
Abstract
Endoscopic evaluation of indeterminate biliary stric­
tures (IDBSs) has evolved considerably since the 
development of flexible fiberoptic endoscopes over 
50 years ago. Endoscopic retrograde cholangiography 
pancreatography (ERCP) was introduced nearly a 
decade later and has since become the mainstay of 
therapy for relieving obstruction of the biliary tract. 
However, longstanding methods of ERCP-guided tissue 
acquisition (i.e. , biliary brushings for cytology and 
intraductal forceps biopsy for histology) have demon­
strated disappointing performance characteristics in 
distinguishing malignant from benign etiologies of 
IDBSs. The limitations of these methods have thus 
helped drive the search for novel techniques to enhance 
the evaluation of IDBSs and thereby improve diagnosis 
and clinical care. These modalities include, but are 
not limited to, endoscopic ultrasound, intraductal 
ultrasound, cholangioscopy, confocal endomicroscopy, 
and optical coherence tomography. In this review, 
we discuss established and emerging options in the 
evaluation of IDBSs.
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Core tip: Indeterminate biliary strictures (IDBSs) remain 
a considerable challenge for endoscopists, clinicians, 
surgeons, and other medical professionals as well as 
patients. The limitations of current technologies have 
helped drive the search for novel techniques aimed 
to enhance the evaluation of IDBSs and thus improve 
diagnosis and clinical care. Here we review existing and 
emerging techniques and provide a synopsis of current 
understanding of their strengths, limitations, and role 
in the evaluation of IDBSs. 
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INTRODUCTION
A substantial proportion of biliary strictures cannot be 
classified as benign or malignant on the basis of non-
invasive imaging, endoscopic retrograde cholangio-
pancreatography (ERCP), and/or routine tissue sampling 
methods (i.e., biliary brushing, intraductal forceps 
biopsy)[1]. Although the addition of fluorescence in situ 
hybridization (FISH) to conventional biliary cytology 
has been useful in assessing strictures with a higher 
suspicion for malignancy which may benefit from 
closer follow-up, sensitivity remains low. As a result, 
these “indeterminate biliary strictures” (IDBSs) remain 
a clinical challenge, especially when considering the 
resulting delayed diagnosis, deferred implementation 
of care, economic impact from repeated evaluations, 
and resulting angst among patients, clinicians, and 
endoscopists. 

IDBSs may arise de novo or in patients with known 
chronic biliary disease. They typically manifest with 
(abrupt onset or slowly progressive) jaundice, pruritus, 
right upper quadrant pain, and/or cholangitis. IDBSs 
may also be incidentally discovered, often following 
abdominal computed tomography or magnetic reson
ance imaging performed for other indications. The 
differential diagnosis of IDBSs is broad (Table 1), and 
determination of the underlying etiology and patho
biology is often challenging. Endoscopic evaluation of 
IDBSs has traditionally consisted of ERCP, but several 
other ancillary techniques have been developed to help 
address this common diagnostic challenge.

In this article, we review these ancillary techniques, 
providing our current understanding of their strengths, 
limitations, and role in the evaluation of IDBSs. 

ERCP
ERCP provides fluoroscopic images of the biliary tree 
and provides the primary portal for diagnosis and 
intervention. Cholangiographic features suggestive of a
malignant stricture include length (> 14 mm), irregu
larity, abrupt shelf-like borders, presence of intraductal 
polypoid or nodular areas, and the presence of simul
taneous common bile duct (CBD) and pancreatic duct 
dilation (i.e., double duct sign)[2,3]. Efforts to improve the 
sensitivity of cholangiography have led to methods for 
tissue acquisition; however, conventional methods such 
as biliary brush cytology, intraductal biopsy, and fine 
needle aspiration (FNA) have yielded disappointingly 
low sensitivity for detecting malignancy. For example, a 
recent review of the literature that identified 16 studies 
reported an overall biliary brush cytology sensitivity of

