et al[158] did not find any significant 
association between the - 493 G>T polymorphism and 
the risk for NAFLD in a Chinese Han population, even 
if other SNPs were found to be associated with NAFLD 
susceptibility. Specifically, in that study, the rs1800804 
T/C was associated with an increased risk of NAFLD, 
while the rs1057613 A/G and rs3805335 C/T SNPs 
were associated with a decreased risk. Carulli et al[159] 
found that the distribution of MTTP polymorphisms 
was not significantly different between NAFLD patients 
compared with the control group nor associated with 
clinical or histological characteristics. Finally, a recent 
meta-analysis including 11 case-control studies with a 
total of 636 cases and 918 healthy controls revealed 
that MTP - 493G > T polymorphism was correlated 
overall with an increased risk of NAFLD among 
both Caucasian and non-Caucasian populations[160]. 
However, it should be noted that some of the studies 
included in the meta-analysis evaluated also featured 
superimposed NAFLD in HCV-infected patients.

lipin 1: Lipin 1 is a phosphatase expressed specifically 
by adipose tissue and liver. It seems to be critically 
involved in metabolic pathways linking adipose tissue 
and liver[161]. Several polymorphisms of lipin 1 (LPIN1) 
have been associated with occurrence of MS and its 
components[162]. In particular, the LPIN1 rs13412852 
T allele was associated with lower body mass index 
and insulin levels[163]. An Italian study[164] evaluated the 
LIPIN1 rs13412852 C>T polymorphism in pediatric 
patients with NAFLD. Investigators demonstrated that 
the TT genotype, even if underrepresented in pediatric 
NAFLD patients, was associated with less severe 
dysplipidemia and a lower prevalence and severity 
of NASH even after adjustment for genetic - PNPLA3 
genotype - and metabolic confounders.

Genetic variants involved in mechanisms of liver injury 
in NAFLD/NASH
Tumor necrosis factor-α and tumor necrosis 
factor-related apoptosis-inducing ligand: Tumor 
necrosis factor-α is an important proinflammatory 
cytokine involved in the regulation of IR, release of free 
fatty acids, and induction of apoptosis in hepatocytes 
under stimuli driven by oxidative stress[165]. Thus, it 
is not surprising that serum tumor necrosis factor 
(TNF)-α levels were found to be higher in patients 
with NASH compared with healthy controls[70] and 
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that elevated levels have been associated with 
the occurrence of both NAFLD and NASH[166]. Two 
polymorphisms of the promoter of TNF-α gene have 
been linked to an increased susceptibility of NAFLD: 
TNF2 allele (at position -308) and TNFA allele (at 
position -238)[167,168], both associated with higher 
TNF-α serum levels[169,170]. However, consistency of 
this association is still debated[171,172]. Valenti et al[167] 
found that the prevalence of the -238, but not of 
the -308, TNF-α polymorphism was higher in Italian 
patients with NAFLD than in controls and that patients 
with NAFLD positive for both TNF-α polymorphisms 
had higher IR but a lower number of associated risk 
factors for steatosis. Furthermore, Tokushige et al[171] 
determined the prevalence of six TNF-α promoter 
region polymorphisms in a group of Japanese patients 
with NAFLD and in control subjects. Surprisingly, there 
were no significant differences in the allele frequencies 
of any of the six polymorphisms between patients and 
controls. However, they found that two polymorphisms 
- -1031C and -863A - were significantly higher in 
the NASH group compared with subjects with simple 
steatosis only and that they were associated with 
an increased homeostasis model assessment for IR 
(HOMA-IR) score. Finally, negative results were also 
derived from a prospective cohort of Chinese patients 
with NAFLD, since TNF-α gene polymorphisms were not 
shown to be associated with NAFLD nor with significant 
fibrosis[172]. A recent meta-analysis[173] comprising 
several studies on this topic[167,168,171,172,174-177] concluded 
that there was a significant difference in TNF-α -238 
genotype distribution between NAFLD and control, 
while there was no clear association between TNF-α 
-308 genotype and susceptibility for NAFLD. Overall, 
it is still unclear whether TNF-α polymorphisms are 
critically involved in NAFLD and/or NASH pathogenesis, 
probably due to ethnic differences and incomplete 
control for confounding metabolic factors in most 
of the studies. Finally, another member of the TNF 
family, TNF-related apoptosis-inducing ligand (TRAIL), 
should be mentioned. A Chinese study[178] found that 
soluble TRAIL levels were significantly higher in NAFLD 
subjects than in controls and positively correlated with 
triglyceride concentrations in NAFLD patients and that 
the AA/TT genotypes of TRAIL at position 1525/1595 
conferred a lower risk of NAFLD occurrence and a less 
severe form of steatosis in NAFLD patients.

