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Abstract
The mortality rate of gastric cancer worldwide is as high 

as 70%, despite the development of novel therapeutic 
strategies. One reason for the high mortality is the 
rapid and uninhibited spread of the disease, such 
that the majority of patients are diagnosed at a stage 
when efficient therapeutic treatment is not available. 
Therefore, in-depth research is needed to investigate 
the mechanism of gastric cancer metastasis and in
vasion to improve outcomes and provide biomarkers 
for early diagnosis. The mitogen-activated protein 
kinase (MAPK) signaling pathway is widely expressed 
in multicellular organisms, with critical roles in multiple 
biological processes, such as cell proliferation, death, 
differentiation, migration, and invasion. The MAPK 
pathway typically responds to extracellular stimulation. 
However, the MAPK pathway is often involved in 
the occurrence and progression of cancer when ab
normally regulated. Many studies have researched 
the relationship between the MAPK signaling pathway 
and cancer metastasis and invasion, but little is known 
about the important roles that the MAPK signaling 
pathway plays in gastric cancer. Based on an analysis 
of published data, this review aims to summarize 
the important role that the MAP kinases play in the 
invasion and metastasis of gastric cancer and attempts 
to provide potential directions for further research and 
clinical treatment.
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Core tip: The mortality rate of gastric cancer is as high 
as 70% worldwide due to the rapid and uninhibited 
metastasis and invasiveness of the disease. Although 
the relationship between the mitogen-activated pro
tein kinase (MAPK) signaling pathway and cancer 
metastasis and invasion has been widely researched, 
few studies have focused on gastric cancer. Here we 
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review the function of the three central kinases of 
the MAPK signaling pathway, ERK, JNK and p38, in 
the metastasis and invasion of gastric cancer, and we 
attempt to provide support for further in-depth study 
and clinical application.

Yang M, Huang CZ. Mitogen-activated protein kinase signaling 
pathway and invasion and metastasis of gastric cancer. World J 
Gastroenterol 2015; 21(41): 11673-11679  Available from: URL: 
http://www.wjgnet.com/1007-9327/full/v21/i41/11673.htm  DOI: 
http://dx.doi.org/10.3748/wjg.v21.i41.11673

INTRODUCTION
The mitogen-activated protein kinase (MAPK) is a 
type of serine/threonine protein kinase that is able 
to respond to multiple extracellular stimuli. Growth 
factors, insulin, environmental factors, and cytokines 
may all activate the MAPK kinases and lead to a broad 
intracellular response through the MAPK signaling 
pathway. The MAPK signaling pathway is one of the 
earliest signaling pathways to emerge during evolution 
and has been evolutionarily conserved. The pathway 
comprises the MAPK cascade protein kinases. Each 
typical single MAPK cascade pathway includes at least 
three core kinases, MAP3K, MAPKK, and MAPK[1]. The 
MAPK pathway exists in almost all eukaryotes and 
is involved in many cellular activities, including the 
regulation of gene expression, mitosis, metabolism, 
cell proliferation, apoptosis and cellular movements[2]. 
In view of the critical role of the MAPK pathway in 
cellular activities, the dysregulation of MAPKs often 
directly or indirectly leads to disease.

Local invasion and metastasis cause the majority 
of cancer deaths, and the distant metastasis of cancer 
accounts for the death of over 90% of patients[3]. 
Gastric cancer spreads easily to the adjacent organs 
and tissues, including the liver, pancreas, colon, 
lungs and bone, via the lymphatic system[4]. In fact, 
although much clinical effort is made, gastric cancer 
still has a mortality rate as high as 70%, because most 
gastric cancer patients are in the metastasis stage at 
the time of diagnosis[5].

Detachment of cancer cells from the primary tumor 
is the first step in tumor invasion and metastasis; 
subsequently, detached tumor cells are transported 
into and invade the blood and lymphatic vessels; and 
finally, cancer cells escape from the lumina of these 
vessels, settle in the target organs, and grow into 
macroscopic tumors[6-8].