42% with a negative predictive value (NPV) of 58%[4]. 
The poor sensitivity was attributed to sampling error, 
inadequate specimen (e.g., due to desmoplastic reac
tion or biliary fibrosis), and/or difficult cytopathologic 
distinction of subtle differences between malignant 
and nonmalignant cells[5,6]. Biliary cytopathology inter
pretation is often challenging, even within high-volume 
centers. A recent meta-analysis by Navaneethan et 
al[7] compared the effectiveness of brush cytology and 
intraductal biopsy for evaluating biliary strictures; nine 
studies were included, and the pooled sensitivity and 
specificity for brushings was 45% and 99%, respectively, 
compared to 48% and 99% for intraductal biopsies, 
respectively. When the two modalities were combined, 
there was some incremental yield, with sensitivity 
improving to 59%[7]. Methods tested to potentially further 
increase the diagnostic sensitivity have included use of 
longer brush length, initial stricture dilation, and repeated
brushing, with repeat brushing appearing to be most 
effective, albeit still with suboptimal results[8,9]. Intraductal 
FNA has also been associated with disappointing results, 
as data from five series (220 patients) demonstrated 
a sensitivity of 34%, in part perhaps due to technical 
challenges with performing intraductal FNA[10]. The subo
ptimal diagnostic performance of conventional tissue 
sampling techniques has provided the impetus for 
developing advanced cytologic methods such as FISH, 
digital image analysis (DIA), and flow cytometry, which 
are described further in a subsequent section.

A “dominant stricture” is a subtype of IDBS that 
arises in the setting of underlying primary sclerosing 
cholangitis (PSC) or other fibrosing cholangiopathies 
and may be loosely defined as a CBD stenosis of ≤ 1.5 
mm or hepatic duct stenosis ≤ 1 mm in diameter[11]. 
Accurately detecting malignancy in the setting of PSC 
is especially critical given the 1560-fold increased risk 
of developing cholangiocarcinoma (CCA) in this cohort 
compared to the general population[12]. However, this 
imposes an even greater diagnostic challenge, as ERCP-
guided approaches to tissue acquisition have performed 
poorly in this disease, with sensitivity ranging from 
18%-40%[11,13,14]. Reasons for low sensitivity include but 
are not limited to periductal (or submucosal) as opposed 
to radial growth of some CCAs, desmoplastic reaction, 
and inadequate access of endoscopic devices and 
sampling under indirect visualization (chiefly due to the 
stenotic nature of the disease)[15]. Adjunctive modalities 
for endoscopic evaluation of IDBSs in this high-risk 
subset of patients may provide improved diagnostic value 
and are discussed below in their respective sections.

ADVANCED CYTOLOGIC TECHNIQUES 
FOR ERCP-ACQUIRED BILIARY BRUSHING 
SPECIMENS
Fluorescence in situ hybridization 
FISH is a cytogenic technique that employs fluorescently 
labeled DNA probes to chromosomal loci of interest 
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and thereby reveals losses or gains in these specific 
loci (i.e., aneuploidy). Fluorescence microscopy is then 
used to quantify cells containing nuclei with abnormal 
probe signal numbers (Figure 1). The presence of ≥ 5 
such cells showing gains of ≥ 2 of the (currently four) 
probes on FISH analysis, i.e., polysomy, has been found 
to provide improved sensitivity compared to cytology 
while maintaining comparable specificity[16-20]. Recent 
studies have reported that incorporating 9p21 (i.e., 
CDKN2A locus, critical in cell cycle progression and 
senescence[21,22]) deletion into the diagnostic criteria 
further improves the sensitivity to 76%-89%[23,24]. In 
individuals with PSC, detection of polysomy during 
subsequent ERCPs (i.e., serial polysomy) or detection of 
polysomy in multiple segments of the biliary tree (i.e., 
multifocal polysomy) appears to denote even greater 
risk of CCA[25,26].