interleukin (IL)-6 and IL-1β: IL-6 is a proin
flammatory cytokine produced by adipocytes, 
hepatocytes, and immune cells, involved in both 
inflammation and IR[179]. Experimental models 
have investigated its role in NAFLD pathogenesis 
and progression, although the results were often 
contradictory[180-182], whereas certain polymorphisms 
of the IL-6 gene were associated with NAFLD susce
ptibility. A small Italian study[159] found that the IL-6 
-174C variant C - an allele associated with IR, T2D, 
and MS in some cohorts[183,184] but not in others[185] - 

was more prevalent in NAFLD than in healthy subjects, 
associated with increased insulin levels and HOMA-IR, 
and an independent predictor of NAFLD and NASH. 
Intriguingly, this finding is in contrast with other studies 
reporting that it was the IL-6 -174 G variant that was 
associated with metabolic abnormalities[186,187]. IL-1 
family cytokine members are produced mainly by 
human adipose tissue; certain IL-1 cytokines - such as 
IL-1α, IL-1β, IL-18 - have proinflammatory properties, 
while others - IL-1 receptor antagonist, for example 
- are anti-inflammatory[188]. Interestingly, IL-1α and 
IL-1β were shown to have a role in the transition 
from steatosis to steatohepatitis and liver fibrosis[189]. 
Based on these findings, Interleukin-1β-511 T/C 
polymorphism, a functional variant that affects DNA-
protein interactions in vitro[190], was determined 
in 63 Japanese NASH patients and 100 healthy 
volunteers[109]. The authors found that Interleukin-1β 
-511 T allele frequency and the T/T genotype frequency 
were significantly higher in NASH patients than in 
control subjects.

toll-like receptor 4: Bacterial overgrowth and 
endotoxemia have recently emerged as two re
levant factors in the pathogenesis of NASH[191]. 
Indeed, the interplay between toll-like receptor 
4 (TLR4) and endotoxins results in the release 
of several mediators capable of favoring hepatic 
injury and a proinflammatory systemic status[192]. 
Variants encoded in the ectodomain of the TLR4 
gene, D299G and T399I, have been linked with 
endotoxin hyporesponsiveness[193] and with possible 
effects on inflammatory and metabolic disorders like 
atherosclerosis, IR, MS, and T2D[194,195]. Animal models 
showed a potential direct link between TLR-4 and 
Kupffer cells in the pathogenesis of steatohepatitis[192], 
and, notably, Guo et al[196] demonstrated that the 
D299G and T399I variants were associated with 
protection from hepatic fibrosis by reducing TLR4-
mediated inflammatory and fibrogenic signalling and 
lowering the apoptotic threshold of activated hepatic 
stellate cells. Regarding the interaction between 
NAFLD and TLR-4 polymorphisms in humans, a recent 
case-control study[197] revealed that the frequency 
of the heterozygous mutation at position -299 was 
significantly lower in patients with NAFLD than in 
controls. However, further studies are needed to clarify 
the protective role of such polymorphisms in NAFLD 
pathogenesis and progression.

