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Abstract
The antimicrobial properties of host-derived derived 
lipids have become increasingly recognized and 
evidence is mounting that antimicrobial lipids (AMLs), 
like antimicrobial peptides, are effector molecules of 
the innate immune system and are regulated by its 
conserved pathways. This review, with primary focus 
on the human body, provides some background on 
the biochemistry of lipids, summarizes their biological 
functions, expands on their antimicrobial properties and 
site-specific composition, presents modes of synergism 
with antimicrobial peptides, and highlights the more 
recent reports on the regulation of AML production 
as well as bacterial resistance mechanisms. Based on 
extant data a concept of innate epithelial defense is 
proposed where epithelial cells, in response to microbial 
products and proinflammatory cytokines and through 
activation of conserved innate signaling pathways, 
increase their lipid uptake and up-regulate transcription 
of enzymes involved in antimicrobial lipid biosynthesis, 
and induce transcription of antimicrobial peptides as 
well as cytokines and chemokines. The subsequently 
secreted antimicrobial peptides and lipids then attack 
and eliminate the invader, assisted by or in synergism 
with other antimicrobial molecules delivered by other 
defense cells that have been recruited to the site of 
infection, in most of the cases. This review invites 
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reconsideration of the interpretation of cholesteryl ester 
accumulation in macrophage lipid droplets in response 
to infection as a solely proinflammatory event, and 
proposes a direct antimicrobial role of lipid droplet- 
associated cholesteryl esters. Finally, for the interested, 
but new- to- the-field investigator some starting points 
for the characterization of AMLs are provided. Before it 
is possible to utilize AMLs for anti-infectious therapeutic 
and prophylactic approaches, we need to better 
understand pathogen responses to these lipids and their 
role in the pathogenesis of chronic infectious disease. 

Key words: Atopic dermatitis; Cholesterol; Infectious 
disease; Cystic fibrosis; Mucosa

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: The antimicrobial properties of host-derived 
derived lipids have become increasingly recognized. 
This review develops the concept of antimicrobial lipids 
(AMLs) as effectors of the innate immune response 
that work together with antimicrobial peptides to 
prevent infection, and highlights more recent reports 
on the regulation of AML production as well as bacterial 
resistance mechanisms. Furthermore, this review invites 
reconsideration of the interpretation of cholesteryl ester 
accumulation in macrophage lipid droplets in response 
to infection as a solely proinflammatory event, and 
proposes a direct antimicrobial role of lipid droplet- 
associated cholesteryl esters. 
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INNATE IMMUNITY
Innate immunity is the first line of host defense; it 
engages pattern recognition receptors as opposed to 
highly variable antigen specific receptors utilized by the 
adaptive immune system; its response is preformed or 
rapidly induced within minutes to hours after pathogen 
contact; it provides no memory, but is essential for 
priming the adaptive immune response; and in return 
it can be augmented by effectors of the adaptive 
immune response[1,2]. The innate immune response is 
activated by microbial products and proinflammatory 
cytokines when general physical and chemical defense 
mechanisms on body surfaces have failed to eliminate 
potential intruders. Ligand-binding to surface-expressed 
and intracellular pattern recognition and cytokine 
receptors leads to increased output of antimicrobial 
effector molecules, chemokines, and cytokines to attack 
the pathogen, recruit, and activate additional immune 
cells, respectively. The associated signaling pathways 

are conserved and utilize common central transcription 
factors including nuclear factor κB and interferon 
response factors. 

Key effector cells of the innate immune response are 
epithelial cells, granulocytes, monocytes, macrophages, 
dendritic cells, and natural killer cells. In particular, 
macrophages and dendritic cells are important for the 
initiation of the adaptive immune response. In addition, 
the more recently recognized innate lymphocytes 
facilitate the cross talk between innate and adaptive 
immune responses[3]. Key effector molecules with direct 
antimicrobial action include the complement system, 
antimicrobial peptides and proteins (AMPs), and, increas
ingly recognized, antimicrobial lipids (AMLs). This review 
aims to introduce the concept of lipids as antimicrobial 
effector molecules in the innate epithelial cell defense. 
The reader is directed to Thormar and Hilmarsson 
2007[4], Drake et al[5], 2008, and Thormar[6] 2012 for 
more extensive previous reviews on antimicrobial 
properties of lipids.