DIA
DIA incorporates digital conversion and computer 
analysis to quantify nuclear DNA content and evaluate 
nuclear features; when compared to conventional 
cytology, it has been shown to have a higher sensitivity 
(39% vs 18%) but at the expense of lower specificity 

(77% vs 98%)[27]. In two studies comparing DIA with 
FISH, DIA appeared to have slightly lower sensitivity 
(38%-43% vs 44%-45%) and specificity (92%-95% vs 
98%-100%). In one of the studies, routine cytology had 
a sensitivity of 15% and specificity of 100%, whereas 
in the other, DIA and FISH were performed only 
after negative cytology and histology[16,18]. Moreover, 
multivariable analysis of advanced cytologic methods in 
the evaluation of IDBSs showed FISH polysomy to be 
an independent predictor of malignancy, whereas DIA 
was not[19]. Despite the somewhat enhanced diagnostic 
sensitivity, the associated decrement in specificity has 
eliminated the use of DIA in many centers. 

Flow cytometry
Flow cytometry relies on the detection of hyperploidy 
to identify malignant cells; it has similar sensitivity 
to routine cytology (42%) but has inferior specificity 
(77% vs 92%)[28]. It is not routinely used in the clinical 
evaluation of IDBSs.

ENDOSCOPIC ULTRASOUND
Endoscopic ultrasound (EUS) is increasingly being utilized 
in the evaluation of biliary strictures since reports of 
its first application in the mid-1980s[29,30]. Most of the 
hepatobiliary system can be examined with curvilinear 
echoendoscopy (EUS) from the gastric antrum (for 
visualization of the gallbladder), duodenal bulb (for 
visualization of the mid-CBD up to the confluence of 
the left and right hepatic ducts), or second portion of 
the duodenum (for visualization of the periampullary 
region)[31,32]. In addition, EUS provides other key infor
mation, including lymph node (Figure 2A), portal vein, 
and hepatic artery status for staging and through the 
detection of malignant ascites, omental deposits, and 
hepatic metastasis. Furthermore, EUS-guided FNA (Figure 
2B) offers a minimally-invasive means for diagnostic 
tissue sampling (Table 2). 

EUS with or without FNA may be useful in distin
guishing malignant from benign biliary strictures. EUS 
findings of a pancreatic head mass (causing a biliary 
stricture secondary to extrinsic compression), an irregular 
outer edge of the bile duct wall, or bile duct wall thickness 
> 3 mm have been associated with malignancy when 
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Table 1  Potential etiologies of indeterminate biliary stricture 

Benign
   Primary sclerosing cholangitis
   IgG4-associated cholangiopathy
   Postoperative stricture (anastomotic, ischemic, cholecystectomy-related)
   Ischemia (e.g., hepatic artery thrombosis)
   Infections (HIV cholangiopathy, parasites)
   Pancreatitis (acute, chronic, autoimmune)
   Choledocholithiasis
   Mirizzi syndrome
   Eosinophilic cholangitis
   Vasculitis
   Radiation
   Portal biliopathy
Malignant
   Pancreatic adenocarcinoma
   Cholangiocarcinoma
   Hepatocellular carcinoma
   Lymphoma 
   Metastatic adenocarcinoma (e.g., compressive lymphadenopathy)

HIV: Human immunodeficiency virus.

Negative                               Trisomy                               Tetrasomy                                 Polysomy

Figure 1  Representative fluorescence in situ hybridization microscopic image. Shown above are individual cells from biliary brushings showing distinct 
fluorescence in situ hybridization (FISH) results (arranged from lowest to highest risk of malignancy) using centromere enumeration probes (CEPs) to chromosomes 
3 (red), 7 (green), 17 (aqua) and the 9p21 locus (gold). Potential FISH results include negative (two copies of each probe), trisomy 7 (≥ 10 cells with ≥ 3 CEP 7 
signals and ≤ 2 signals for the other probes), tetrasomy (≥ 10 cells with four signals for all four probes), and polysomy (≥ 5 cells with ≥ 3 signals for ≥ 2 of the 
four probes). 
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is perhaps explained by the greater ease of imaging and 
sampling of distal lesions as compared to proximal, which 
may be an important consideration when comparing 
EUS-FNA to ERCP data. Rösch et al[37] found EUS-
FNA to be inferior to ERCP in patients with hilar biliary 
tumors (25% vs 75%) but superior for distal malignant 
strictures (60% vs 38%). Another variable that may 
impact performance of EUS-FNA is the presence of a 
bile duct stent, which results in acoustic shadowing and 
may occasionally interfere with sonographic imaging 
and FNA[38]. However, published data have not found the 
presence of plastic bile duct stents to lower the yield of 
EUS-FNA in the evaluation of IDBSs or suspected CCA[39]. 