The molecular process of tumor invasion and 
metastasis involves several essential events, such 
as the degradation of the extracellular matrix and 
the adhesion of cancer cells to the target with the 
help of focal adhesion kinase (FAK) and matrix 
metalloproteinases (MMPs)[9,10]. Mitogen-activated 
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protein kinases are involved in cell migration and 
invasion events partially by regulating the expression 
and activation of MMPs and FAK[11-13]. Moreover, the 
MAPK pathway participates in invasion and metastasis 
through other types of signaling pathways. The aim of 
this article is to provide an introduction to the role that 
the MAPK pathway plays in gastric cancer metastasis 
and invasion based on the published data and provide 
recommendations for future research.

ERK1/2 AND GASTRIC CANCER 
INVASION AND METASTASIS
Introduction to ERK and the ERK/MAPK pathway
ERK is one of the first mammalian MAPK genes to 
be identified and cloned. The cDNAs of ERK1 and 
ERK2 were both cloned as early as the 1990s, and 
they share up to 83% of identical amino acids[14,15]. 
Moreover, there are other isoforms of ERK, including 
ERK3, ERK4, ERK5, and ERK7/8[16]. In this section, we 
will mainly discuss the most important members that 
play critical roles in cancer invasion and metastasis, 
ERK1/2.

The integral ERK/MAPK pathway can be roughly 
divided into three levels, which are summarized in 
Figure 1. Raf isoforms are the most well-studied 
kinases, constituting the highest level of the ERK/
MAPK pathway, and are also known as MAPKKKs. 
Extracellular growth factors, insulin and G-proteins 
may activate the MAPKKKs by directly binding to 
the N-terminus of the Raf protein and transforming 
its structure through phosphorylation. Then, the 
activating signal is passed to the MAPKKs through the 
phosphorylation of two serine residues on the MEK1 or 
MEK2 protein. The signal is finally transmitted to ERK 
by MEK1/2 through the phosphorylation of tyrosine 
and threonine residues[17]. When the entire signaling 
pathway is completely activated in order, hundreds of 
ERK/MAPK pathway substrates are phosphorylated, 
and these events affect ERK-dependent cellular ac
tivities, including cell proliferation, differentiation, 
neuronal flexibility, cell viability, cellular stress response 
and apoptosis[2].

ERK functions in gastric cancer
The dysregulation of ERK/MAPK occurs in various 
human diseases, including neurodegenerative diseases, 
developmental disorders, metabolic diseases, and 
cancer[18-22]. In the last decade, scientists increasingly 
focused on the relationship between the ERK/MAPK 
pathway and tumor genesis and progression, because 
it was found that mutation or abnormal activation of 
the ERK/MAPK pathway exists in over half of human 
cancer types[23]. As an upstream binding kinase of the 
ERK/MAPK pathway, Ras was reported to mutate to an 
oncogenic form in more than 15% of human cancers. 
Additionally, B-RAF mutated in 66% of malignant 
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melanomas. Point mutations of the Ras and B-RAF 
genes cause dysregulation of the ERK/MAPK pathway 
and abnormal cellular motility, which primarily lead to 
the migration and invasion of cancer cells[24].

Many studies have elucidated that the ERK/MAPK 
pathway plays an active role in the invasion and 
metastasis progression of some malignant tumors. 
The pathologic process of tumor invasion and meta
stasis requires cell motility. The alteration of cellular 
adhesiveness directly affects cell movement. The 
epidermal growth factor receptor (EGFR)-induced 
disassembly of focal adhesions is regulated by acti
vating the ERK/MAPK pathways[25]. Another study of 
epithelial cells demonstrated that ERK in vitro was 
closely correlated with metastasis both in the TGF-beta 
and the RAS/MAPK pathways[26]. Metastasis induced by 
dysregulation of ERK was also demonstrated in animal 
models. All of the three domain mutations V12S35, 
V12G37, and V12C40 of Ras are able to induce tumor 
genesis, but only the V12S35 mutation, which affects 
the activation of the ERK/MAPK pathway, rather than 
the other two domain mutations of Ras, induced tumor 
metastasis in mouse models[27]. This study showed 
that Ras could induce tumor genesis independently 
of the ERK/MAPK pathway; however, the ERK/MAPK 
pathway is indispensable in Ras domain mutation-
induced tumor metastasis.