BIOCHEMICAL CHARACTERISTICS OF 
LIPIDS
Lipids are a widely heterogeneous group of molecules 
that share hydrophobic or mixed hydrophobic/hydrophilic 
properties. They are composed of hydrocarbon chains 
to which additional functional groups are linked which 
affects the degree of hydrophobicity. The major lipid 
classes are: fatty acids, tri-, di- and mono-acylglycerols 
consisting of the alcohol glycerol and fatty acid chains, 
cholesterol and cholesteryl esters, phospholipids and 
sphingolipids. Mostly, fatty acids, acyl chains with a 
carboxy group, are incorporated into more complex 
lipids. For example, sphingolipids like sphingosines 
consist of a fatty acid residue linked to an amino alcohol 
and cholesteryl esters are formed through esterification of 
a fatty acid to cholesterol. Phospholipids typically consist 
of a glycerol with two fatty acid residues attached, a 
phosphate group and varying additional groups such 
as choline, an alcohol, or amines. Phosphosphingolipids 
such as sphingomyelin use sphingosine instead of the 
diglyceride. Free fatty acids (FFA) are less abundant 
in the body, and among them palmitic, stearic, oleic, 
linoleic (the latter three differing in the number of double 
bonds) and docosahexaenoic acid are possibly the most 
important in the current context. Linoleic acid and its 
metabolite arachidonic acid are essential and cannot be 
synthesized by humans. Otherwise, our body generates 
all other fatty acids by two-carbon chain additions to 
acetyl-coenzyme A (CoA). For more detailed information 
on their classification refer to Fahy et al[7] and Christie 
and Xianlin[8]. 

Though lipid biosynthesis is quantitatively most active 
in hepatocytes and adipose tissue, every nucleated 
cell is capable of it. Figure 1 gives an overview of lipid 
biosynthesis as it relates to the production of AMLs and 
earmarks the enzymes for which evidence of regulation 
by innate immune pathways is available. 
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The initial and committed step in the fatty acid 
synthesis pathway is mediated by acetyl-CoA carbo
xylase 1 that catalyzes the addition of CO2 to the methyl 
group of acetyl CoA generating malonyl-CoA. Malonyl-
CoA serves as the donor of two carbon acetyl groups 
during each round of the fatty acid synthesis reaction 
cycle. Fatty acid synthase is a multifunctional enzyme 
that catalyzes seven different reactions where two 
carbon units from malonyl-CoA are linked together 
ultimately resulting in the formation of saturated 
fatty acids. Terminal desaturases then generate 
unsaturated fatty acids. Stearoyl-CoA desaturase also 
known as delta-9-desaturase catalyzes the synthesis 
of monounsaturated fatty acids (MUFAs). Biosynthesis 
of MUFAs occurs through the introduction of the first 
cis double bond in the Δ9 position between carbons 9 
and 10. Fatty acid desaturase 2, encoded by FADS2 
and also known as delta-6 desaturase, is required for 
the synthesis of polyunsaturated fatty acids (PUFAs). 
FADS2 is classified as a front-end desaturase because 
it introduces a double bond between the pre-existing 
double bond and the carboxyl end of the fatty acid. 
Long-chain-fatty-acid-CoA ligase 1 is encoded by ACSL1 
and converts free long-chain fatty acids into fatty acyl-
CoA esters. Acyl-CoA synthetases activate free long-
chain fatty acids by converting them into fatty acyl-CoA 
esters. Fatty acyl-CoA esters are substrates for multiple 

fatty acid metabolic pathways, including mitochondrial 
β-oxidation and phospholipid and triacylglycerol synthesis. 
Sterol O-acyltransferase 1 (SOAT1, also known as acyl-
Coenzyme A: cholesterol acyltransferase 1 or cholesterol 
acyltransferase 1), catalyzes the esterification of fatty 
acids to cholesterol. An ester bond is formed between the 
carboxylate group of a fatty acid and the hydroxyl group 
of cholesterol. De novo synthesis of free cholesterol 
via the mevalonate pathway also begins with acetyl 
CoA. Acetyl-CoA undergoes condensation with another 
acetyl-CoA subunit via acetyl-CoA transferase to form 
acetoacetyl-CoA. Acetyl-CoA condenses with acetoacetyl-
CoA to form 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). 
HMG-CoA is reduced to mevalonate with consumption 
of NADPH, and after sequential reactions producing the 
intermediates mevalonate-P, isopentenyl-PP, farnesyl-
PP, squalene, lanosterol, and 7-dehydrocholesterol, free 
cholesterol has been generated.