A major limitation of EUS-FNA remains the concern 
for potential seeding of malignant cells along the needle 
track. This is less problematic for pancreatic head 

evaluating IDBSs[33]. In a meta-analysis of nine studies 
including 555 patients, EUS without FNA was found to 
diagnose a malignant biliary stricture with a sensitivity 
and specificity of 78% and 84%, respectively[34]. The 
addition of FNA provides even more encouraging results, 
as a separate meta-analysis of 9 studies including 284 
patients undergoing EUS-FNA demonstrated a sensitivity 
and specificity of 84% and 100%, respectively[35]. Many 
of these studies were performed following unsuccessful 
ERCP diagnosis, thus suggesting the value of EUS-FNA 
even among this more difficult-to-diagnose cohort. 

A factor that appears to influence the sensitivity 
of EUS-FNA is the location of the stricture: Proximal 
(intrahepatic or hilar) vs distal (extrahepatic). In one 
study, the sensitivity for distal CCA was significantly 
higher than that for proximal CCA (81% vs 59%)[36]. This 

Table 2  Comparison of advanced endoscopic imaging modalities

Advantages Disadvantages

ERCP Widely available Procedural risks
Workhorse technique with numerous accessories Fluoroscopic (and endoscopic) images only

Facilitates other diagnostic modalities (e.g., biliary brushing, biopsy, 
endomicroscopy) as well as therapy

Low sensitivity of conventional cytology and 
intraductal biopsies

EUS Provides staging information Limited views of the intrahepatic biliary tree (and non-
visualization of the right intrahepatic ductal system)

Permits FNA Generally nondiagnostic in and of itself without FNA
Can facilitate difficult biliary cannulation Risk of tumor seeding if FNA primary tumor

IDUS Can help direct ERCP-guided tissue acquisition Limited depth of imaging
Infrequently used in routine practice

Cholangioscopy Excellent visualization of the biliary mucosa (with digital cholangioscopes) High cost (disposable system $2000 per case)
May improve sensitivity, specificity, and overall accuracy compared to ERCP 

alone
Likely higher rates of pancreatitis, cholangitis, and 

perforation compared to ERCP alone
Time-consuming

Not widely available
CLE Excellent sensitivity and negative predictive value Marginal interobserver agreement

Provides imaging at a cellular and sub-cellular level (lateral resolution of 3.5 μm) Contact imaging of a very limited regional surface
Time-consuming

Not widely available
OCT High resolution Suboptimal sensitivity

Improved sensitivity compared to ERCP-guided tissue acquisition Resolution not as high as CLE
Highly specific Not widely available

Permits larger surfaces areas to be examined compared to CLE Not well-validated

ERCP: Endoscopic retrograde cholangiopancreatography; EUS: Endoscopic ultrasound; IDUS: Intraductal ultrasound; CLE: Confocal laser endomicroscopy; 
OCT: Optical coherence tomography; FNA: Fine needle aspiration.

Figure 2  Endoscopic ultrasonographic findings in a patient found to have locally-advanced cholangiocarcinoma. A: Malignant lymphadenopathy; B: 
Endoscopic ultrasound-guided fine needle aspiration of primary cholangiocarcinoma.