IL-28B: Several studies repeatedly showed that genetic 
variations around the IL-28B gene strongly predict 
the spontaneous and treatment-induced clearance of 
hepatitis C viral infection[198,199]. In particular, IL-28B 
rs12979860 CC and IL-28B rs8099917 TT genotypes 
were shown to be closely related to the achievement 
of a sustained virological response following antiviral 
therapy[200-202]. Furthermore, other studies revealed a 
link between IL-28B polymorphisms and the severity 
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of CHC in terms of steatosis[203,204], necroinflammatory 
activity[205], and fibrosis[206-208]. Our group reported on 
a cohort of 160 patients with histological diagnosis 
of NAFLD that IL-28B rs12979860 CC genotype was 
associated with the histological severity of liver disease, 
independently of HOMA and hyperuricemia - well-
known risk factors for liver damage in NAFLD[209]. 
Interestingly, the at-risk CC rs12979860 variant was 
associated with severe necroinflammation, particularly 
in subjects with the PNPLA3 G allele, thus leading to 
hypothesize a potential interplay between these two 
genes. Such findings were recently confirmed by Eslam 
et al[210] on a large cohort, including 3129 patients 
with CHC, 555 with chronic hepatitis B, and 488 with 
NAFLD. The authors demonstrated that rs12979860 
genotype acted as a strong predictor of tissue 
inflammation and fibrosis among all these chronic 
liver diseases, independent of the underlying etiology. 
However, Garrett et al[211] did not confirm these 
findings on their North American Caucasian patients 
with NAFLD, even if they enrolled a cohort of severe 
obese NAFLD patients evaluated for bariatric surgery, 
and, therefore, very different from our cohort. Overall, 
these data suggest an effect of IL-28B CC genotype in 
patients at lower metabolic risk only, and not in obese 
patients, where the burden of metabolic alterations on 
NAFLD severity likely overcomes the role of the genetic 
background.

Superoxide dismutase 2 and cytochrome P450 
2E1: The superoxide dismutase 2 (SOD2) gene 
encodes for the mitochondrial enzyme manganese-
dependent superoxide dismutase, a protein that 
protects cells from injury induced by superoxide 
radicals[212]. Interestingly, oxidative stress is regarded 
as a relevant factor involved into the transition from 
simple steatosis to steatohepatitis[213]. A common 
polymorphism in the SOD2 gene - C47T, rs4880 
- has been related to relatively efficient protein 
function by in vitro studies[214,215], and SOD2 variants 
have been investigated in settings of alcoholic liver 
disease with inconsistent results[216,217]. Regarding 
the role of SOD2 C47T polymorphism in NAFLD, 
a small study performed on 63 Japanese subjects 
revealed an increased prevalence of the lower activity 
homozygous T genotype among patients with NASH 
compared with controls[154]. Similar conclusions were 
drawn from a cohort of obese Egyptian children with 
steatosis or NASH[218]. Al-Serri et al[219] performed 
a two-step analysis of the relevance of this SNP in 
NAFLD: the preferential transmission of alleles from 
parents to affected children in 71 family trios and 
a classical case-control study involving a cohort of 
502 European patients with fatty liver. Investigators 
demonstrated that SOD2 genotype - together with 
PNPLA3 genotype, T2D, and histological severity of 
NASH - was associated with an advanced stage of 
fibrosis. Conversely, a Chinese study did not find any 
significant difference in the frequencies of the three 

SOD2 genotypes among patients and controls but 
highlighted how the frequency of the SOD2 C variant 
was higher in the NASH group than in subjects with 
simple steatosis and in controls[220]. The same study 
evaluated another gene potentially involved in NAFLD 
pathogenesis: cytochrome P450 2E1 (CYP2E1), 
encoding for cytochrome P450 2E1 - another enzyme 
related to superoxide radicals in humans. Indeed, 
induction of CYP2E1 is a central process involved 
in generating oxidative stress in both alcoholic and 
nonalcoholic steatohepatitis[221]. However, evidence 
about a potential role of CYP2E1 gene SNPs in NAFLD 
pathogenesis are elusive. On the one hand, the above 
mentioned study[220] did not report any association 
between the CYP2E1 -1053C>T variation (*1/*5 - 
rs2031920) and increased susceptibility to NAFLD 
or NASH in Chinese subjects; on the other hand, 
Varela et al[222] found that the CYP2E1 *5 variant 
was positively associated with liver injury in obese 
women with NASH, and similar positive results were 
also found on a Chinese population[223]. It is likely that 
ethnic differences and the incomplete understanding 
of the real effect of SOD2 and CYP2E1 genotypes on 
related enzymatic activities could be the main reasons 
underlying these conflicting results.