BIOLOGICAL FUNCTIONS OF LIPIDS 
Lipids are used as a form of energy storage, are pre
cursors for steroid hormones[9], and have important 
structural functions. Cell membranes are composed of 
a phospholipid bilayer and transmembrane receptor 
signaling is dependent on the specific lipid composition 
of the cell membrane in the vicinity of these receptors. 
These specialized regions are referred to as lipid rafts 
and caveolae[10-12]. There are substantial differences in 
the phospholipid composition of bacterial and mammalian 
cell membranes, likely contributing to the preferential 
action of host defense molecules against bacterial 
targets[13-15]. Furthermore, lipids liberated from cellular 
membranes have been found to be strong modulators 
of inflammation. Initially, they were identified as 
strong proinflammatory second messengers such as 
prostaglandins and leukotrienes which are synthesized 
from arachidonic acid. However, in the last decade an 
important down regulatory role of membrane-derived 
lipids has been discovered. These inflammation resolving 
lipids are derivatives of the essential omega-6 and 
omega-3 PUFAs and include resolvins (coined after their 
inflammation resolving function), lipoxins, protectins 
and maresins[16-18]. Moreover, there is new evidence 
that lipids may also trigger increased antimicrobial 
peptide production as shown for the sphingolipid S1P 
which increased CAMP production[19], or for sebum FFA 
which induced beta-defensin production[18]. However, 
lipids can also exert direct antimicrobial activity, which 
is not only supported by in vitro testing but also by the 
association of some infectious diseases with defects in 
lipid metabolism.

CLINICAL CORRELATIONS BETWEEN 
LIPID ALTERATIONS AND INFECTIONS
Several chronic infectious diseases are associated with 
altered lipid composition in skin and in the airways. 
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Figure 1  Simplified lipid biosynthesis pathway highlighting the lipids 
and the enzymes with a putative role in innate immunity. Lipid classes with 
documented antibacterial activity are in bold, key enzymes that may be induced 
in response to infection and inflammation (homo sapiens nomenclature) are in 
red. MUFA: Monounsaturated fatty acids; PUFA: Polyunsaturated fatty acids; 
ACC1: Acetyl-CoA carboxylase 1; FASN: Fatty acid synthase; SCD: Stearoyl-
CoA desaturase-1; ACSL1: Acyl-CoA synthetase long-chain family member 1; 
FADS2: Fatty acid desaturase 2; SOAT1: Sterol O-acyltransferase 1 (SOAT1, 
also known as acyl-Coenzyme A: Cholesterol acyltransferase 1 or ACAT 1); 
HMG-CoA: 3-hydroxy-3-methylglutaryl-CoA.
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Skin
Skin lipids (sebum) are from secretions by sebaceous 
glands and the stratum corneum, their composition is 
in part further shaped by the metabolic activities of the 
normal microbiota[4,40] and the exogenous application 
of lotions and cosmetics. Employing a combined LC/MS 
approach Camera et al[41] identified 95 triacylglycerols, 
25 diacylglycerols, numerous wax esters and squalenes, 
a total of 9 cholesterol esters, and more than 48 FFA 
in sebum. Antimicrobial activity has been attributed to 
fatty alcohols, monoglycerides, sphingolipids including 
D-sphingosine, phospholipids, and in particular FFA such 
as sapienic acid and lauric acid[42,43].

Meibum
Very long chain wax esters and fatty acids have been of 
identified in meibum, the lipid rich component of tears[44]. 
Lipids in tear fluid reach micromolar concentrations and 
the most abundant species are phosphatidylcholine 
and phosphatidylethanolamine. Additional lipid classes 
are triglycerides, sphingosine and ceramides, as well 
as cholesteryl esters[45]. While a lubricant function has 
been primarily attributed to tear lipids, a recent study 
suggested growth inhibitory activity of whole tear lipid 
extracts against several Gram-positive and Gram-
negative bacteria[46].

Oral mucosa
Sphingosine, sapienic and lauric acid have also been 
identified as key antimicrobial fatty acids in the oral 
mucosa[47]. Brasser et al[48] analyzed salvia from healthy 
adults and identified FFA, cholesterol, cholesterol esters, 
triglycerides, wax esters, and squalene. The neutral lipid 
concentration was determined to be in the low μg/mL 
range. Overall, FFA, triglycerides, and cholesteryl esters 
were the most abundant lipids in saliva. 

Airways
In the airway lumen, surfactant is the main lipid source 
ascending from the alveolar space, its primary site of 
production, to the upper airways, where some local 
production also occurs[49]. Phospholipids comprise the 
majority of the lipids in surfactant, a lipoprotein com
plex[50], and are thought to mainly contribute to reducing 
lung surface tension and participate in a downregulation 
of immune responses. The antimicrobial properties of 
surfactant have been mainly attributed to surfactant 
proteins SP-A and SP-D[51,52]. Nasal fluid is rich in 
lipids with all major classes represented, namely FFA, 
phospholipids, triglycerides, cholesterol, and cholesteryl 
esters, and their origin can be at least in part attributed 
to epithelial cell secretions[53]. Selective removal of 
the non-polar portion of lipids resulted in a decreased 
inherent antibacterial activity against P. aeruginosa that 
was restored after supplementation with the extracted 
lipids. This suggests that lipids in nasal fluid contribute to 
the innate antimicrobial defense in the airways[53]. 