Recently, an increasing number of studies have 

revealed that the ERK/MAPK pathway is involved in 
regulating cellular mobility in gastric malignant tumors 
and gastric cancer cell lines. ERK may mediate the 
activity of MMPs, which in turn influences gastric 
cancer cell migration and invasion[28-30]; conversely, 
many factors upstream of the ERK/MAPK pathways, 
such as interleukin-22 (IL-22), RASAL1, phophatase 
of regenerating liver 3 (PRL3), NAIF1, CCDC134, and 
ZIC1, may influence invasion and migration in gastric 
cancer cell lines through the ERK/MAPK pathway[30-35]. 
Currently, most studies focus on the role of the ERK/
MAPK pathway in gastric cancer cell lines. Evidence 
in tissues and animal models is sparse, and further 
research is needed.

STRESS ACTIVATED MAPK
P38
Introduction of p38: p38 alpha, beta, gamma and 
delta are the four well-known members of the p38 
MAPK family, of which p38 alpha and p38 beta are 
expressed ubiquitously, whereas the p38 gamma and 
p38 delta have more restricted expression patterns[16].

The mammalian p38 MAPK pathway is affected by 
various environmental stressors, including oxidative 
stress, UV, hypoxia, ischemia, as well as inflammatory 
cytokines and transforming growth factor-α (TGF-α)[36]. 
MEKK1-3 (MEK kinase 1-3), MLK2/3 (mixed lineage 

Figure 1  The integral extracellular signal-regulated kinase/mitogen-activated protein kinase pathway. ERK: Extracellular signal-regulated kinase; MAPK: 
Mitogen-activated protein kinase.
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kinase 3), ASK1 (apoptosis signal regulating kinase 
1), Tpl2 (tumor progression loci 2), TAK1 and TAO1/2 
(thousand and-one amino acid) are all MAPKKKs in the 
P38 MAPK pathway[37]. These MAPKKKs activate p38 
by phosphorylating it at the Thr-Gly-Tyr motif through 
selective activation of MKK3/6. MKK6 phosphorylates 
all four members of the p38/MAPK family, whereas 
MKK3 phosphorylates p38 alpha, p38 gamma, and 
p38 delta but not p38 beta[37]. p38 is found in both 
the nucleus and the cytoplasm and translocates into 
the nucleus in response to certain types of stress. 
The P38 kinase affects certain types of downstream 
substrates after being activated, including cPLA2, 
MNK1/2, MK2/3, HuR, Bax, and Tau in the cytoplasm 
and ATF1/2/6, MEF2, Elk-1, GADD153, Ets1, P53 and 
MSK1/2 in the nucleus[37].

P38 and gastric cancer invasion and metastasis
The p38 pathway has been implicated in a range of 
complex biological processes, such as cell proliferation, 
differentiation, migration, and apoptosis. Dysregulation 
of P38 in patients with solid tumors, such as prostate 
cancer, breast cancer, bladder cancer, liver cancer 
and lung cancer, is associated with advanced stages 
and low survival rates[38]. The p38 signaling pathway 
exhibits some anti-tumor effects in xenograft experi
ments[39,40]. In hepatocellular carcinoma, the activity of 
P38 is down-regulated in the cancer tissue compared 
with the adjacent normal tissue, and the tumor 
volumes are related to the p38 activity[41]. As a result, 
tumor cells must modulate p38 activity to achieve 
metastasis and invasion.