uncoupling protein 3 and uncoupling protein 
2: Uncoupling protein 3 is a mitochondrial anion 
carrier selectively expressed in skeletal muscle - the 
major site of thermogenesis in humans - involved 
in the metabolism of superoxide radicals and in the 
modulation of energy and lipid homeostasis[224-226]. 
The rs1800849 -55C/T polymorphism of uncoupling 
protein (UCP) 3 has been associated with an in
creased susceptibility to T2D and obesity and with 
an atherogenic lipid profile[227-229]. Interestingly, the 
rs1800849 UCP3 -55CT genotype was also associated 
with IR, increased adiponectin levels, the presence 
of moderate-severe steatosis, and NASH in a small 
Spanish study[230]. Furthermore, an interesting 
Chinese paper aiming to evaluate the frequency of 
four nonsynonymous SNPs in the UCP3 gene in a 
pediatric cohort found a higher prevalence of another 
variant - rs11235972 GG genotype - among patients 
with NAFLD compared with control subjects[231]. 
Similar to UCP3, UCP2 is involved in the regulation of 
mitochondrial lipid efflux and oxidative metabolism. 
Its increased hepatic expression has been reported 
both in experimental models and in NASH patients 
as a protective mechanism against liver injury 
progression[232]. A promoter region polymorphism 
of UCP2 - -866 G>A variant - is able to influence 
the extrahepatic expression of UCP2 and insulin 
release and sensitivity, although the overall metabolic 
impact is still controversial[233]. A recent Italian paper 
investigated the role of this SNP in patients who 
underwent liver biopsy for suspected NASH[234]. UCP2 
-866 A/A genotype was associated with a reduced 
risk of NASH after adjustment for age, sex, body 
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mass index, impaired fasting glucose or diabetes, 
and PNPLA3 I148M allele and with a reduced risk of 
steatosis grade G2-G3 and NASH in patients without, 
but not in those with, impaired fasting glucose/
diabetes. Concerning the metabolic traits, the UCP2 
A/A genotype was associated with higher total serum 
cholesterol levels but not with serum HDL, triglycerides 
or impaired fasting glucose/diabetes. Overall, SNPs 
in UCP genes may confer susceptibility or protection 
to NAFLD/NASH, even if further evidence needs to be 
provided.

Methylenetetrahydrofolate reductase: Homo
cysteine is an intermediate amino acid formed 
during methionine metabolism in the liver. Today, 
hyperhomocysteinemia is regarded as a risk 
factor for liver diseases via the promotion of oxi
dative and endoplasmic reticulum stress, and the 
activation of proinflammatory factors[235,236]. Methy
lenetetrahydrofolate reductase (MTHFR) catalyzes 
the reduction of 5,10-methylenetetrahydrofolate 
to 5-methyltetrahydrofolate, a metabolic pathway 
fundamental for the methylation of homocysteine 
to methionine. Several genetic polymorphisms in 
the MTHFR gene have been identified, and among 
them, the C677T polymorphism (rs1801133) and the 
A1298C (rs1801131) - inducing both a reduction of 
MTHFR activity - were extensively investigated[237,238] 
in the setting of NAFLD[239-242]. Sazci et al[239] analyzed 
the frequency of C677T and A1298C polymorphisms 
of MTHFR gene in a Turkish cohort comprising 57 
NASH patients and 324 healthy controls, showing 
that the MTHFR 1298C allele in all NASH patients, 
the C677C/C1298C compound genotype in women, 
and the C677C/A1298C compound genotype in men 
were genetic risk factors for NASH. Similarly, Catalano 
et al[240] recently identified the MTHFR A1298C 
heterozygous polymorphisms as a weak predictor 
for NAFLD severity in an Italian cohort. However, the 
relationship between MTHFR polymorphisms and 
NAFLD remains controversial. Franco Brochado et 
al[241] did not find any association between the MTHFR 
C677T and A1298C polymorphisms and NAFLD and 
its severity. Similarly, Serin et al[242] showed that the 
MTHFR C677T polymorphism was not a risk factor for 
NAFLD in their Turkish cohort. As a consequence, more 
rigorous work needs to be performed in this field.