For example, Arikawa et al[20] reported reduced 
sphingosine levels in keratinocytes in patients with 
atopic dermatitis and recurrent Staphylococcus aureus 
(S. aureus) skin infections. In the stratum corneum of 
lamellar ichthyosis patients who are at higher risk of 
contracting chronic dermatophytosis[21], the amount of 
FFA is reduced and the ceramide profile is altered[22,23]. 
In cystic fibrosis, patients suffer from chronic lung 
infections with S. aureus, Burkholderia cepacia complex, 
Stenotrophomonas maltophilia, and, most importantly, 
Pseudomonas aeruginosa[24-27]. In these patients, 
altered fatty acid levels including reduced levels of 
docosahexaenoic acid[28] have been described and 
docosahexaenoic acid supplementation improved the 
clinical status in some studies[29]. Other lipid anomalies 
in cystic fibrosis are altered cholesterol homeostasis[30], 
and elevated cholesteryl ester concentrations in 
tracheobronchial secretions[31]. We have found an 
increased cholesteryl ester representation in the lipid 
content of bronchoalveolar lavages obtained from 
pediatric cystic fibrosis patients[32]. Furthermore, elevated 
cholesteryl linoleate levels were found in sinus washes in 
chronic rhinosinusitis[33].

BODY SITES AND FLUIDS WITH AMLS
Lipids have been well characterized in all body surfaces 
and tissues whereby extraction and identification 
method influences the outcome and caution should be 
applied when comparing results from different studies. 
Recognition of the antimicrobial activity of certain lipids 
and improved analytical instrumentation have invited 
additional surveys many of which are compiled in 
Thormar[6] 2011. Analysis of the lipid composition of the 
intestinal tract is complicated by nutritional lipids and 
lipids synthesized by the normal endemic microbiota 
and thus, is not considered in the present review.

Breast milk and vernix caseosa
Breast milk was one of the first human body fluids 
investigated for its lipid content. Thormar et al[34] 
reported in 1987 that FFA and monoglycerides in milk 
exhibit antiviral activity. It appears that milk lipases 
release the bioactive lipids from more complex lipids. 
This work was subsequently extended to include activity 
against various bacteria and protozoa[35]. Unique to the 
newborn is vernix caseosa, the waxy coat formed during 
the last trimester of pregnancy that covers the new 
born infant. This lipid-rich film is primarily derived from 
the stratum corneum and sebaceous glands of the fetal 
skin. Ten percent of its content is represented by lipids, 
with a relative abundance of nonpolar species such as 
wax esters/sterol esters/squalene, and triacylglycerol. 
Other vernix caseosa lipids include FFA, fatty alcohols, 
cholesterol, diacylglycerol, monoacylglycerol, and 
phospholipids[36-39]. Antibacterial activity of total lipid 
extract was observed against the test strain Bacillus 
megaterium and was attributed to FFA. 
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Urogenital tract
Information on the lipid composition of fluids of the 
urogenital tract is scarce. Urine contains predominantly 
phospholipids including glycerophospholipids, phospha
tidylcholine, phosphatidyl serine and sphingomyelin, 
as well as triglycerides, but cholesterol and cholesteryl 
esters are also present[54,55]. Semen lipids include sphingo
myelin, glycerophospholipids, and cholesterol[56,57]. A 
very recent metabolomics study on bacterial vaginosis 
suggested elevated eicosanoid levels in affected women 
but this study was designed to identify differentially 
represented metabolites in diseases patients and did 
not aim to provide a baseline lipid profile of healthy 
women[58]. To the best of our knowledge, information on 
the antimicrobial activity of lipids of the urogenital tract is 
not available. 

SPECTRUM OF ACTIVITY OF AMLS
Among human lipids, fatty acids are the best chara
cterized as antimicrobial agents, and their spectrum of 
activity as a whole is broad and spans from bacteria and 
viruses to fungi and protozoa[6]. Other human lipids with 
antimicrobial properties include sphingoid bases[43], that 
are active against Gram positive and Gram negative 
bacteria. Cholesteryl esters have long been thought to 
serve only as a storage and transport form for either 
cholesterol or FFA. However, cholesteryl linoleate and 
cholesteryl arachidonate, when formulated in liposomes, 
demonstrated growth inhibitory activity against several 
Gram positive and Gram negative bacteria[53].