A B
0

1

2

3

4

0

1

2

Tabibian JH et al . Endoscopy for indeterminate biliary strictures



1272 December 10, 2015|Volume 7|Issue 18|WJGE|www.wjgnet.com

lesions, as the path of trans-duodenal sampling would 
be resected during potential subsequent pancreato
duodenectomy. The concern is predominantly for proxi
mal bile duct lesions, which require traversal of the hepa
toduodenal ligament portion of the lesser omentum,
which may not be resected during potential subsequent 
surgical intervention. In a series of 191 patients with hilar 
CCA receiving neoadjuvant chemoradiation followed by 
liver transplantation, 16 underwent transperitoneal FNA, 
and of the 6 (38%) that were positive for malignancy, 5 
(86%) were later found to have peritoneal metastasis at 
operative staging vs 14/175 (8%) who did not undergo 
transperitoneal biopsy (P < 0.01)[40]. While nearly all 
patients in this study underwent FNA via a percutaneous 
route, the same concerns exists for EUS-guided FNA. 
Due to the potential for needle tract seeding, EUS-FNA of 
a primary bile duct tumor is considered a contraindication 
to liver transplantation; however, a recent retrospective 
study showed that preoperative EUS-FNA in patients with 
CCA did not affect overall or progression-free survival[41]. 
Until additional studies have further explored this area 
of uncertainty, biliary specimens to rule out CCA should 
be acquired intraductally rather than transmurally (e.g., 
percutaneous or trans-duodenal) if liver transplantation is 
a consideration. 

INTRADUCTAL ULTRASOUND
Intraductal ultrasound (IDUS) employs a thin (2.0-3.1 
mm), high frequency (12-30 MHz) wire-guided radial 
ultrasound probe that is passed through the working 
channel of a duodenoscope and into the pancreato
biliary system during ERCP. With a radial penetration of 
2 cm, IDUS allows for high-resolution characterization 
of IDBSs. Two to three mural layers are visualized 
during IDUS: (1) an inner hypoechoic layer representing 
mucosa, muscularis propria, and the fibrous layer of 
serosa; (2) an outer hyperechoic layer representing 
subserosal adipose tissue and serosa; and (3) sometimes 
an interface layer between bile and the inner hypoechoic 
layer[42]. 

IDUS features that have been associated with 
malignant rather than benign biliary strictures include 
sonographic disruption of the choledochal wall layers, 
wall thickening or irregularity, a hypoechoic mass with 
irregular margins, sessile tumor, infiltration of adjacent 
tissue or vasculature, or the presence of enlarged lymph 
nodes[43-45].

The published literature suggests that IDUS, al
though not often used in routine clinical practice, can be 
a useful ancillary technique in the evaluation of IDBSs. 
A retrospective review by Meister et al[46] of patients 
undergoing ERCP with IDUS demonstrated sensitivity as 
well as specificity of 98%, and a meta-analysis of 5 other 
studies found that IDUS accuracy for malignancy ranged 
from 84%-95%. Studies have also demonstrated that 
adding IDUS to ERCP-guided tissue acquisition improved 
sensitivity from 41%-68% to 90%-93%[47-49]. Domagk et 
al[50] found a combination of ERCP and IDUS to correctly 

diagnose malignancy in 88% of patients vs 76% and 
58% of patients by ERCP alone and MRCP, respectively. 
Compared to EUS, IDUS has been shown to have greater 
sensitivity (91% vs 76%) and accuracy (89% vs 76%) 
in differentiating a malignant from a benign stricture[51]. 
IDUS was also found to have superior sensitivity (88% vs 
63%) and specificity (91% vs 53%) in patients with PSC 
compared to ERCP alone[52].

IDUS, in a single experience reported cancer staging 
of T1, T2, T3/T4, N0 and N1 to be 84%, 73%, 71%, 
69% and 69% accurate, respectively[46]. These results 
are intriguing; the low accuracy with N staging may be 
attributable to the limited depth of ultrasonic penetration, 
which limits IDUS largely to characterizing the mural 
features of the IDBS[51]. 