Glutamate-cysteine ligase catalytic subunit: The 
glutamate-cysteine ligase catalytic subunit (GCLC) 
gene codes the catalytic subunit of the heterodimeric 
γ-Glutamate-cysteine ligase, the limiting enzyme 
in the formation of glutathione, a relevant endogen 
antioxidant. The base T in the position -129, as 
opposed to base C, determines a sharp decrease 
in the promoter activity of the GCLC gene and was 
identified as a significant independent risk factor for 
myocardial infarction in a Japanese population[243]. 

In addition, mitochondrial glutathione depletion has 
been associated with the development of alcoholic 
steatohepatitis due to the increased sensitivity of 
hepatocytes to the pro-oxidant effects of cytokines 
generated by ethanol metabolism[244]. Interestingly, 
Oliveira et al[157] found that, among 131 biopsy-proven 
NAFLD patients, the presence of at least one T allele 
in the -129 C/T polymorphism of the GCLC gene was 
independently associated with NASH detection, with 
an OR of 12.14. Thus, such polymorphism could be 
an important factor in the development of liver injury 
mediated by oxidative stress.

hemochromatosis and trans-membrane protease 
serine 6: Human hemochromatosis protein (HFE) 
is crucial for the regulation of iron homeostasis via 
modulation of the expression of hepcidin[245]. Excessive 
hepatic iron deposition is a frequent histological feature 
of NASH, and it has been investigated as a potential 
contributor to oxidative stress in the liver, and thus 
as a second hit promoter[246]. In this regard, even if 
the C282Y and H63D mutations of the HFE gene - 
common in Caucasians and responsible for most cases 
of hereditary hemochromatosis - are well-known 
causes of potential iron overload, their prevalence and 
relevance in patients with NAFLD have been variable, 
depending on the examined cohorts. The first reports 
about the association between HFE mutations and 
NAFLD came in the late 1990s and showed a positive 
correlation between these two conditions[247,248]. Later, 
Lee et al[249] identified the presence of H63D mutation 
as an independent factor associated with NAFLD in 
the Korean population, and Nelson et al[250] suggested 
that the presence of the C282Y mutation was a risk 
factor for the development of advanced hepatic fibrosis 
among American Caucasian patients with NASH. 
Nonetheless, other studies have not confirmed such 
associations. Indeed, even if several reports suggested 
that increased ferritin levels may be markers of 
histological damage, the HFE mutations did not 
consistently contribute to hepatic fibrosis in NAFLD[251] 
nor to its susceptibility[252]. The poor relevance of 
HFE mutations in NAFLD have been resumed by 
a recent meta-analysis including 610 cases and 
7298 controls[253]: authors found no associations 
between iron-overloading HFE mutations and NAFLD 
susceptibility or severity. However, other genetic 
variants influencing iron deposition may be involved 
in NAFLD/NASH pathogenesis. Beta-globin mutations 
have been identified as a good genetic predictor of 
parenchymal iron overload in Italian patients with 
NAFLD and have been associated with a two-fold 
higher risk of severe fibrosis[254]. More recently, the 
rs855791 C>T polymorphism of the trans-membrane 
protease serine 6 (TMPRSS6) gene - encoding for 
matriptase-2, which cleaves the membrane-bound 
hemojuvelin, a co-receptor required for hepcidin 
expression in the liver[255] - has been associated with 
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lower hepatic iron stores, ferritin levels, and ballooning 
in 216 patients with histological NAFLD[256].