MECHANISMS OF ANTIMICROBIAL 
ACTION
Influenced by the three dimensional shape and satur
ation status of the acyl chains AMLs exert their action 
in different ways. These include disruption caused 
by interference with the cell membrane with ensuing 
permeability changes or interference with the activity 
of membrane bound enzyme complexes and events 
following lipid peroxidation with radical formation. FFA 
have been substantially investigated in this respect, and 
a detailed review on this subject has been authored 
by Desbois and Smith[59]. More recent studies describe 
rapid membrane depolarization in S. aureus treated with 
palmitoleate as well as when treated with glycerol ethers, 
sphingosine, and acyl-amines[60]. As demonstrated by 
scanning electron microscopy, meibomian lipids from 
tears cause major structural damage including distortion, 
loss or regular cell shape, and cell lysis in S. aureus, P. 
aeruginosa, and Serratia marcescens[46].

The more pronounced antimicrobial activity of 
unsaturated FFA compared to their saturated counter
parts[61] may be at least in part attributed to lipid 
peroxidation. Spontaneous generation of a lipid radical 
at the unsaturated bond leads, under consumption of 
molecular oxygen, to the production of a lipid peroxyl 

radical that can react with nearby fatty acids leading 
to a lipid peroxidation chain reaction. Eventually, these 
radicals covalently modify adjacent macromolecules[62]. 

In addition, anti-adhesive effects of lipids have 
been reported. Milk fat globules from bovine and goat 
milk reduced attachment of Salmonella Enteritidis to 
HT-29 human adenocarcinoma cells and subsequent 
internalization[63]. Another more recently described 
effect of AMLs is inhibition of biofilm production. For 
example the milk monoglyceride monolaurin (also called 
lauricidin[64]) inhibits biofilm mass produced by Gram 
positive bacteria including Streptococcus mutans and S. 
aureus[65,66]. 

SYNERGISM WITH AMPS
Antimicrobial peptides are characterized by an amphi
pathic structure with cationic and hydrophobic domains 
and are typically less than 10 kDa in size. Antimicrobial 
proteins have similar amphipathic domains but are 
larger and typically consist of additional regions with 
unique functions, such as lysozyme that hydrolyzes 
peptidoglycan and lactoferrin that binds iron. AMPs 
share many of the mechanisms described for AMLs, in 
particular membrane disruption, and there are several 
studies documenting synergist activities between these 
two classes of antimicrobials. Tollin et al[38] reported 
synergistic activity between vernix caseosa lipids and 
the antimicrobial peptide LL37 whereby this effect 
was attributed to FFA in vernix. We found synergistic 
effects between nasal fluid lipid extracts and the antimi
crobial peptide human neutrophil peptide HNP1[53], and 
between the free fatty acid docosahexaenoic acid and 
lysozyme[67]. The latter study demonstrated that in the 
presence of lysozyme, docosahexaenoic acid accumu
lates in the bacterial cell membrane. Nakatsuji et al[68] 
demonstrated synergistic effects between the free fatty 
acid lauric acid and the antimicrobial peptide HBD2 
against Propionibacterium acnes. This study also showed 
that several sebum FFA up-regulate antimicrobial 
peptide production in sebocytes.

A different type of protein-lipid synergism has 
been described for human α-lactalbumin made lethal 
to tumor cells (HAMLET) from human milk, primarily 
known for its anti-tumor effects[69]. When complexed 
with oleic acid HAMLET exerts bactericidal effects against 
S. pneumoniae via calcium dependent membrane 
depolarization[70,71]. Furthermore, acetylation of cationic 
peptides has been shown to impart antimicrobial activity 
or increase their antimicrobial activity[72].

REGULATION OF AML PRODUCTION
Reports on lipid profile changes in sepsis[73,74] have sugge
sted that AML production may be regulated in the context 
of infection that would involve TLR and other pattern 
recognition receptor signaling and signaling induced by 
proinflammatory cytokines like IL1β. Important evidence 
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for the regulation of AMLs by conserved pathways 
of innate immunity was provided by Georgel et al[75] 
investigating the regulation of stearoyl-CoA desaturase 
gene expression (scd1 in mice and scd in humans), a 
rate limiting enzyme for the synthesis of monosaturated 
fatty acids. They found that the scd1 gene has numerous 
NFκB elements in its promoter region and is strongly 
and specifically induced by TLR2 signaling and that scd 
expression is also induced by TLR2 signaling in a human 
sebocyte cell line. Furthermore, scd1-/- mice developed 
chronic skin infections. 