CHOLANGIOSCOPY
Cholangioscopy involves the use of a small-caliber, 
flexible endoscope to directly inspect the biliary epithe
lium and facilitate targeted sampling. The cholangioscope 
(daughter scope) is typically passed either through the 
working channel of a therapeutic (mother) scope during 
ERCP (Figure 3) or via direct peroral cholangioscopy 
following endoscopic papillotomy and percutaneous 
transhepatic cholangioscopy. Early cholangioscopy 
typically required two skilled endoscopists; this has since 
evolved to a single endoscopist effort with as-needed 
nurse assistance. In the last decade, a single-operator 
cholangioscopy system (SpyGlass Direct Visualization 
System, Boston Scientific Endoscopy, Marlboro, MA) with 
capability for 4-way tip deflection, a channel for insertion 
of a reusable fiberoptic probe, and irrigation and work
ing channels, has been introduced. This system was 
severely hampered by poor image quality, but recent 
modifications, including the use of a video chip, has 
markedly improved image quality. Other cholangioscope 
options also exist, as alluded to above, but are currently 
not utilized clinically in the United States[53,54].

Cholangioscopy can help distinguish malignant 
from benign strictures, particularly via examination 
of epithelial vascular pattern (e.g., irregularly dilated 
tortuous vessels, i.e., “tumor vessels”), which is 100% 
specific and 96% sensitive when combined with targeted 
biopsies[55,56]. The presence of nodules, ulceration, or 
papillary or villous mucosal projections also suggest 
malignancy and warrant targeted biopsies[57].

Studies examining direct peroral or percutaneous 
cholangioscopy with or without biliary mucosal biopsies 
have demonstrated a sensitivity of 77%-100% and 
specificity of 79%-100%, with tissue adequacy achieved 
in 82%-97% of patients[58-63]. Addition of cholangioscopy 
to ERCP-guided tissue sampling enhances sensitivity for 
the diagnosis of biliary malignancy. For example, Fukuda 
et al[58] reported the sensitivity and accuracy of ERCP 
guided cytology and/or forceps biopsy improved from 
58% and 78% to 100% and 93%, respectively. In a 
study by Draganov et al[63], sensitivity and accuracy of 
cytology, forceps biopsy, and cholangioscopy-guided mini-
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forceps biopsy were as follows: 5.8% and 39%, 29% 
and 54%, and 77% and 85%, respectively; mini-forceps 
biopsy was significantly more sensitive and accurate than 
cytology (P = 0.0001) or forceps biopsy (P = 0.0215) 
alone. Chen et al[64] reported the sensitivity and specificity 
of ERCP, cholangioscopy, and cholangioscopy-directed 
tissue biopsies to be 51% and 54%, 78% and 82%, and 
49% and 98%, respectively, thus demonstrating much 
greater sensitivity and specificity for cholangioscopy with 
or without biopsy compared to ERCP alone. 

The benefit of cholangioscopy over ERCP in patients 
with PSC and for distinguishing malignant from benign 
dominant strictures has also been demonstrated. In a 
study of 53 patients with PSC and dominant stricture, 
Tischendorf et al[52] used cholangioscopic findings of a 
polypoid or villous mass or irregularly shaped ulcer to 
classify malignancy before confirmation with standard 
tissue acquisition. This cholangioscopic finding provided 
greater sensitivity (92% vs 66%) and specificity (93% 
vs 51%) with a better NPV (97% vs 84%) than ERCP 
alone[52]. Cholangioscopy in the setting of PSC is often 
severely hampered by the number and severity of biliary 
stenosis. Cholangioscopy is performed predominantly 
under water immersion; alternatively, carbon dioxide 
gas insufflation can be used (predominantly during 
direct peroral cholangioscopy) and provides a distinctly 
different appearance to the biliary mucosa. Differences 
between the two imaging approaches may have indivi
dual value, e.g., interpreting subtle surface mucosal 
change vs mucosal surface vascular pattern changes.