kruppel-like factor 6: The kruppel-like factor 6 (KLFs) 
are a family of zinc finger-containing transcriptional 
factors that regulate cellular processes, such as 
proliferation, differentiation, and apoptosis[257]. In the 
liver, injury and/or cytokines are able to induce KLF6 
gene expression, which in turn plays an essential role 
in the transactivation of several genes involved in the 
development of liver fibrosis, mainly via the activation 
of hepatic stellate cells[258]. Miele et al[259] reported the 
association between a functional polymorphism in the 
KLF6 gene - IVS1-27G>A SNP (rs3750861) - and the 
severity of NAFLD. In particular, they demonstrated 
increased levels of total and wild type KLF6 expression 
in patients with NAFLD and higher steatosis, inflam
mation, and fibrosis, whereas KLF6 IVS1-27G>A 
SNP was associated with reduced fibrosis, and thus, 
acted as a protective factor against NASH progression. 
Intriguingly, the effects of KLF6 genotype on NAFLD/
NASH pathogenesis may also involve the modulation of 
metabolic pathways: Bechmann et al[260] observed that 
KLF6 IVS1-27G wild-type allele was associated with 
increased fasting glucose and insulin levels and with 
decreased hepatic insulin sensitivity via the reduced 
expression of glucokinase. KLF6 increased PPARα 
activity, whereas KLF6 loss led to PPARα repression 
and attenuation of lipid and glucose abnormalities[261].

transforming growth factor-β1, angiotensin 
Ⅱ, and angiotensin Ⅱ type 1 receptor: The 
transforming growth factor (TGF)-β1 is a well-
known promoter of hepatic fibrosis that contributes 
to the activation of hepatic stellate cells[262]. TGF-β1 
production can be stimulated by angiotensin Ⅱ (AT
Ⅱ), part of the renin-angiotensin system that has 
been advocated as a potential inducer of extracellular 
matrix accumulation[263]. A higher frequency of a pro-
fibrotic TGF-β1 SNP (Arg/Arg at codon 25) has been 
identified in patients with hypertension compared 
with controls[264]. Furthermore, this TGF-β1 SNP and 
an ATⅡ variant in the promoter region of the gene 
(AT-6 G>A), leading to a higher transcription of AT, 
were both associated with increased hepatic fibrosis 
in patients with CHC[265]. Based on these findings, 
Dixon et al[266] investigated these two polymorphisms 
in a group of severely obese patients with NASH. The 
investigators found a positive association between 
AT-6 A/A polymorphism and severe fibrosis, even 
if such correlation was lost after correction for 
gender. However, patients with both high ATⅡ and 
TGF-β1 producing polymorphisms had a higher risk 
of advanced fibrosis. In addition, animal models 
had demonstrated that the Angiotensin Ⅱ Type 1 
Receptor (AGTR1) gene could be implicated in the 
susceptibility to NAFLD[267]. In this line, none of the 
five variants of the AGTR1 gene were associated with 
susceptibility to NAFLD in a multi-ethnic Asiatic cohort 

composed of Malayan, Indian, and Chinese subjects, 
with the exception of the Indian subgroup, where 
the rs2276736, rs3772630, and rs3772627 were 
found to be protective against NAFLD and NASH[268]. 
Furthermore, five SNPs of AGTR1 gene (rs3772622, 
rs3772633, rs2276736, rs3772630, and rs3772627) 
were significantly associated with NAFLD in a Japanese 
cohort[269]. All in all, the potential involvement of 
the renin-angiotensin system in NAFLD/NASH path
ogenesis is still unclear, and further research is needed.

CONCLUSION
In the complex pathogenetic puzzle of NAFLD, genes 
clearly act as major disease modifiers affecting NAFLD 
occurrence and severity and sometimes cardiovascular 
risk as well. To date, the PNPLA3 gene variant is the 
most validated susceptibility factor for steatosis, NASH, 
fibrosis, and HCC, despite a number of other genetic 
variants contributing to liver damage. However, even 
if the identification of these variants helped us to 
understand better NAFLD in terms of both clinical 
phenotypes and pathogenetic mechanisms, their utility 
in clinical practice and in the individual patients is far 
from being relevant. Therefore, further efforts should 
be done to generate a genetic map useful to stratify 
the hepatic and non-hepatic risk of NAFLD patients 
and to define better therapeutic approaches in terms 
of both lifestyle intervention and new pharmacological 
therapies.
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