Using a contrary approach, Wang et al[76] have 
recently shown that overexpression of fatty acid desa
turases increases resistance to infection in zebrafish. 
Other findings that suggest that lipids are regulated 
by infection and inflammation include the activation 
of genes important for lipid synthesis in caseation of 
human tuberculosis granuloma[77].

SOAT1 is essential for cholesteryl ester synthesis 
and we have shown that non-polar lipids overall and 
specifically cholesteryl linoleate are elevated in sinus 
washes obtained from patients with chronic rhinosin
usitis[33]. This data suggested an up-regulation of SOAT1 
in the context of inflammation which was corroborated 
by a subsequent study showing increased SOAT1 mRNA 
expression in sinus mucosa of patients with chronic 
rhinosinusitis[78]. In addition, cholesteryl esters were 
increased within the lipid fraction and their concentrations 
correlated with human neutrophil peptides HNP1-3, 
markers of inflammation, in bronchoalveolar lavage 
collected from pediatric cystic fibrosis patients[32]. Direct 
evidence for the regulation of SOAT1 by inflammation was 
recently provided by Yin et al[79], who showed that oxLDL 
activates TLR4 and induces the expression of SOAT1 
(referred to as ACAT-1 ) via MyD88 and NFκB. Thus, 
there is clinical and experimental evidence that in vivo 
cholesteryl ester biosynthesis is regulated by inflammation 
and infection. Additional data supporting the regulation of 
AMLs by TLR ligands and immunomodulatory cytokines 
can be found in the NCBI Gene Expression Omnibus (GEO 
Profiles) data base. Table 1 lists genes involved in lipid 
metabolism and transport which are regulated by TLR 
ligands and modulators of the immune system.

Other investigations propose that cholesterol and 
cholesteryl ester accumulation in response to inflamm
atory cytokines and infection serve perpetuation of 
inflammation. For example, Pessolano et al[80] described 
that IL1β increased cholesteryl ester accumulation in 
smooth muscle cells as part of cholesterol trafficking 
in atherosclerosis. Similarly, Tall and Yvan-Charvet[81] 
highlight the proinflammatory effects of increased chole
sterol uptake through TLR signaling and inflammasome 
activation in macrophages. However, considering the 
direct antimicrobial activity of cholesteryl esters these 
studies could be revisited to investigate changes in the 
antimicrobial responses.

TRANSPORTERS OF AMLS
Bearing in mind the hydrophobic nature of AMLs and the 

aqueous milieu in body fluids, proteins with both hydro
philic domains and hydrophobic pockets likely serve as 
carriers. Albumin and fatty acid binding proteins are well 
established carriers for fatty acids. Sterol carrier protein 
2 and cholesteryl ester transfer protein assume this role 
for cholesterol and cholesteryl esters, respectively[82]. In 
addition, in the airways, the highly hydrophobic protein 
short palate lung epithelial clone protein 1 binds certain 
phospholipids and sphingolipids[83,84] and may possibly 
also function as a cholesteryl ester carrier. However, 
much research is still needed to dissect the focused 
delivery of AMLs to the microbial target.

BACTERIAL MECHANISMS THAT 
MANIPULATE HOST-DERIVED LIPIDS 
Host defense mechanisms are continuously challenged 
by microbial resistance factors and it would be surprising 
if successful pathogens do not have counter strategies that 
inactivate AMLs. Both, S. aureus and S. saprophyticus 
express a cell wall associated surface protein, SsaF and 
SssF, respectively, that mediates resistance to the free 
fatty acid linoleic acid[85,86]. Furthermore, cell wall teichoic 
acids of S. aureus confer resistance to fatty acids from 
skin sebaceous glands[87]. 

At this time it is still speculative whether a cholesterol 
esterase produced by P. aeruginosa[88] may represent 
an additional virulence factor aiding in the inactivation 
of host-derived antimicrobial cholesteryl esters. Of 
interest is the recent finding of Cadieux et al[89] who 
identified a lipase in a hypervirulent community-associ
ated methicillin-resistant S. aureus strain USA300 that 
hydrolyzes triglycerides and liberates the free fatty acid 
linoleic acid with growth inhibitory activity against S. 
aureus. It is possible that the liberation of antibacterial 
linoleic acid is primarily targeted against other bacteria 
thereby conferring growth advantage to S. aureus. Such 
a mechanism has been proposed for Salmonella where 
the bacteria induce the production of antimicrobial 
proteins in the intestine that in turn altered the normal 
microbiota facilitating infection with the pathogen[90]. 