The epithelial-mesenchymal transition (EMT) 
process plays an important role during the initiation of 
metastasis. P38 signaling is involved in the regulation 
of EMT in several ways. For example, p38 participates 
in regulating the EMT activity in mammary epithelial 
cells and in primary ovarian tumors by separately 
regulating the phosphorylation of Twist1 and the 
expression of Snail[42,43]. P38 is also involved in ROS-
triggered EMT, and this process may be reversed by 
the introduction of the p38 inhibitor SB203580[44,45]. 
The MMP protein family plays a critical role in 
remodeling the extracellular matrix during metastasis. 
There are many studies of the relationship between 
p38 and the expression of MMP family members 
in liver, prostate, breast and skin cancer cell lines. 
Following inhibition of p38 in these cell lines, cellular 
invasion decreases[46-48]. Many small molecules can 
regulate the metastasis and invasion of gastric cancer 
through regulation of the p38 signaling pathway. For 
example, S100A8 and S100A9, the low-molecular-
weight members of the S100 family of calcium-binding 
proteins, induced gastric cancer cell migration and 
invasion involving p38 and NF-κB, whereas they did 
not affect cell proliferation and cell viability, which leads 
to an increase in MMP2 and MMP12 expression[49]. In 
addition, the widely used anti-tumor drug baicalein 

also inhibits gastric cancer cell invasion and metastasis 
by reducing cell motility and migration via suppression 
of the p38 signaling pathway[50].

C-JUN N-TERMINAL KINASE
Introduction to c-Jun N-terminal kinase
The c-Jun N-terminal kinase (JNK), also known as 
stress-activated protein kinase (SAPK), was first 
identified and named as c-Jun transcription factor. The 
three isoforms of JNK, JNK1/2/3, were cloned in the 
mid-1990s. These three isoforms are encoded by three 
different genes, sharing more than 85% homology; 
these isoforms result from more than 10 splices and 
have molecular weights varying from 46 kD to 55 
kD[51,52]. JNK1/2 is widely expressed in mammary 
tissues, whereas JNK3 is expressed mainly in nervous 
tissues, testis, and cardiac muscle[53]. All members of 
the JNK family are activated by various stimulating 
factors, such as heat shock, oxidative stress, DNA 
damage, UV, cellular factors, and serum[54]. The 
MAPKKKs in the MAPK/JNK signaling pathway include 
MEKK1-4, MLK1-3, Tpl-2, DLK, TAO1/2, TAK1, and 
ASK1/2. These MAPKKKs activate the MAPKKs, 
such as MKK4 and MKK7, through phosphorylation. 
Subsequently, activated MKK4/7 will activate JNK by 
phosphorylating its threonine and lysine residues[16].

JNK and gastric cancer metastasis and invasion
JNK serves as an important kinase that regulates 
cellular activity; current research suggests that 
JNK plays opposite roles in cancer initiation and 
development[55]. Experiments demonstrated that a 
mouse model with a JNK2 deficiency shows a lower 
incidence of tumor initiation[56]; however, a mouse 
model with a JNK1 deficiency may generate tumors 
more frequently compared with control mice[57]. 
Therefore, small molecular inhibitors of JNK could not 
be easily used in cancer therapy.

Additionally, JNK is also involved in gastric cancer 
metastasis and invasion. Recombination in Erdr1 
suppresses the ability of the gastric cancer cell line 
SNU-216 to metastasize by up-regulating E-cadherin 
through JNK pathway activation, and this event is 
reversed by treating the cells with the JNK inhibitor 
SP600125[58]. JNK is also involved in TGF-beta1-
induced invasion and metastasis of gastric cancer cells. 
As an important mediator of the tumor response to 
TGF-beta, fascin1 functions through the TGF-beta1-
JNK/MAPK pathway to regulate gastric cancer invasion 
and metastasis[59].

CONCLUSION
The in-depth mechanisms and molecular signaling 
pathways in gastric cancer invasion and metastasis 
are complex. As the vital signaling pathway in regu
lating cellular vitality, the MAPK pathway plays im

Yang M et al . Relevance of MAPK in gastric cancer



11677 November 7, 2015|Volume 21|Issue 41|WJG|www.wjgnet.com

portant roles in cancer invasion and metastasis. 
Over the past decades, studies increasingly revealed 
that the MAPK pathway is involved in regulating 
gastric cancer invasion and metastasis; however, 
systematic research, especially in animal models, is 
still needed. Further studies in this field could provide 
a better understanding of gastric cancer invasion 
and metastasis, as well as uncover novel targets and 
effective clinical treatments.
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