Successful pathogens subvert host defense mecha
nisms that normally control infection. Thus, the ability 
of Mycobacterium tuberculosis, M. leprae and other 
intracellular pathogens to import lipids from the 
cholesteryl ester-rich lipid droplets that they induce in 
their host cell[91,92] may be an example for subversion of 
antimicrobial cholesteryl ester accumulation as part of 
the innate defense.

AMLS AS EFFECTOR MOLECULES OF 
EPITHELIAL INNATE DEFENSE
Based on the evidence laid out above, we propose 
that AMLs take part in the innate epithelial defense 
controlled by regulatory pathways like antimicrobial 
proteins and functioning in synergism with AMPs (Figure 
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2). Following activation of pattern recognition receptors 
and cytokine receptors, epithelial cells upsurge the 
uptake of cholesterol and fatty acids, increase the 
expression of antimicrobial peptides and enzymes for 
lipid biosynthesis, scale up the production and secretion 
of AMLs and antimicrobial peptides, and, combined 
with antimicrobial effectors from other sources such as 
macrophages, lead to membrane damage and other 
disrupting effects on the invading pathogen.

FUTURE DIRECTIONS
The recognition that host-derived lipids form part of the 
innate antimicrobial defense leads to new questions 
including the following: What are other microbial targets 
beyond bacteria and viruses? How are AMLs delivered 

to pathogens? Do carrier proteins assume this task 
or do exosomes serve this purpose? Can AMLs be 
incorporated in novel drug design? Is resistance to AMLs 
a pathogenicity factor that could be targeted in the 
management of infectious diseases? Are certain chronic 
and recurrent infectious diseases linked to defective 
AML production and/or delivery? Can the lipid mediated 
arm of host defense be integrated in novel vaccine 
strategies? 

HOW TO WORK WITH LIPIDS?
Commercial tools to study AMLs are relatively under
developed compared to the extensive repertoire for 
proteomics and genomics. An essential technique 
for qualitative analysis and the ability to assess a 
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Role Gene name Encoded protein Function of the encoded protein Cellular source Regulators

Biosynthesis acc1 Acetyl-CoA carboxylase 
1

Catalyzes the rate limiting irreversible 
carboxylation of acetyl-CoA to produce 

malonyl-CoA

Hepatic tissue1 LPS via sterol regulatory 
element-binding protein-1c

acsl1 Long-chain fatty-acid-
coenzyme A ligase 

Converts free long-chain fatty acids into fatty 
acyl-CoA esters

Mp, DC, EN, Mo LPS, IFN-γ, TNF-α, IL22, Mtb-
derived lipopeptide

elov Elongation of long chain 
fatty acids

Possibly implicated in tissue-specific synthesis 
of very long chain fatty acids and sphingolipids3

Mp, DC, CD34+, 
TE,B, F, EN 

LPS, Zy, Schi, IL1, IFN-β, 
IFN-γ, IL10, TGF-β

fad Fatty acid desaturase Catalyzes biosynthesis of highly unsaturated 
fatty acids. FADS2 catalyzes production of the 

mono-unsaturated fatty acid sapienate, the 
most abundant fatty acid in sebum

Mp,DC, CD34+, TE, 
B, EN

LPS, Zy, Schi, IL1, IFN-γ, IL10, 
TGF-β

fasn Fatty acid synthase Catalyzes the formation of long-chain fatty 
acids from acetyl-CoA, malonyl-CoA and 

NADPH

Mp, DC, CD34+, 
TE, F, EN

LPS, Zy, Schi, IL1, IFN-γ, 
TGF-β

lcat Lecithin cholesterol 
acyltransferase2

Esterifies free cholesterol transported in plasma 
lipoproteins. Activated by apolipoprotein A-I

Mp, DC, CD8+ DC, 
B, F

LPS, Schi, IFN-β, IFN-γ, 
Yersinia + IFN-γ, Vit D3 + 

IFN-γ, IL10
lipA Lipase A3 Intracellular hydrolysis of internalized 

cholesteryl esters and triglycerides. Activation 
of endogenous cellular cholesteryl ester 

formation

Mo, Mp, DC, TE, 
EN, K, BrE, L, Mg

TLR agonists, IL1, Type Ⅰ and 
Ⅱ IFNs, γ, Diff/Polar 

scd4 Stearoyl-CoA desaturase Catalyzes the desaturation of very long chain 
acyl-CoAs

Mo, Mp, L, CD8+ 
DC, TE, F, EN, K, 

BrE, Mg

LPS, Zy, TLR agonist, IL1, 
Type Ⅰ and Ⅱ IFNs, Yersinia + 

IFN-γ, Vit D3 + IFN-γ, Diff/
Polar

soat15 Sterol o-acyltransferase3 Catalyzes the formation of fatty acid-cholesterol 
esters

Mo, Mp, DC, TE, 
EN, L, Mg

TLR agonists, Type Ⅰ and Ⅱ 
IFNs, IL1, Diff/Polar

Transport cetp Cholesteryl ester transfer 
protein3

Involved in the transfer of insoluble cholesteryl 
esters in the reverse transport of cholesterol

Mo, Mp, DC, TE, 
EN, K, L, Mg

TLR agonists, IL1,Type Ⅰ and 
Ⅱ IFNs, Diff/Polar 

fabp Fatty acid binding 
proteins

Intracellular lipid transport Mp, DC, CD34+, 
TE, B, F, EN

LPS, Zy, Schi, IL1, Type Ⅰ and 
Ⅱ IFNs, IL10, TGF-β

ffar Free fatty acid receptor Receptor for short chain fatty acids (FFAR2) 
and medium to long fatty acids (FFAR1). 

FFAR2 is expressed at relatively high levels in 
peripheral blood leukocytes 

Mp, DC, CD34+,TE, 
EN

LPS, Zy, Schi, IL1, IFN-γ, 
TGF-β

slc27A Solute carrier family 27 Translocation of long-chain fatty acids  across 
the plasma membrane. Some involved in bile 

acid synthesis

Mp, DC, CD34+, 
TE, B, F, EN

LPS, Zy, Schi, IL1, IFN-γ, 
IFN-β, IL10, TGF-β

Table 1  Genes involved in lipid metabolism and transport regulated by innate immune pathways

1Chen et al, J Pineal Res 2011 Nov; 51: 416-25 DOI: 10.1111/j.1600-079X.2011.00905.x; 2Profiles for mouse only; 3Profiles for human only; 4scd1 in mice; 5Also 
known as acat1 (acyl-Coenzyme A: Cholesterol acyltransferase 1). Data were extracted from NCBI Gene Expression Omnibus (GEO Profiles) and Swiss-Prot 
(http://www.uniprot.org/). Unless specified otherwise entries were for both mouse and human species. Mo: Monocytes; Mp: Macrophages; DC: Dendritic 
cells; TE: Thyroid epithelial cells; EN: Endothelial cells; L: Lung epithelial cells; Mg: Microglia; F: Fibroblasts; K: Keratinocytes; BrE: Bronchial epithelial 
cells; B: B-cells; Dex: Dexamethasone; Diff/Polar: Differentiation and polarization; IFN: Interferon; IL: Interleukin; LPS: Lipopolysaccharide; TGF-β: 
Transforming growth factor β; TNF-α: Tumor necrosis factor α; VitD3: Vitamin D3; Zy: Zymogen; Schi: Schistosoma antigen; Mtb: Mycobacterium tuberculosis.
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wide range of lipid classes is separation by thin layer 
chromatography with colorimetric visualization with a 
variety of reagents. Reversed phase high performance 
liquid chromatography with evaporative light scattering 
detection allows for more quantitative studies. Definitive 
and highly quantitative analysis is achieved with 
mass spectral analysis usually combined with gas 
chromatography or liquid chromatography. There are 
several web sites (accurate at the time of printing) that 
offer extensive hands-on information regarding lipid 
handling and analysis. These include the Cyberlipid 
Center (http://www.cyberlipid.org/), The American 
Oil Chemists’ Society Lipid Library (http://lipidlibrary.
aocs.org/), and the Lipidomics Gateway (http://www.
lipidmaps.org/). Furthermore, some lipid manufacturers 
offer a wealth of technical support. Those who would 
like to take on the challenge of lipidomics will fare 
well by identifying a collaborator with a background in 
biochemistry and expertise in mass spectrometry and 
metabolomics. 

While lipid extraction protocols are well established 
with one of the most frequently used one dating back 
to Bligh and Dyer[93], a major hurdle in investigating 
functional properties of AMLs, in particular nonpolar 
lipids like cholesteryl esters, is their low solubility in 
aqueous media used for antimicrobial activity testing. 
For FFA addition of low concentration of ethanol such as 
0.05% allows for solubilization. However, for less polar 
and non-polar lipids embedding of the lipid of interest in 
liposomes prepared from various phospholipids has been 
proven successful for in vitro studies[6,94,95].

CONCLUSION
AMLs as effectors of the innate immune response and 
microbial counter strategies are an emerging field of 
study. New investigators are invited to enter the field to 
uncover the regulation of AML production, their delivery 
to pathogens and mechanism of action. We hope that 
this review has piqued the interest and will usher new 
investigators to this challenging and growing field.
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