Video chip-based cholangioscopes are also equipped 
with narrow band imaging (NBI) (Figure 3C). NBI 
is based on the observation that the depth of light 
penetration depends on wavelength; the longer the 
wavelength, the deeper the penetration. Standard 
color video chips provide images based on sequential 
red-green- and blue illumination. The image is passed 
directly through selective band filters which highlight 
the red and blue bands. Blue light penetrates only 
superficially, whereas red light penetrates into deeper 
layers. The selective color imaging enhancement high

lights mucosal surface detail and more so, mucosal 
vascular patterns[65-67]. An initial feasibility study involving 
21 patients with biliary lesions found visualization of 
57% of lesions to be “excellent” using NBI vs 9.5% using 
conventional white-light imaging[68]. A recent, small 
series of patients with PSC also led to the conclusion that 
NBI allowed better determination of tumor margins and 
increased detection of suspicious lesions compared to 
white-light imaging; the authors could not demonstrate 
an improved dysplasia detection rate, but this may have 
been consequent to methodological issues[69]. 

Relatively few studies have compared the diagnostic 
yield of cholangioscopy vs EUS. In one retrospective 
series of 66 patients undergoing evaluation of IDBSs 
with cholangioscopy combined with EUS, sensitivity 
and specificity for combined modalities was greater 
than for either modality alone[70]. In another study, 39 
patients with negative brush cytology underwent EUS-
FNA first and only proceeded to cholangioscopy if EUS 
was negative; EUS-FNA was diagnostic in 23 patients 
(58%), and the remainder of the patients required 
cholangioscopy, thus leading the authors to conclude 
that cholangioscopy could be reserved for cases where 
EUS-FNA is nondiagnostic[71].

Potential adverse events of cholangioscopy include 
pancreatitis, cholangitis, perforation, hemobilia, and 
sphincterotomy bleeding. A recent retrospective study 
found that patients undergoing ERCP with cholangio
scopy had significantly higher rates of pancreatitis (2.2% 
vs 1.3%), cholangitis (1.0% vs 0.2%), and perforation 
(1.0% vs 0.3%) than ERCP alone[72]. However, mul
tivariable analysis did not find cholangioscopy to be 
associated with an increased rate of adverse events 
compared to ERCP[73].

CONFOCAL LASER ENDOMICROSCOPY
Confocal laser endomicroscopy (CLE) is an emerging 
imaging modality that permits high-resolution, in vivo 
assessment of the biliary epithelium. It provides real-
time contact imaging at a cellular and sub-cellular 

Figure 3  Passage of a SypGlass digital cholangioscope through a therapeutic duodenoscope to better evaluate hilar strictures and filling defects. A: Hilar 
(primarily right anterior hepatic duct) stricture and filling defects seen during endoscopic retrograde cholangiography pancreatography; B: SypGlass cholangioscope 
being passed through the working channel of therapeutic duodenoscope to better assess biliary stricturing and filling defects; C: SpyGlass cholangioscopy with narrow 
band imaging revealing villiform biliary mucosal changes; targeted biopsies were obtained and revealed low grade dysplasia concerning for early cholangiocarcinoma.

A B C
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level, offering a lateral resolution of 3.5 μm, optical slice 
thickness of 30 μm, and optical penetration of 40-70 μm. 
CLE is based upon the principle of illuminating a tissue 
with a low-power laser and then detecting reflected 
fluorescent light. The laser is focused at a specific depth, 
and only light which is reflected back from that plane is 
refocused and able to pass through the pinhole confocal 
aperture; the term “confocal” hence refers to the fact 
that the reflected light is refocused onto the detection 
system by the same lens through which the laser light 
was initially emitted. As a result, scattered light from 
above and below the plane of interest is not detected, 
thereby increasing spatial resolution. A focused, scanning 
light source (i.e., laser) and processor then generate 
reconstructed grayscale images of the target area, enabl
ing epithelial and subepithelial visualization. Notably, CLE 
requires administration of intravenous or topical contrast 
(typically fluorescein) to highlight tissue features and 
better differentiate normal architecture or inflammatory 
changes from neoplastic tissue. 

A CLE imaging probe (pCLE) can be passed through 
various ERCP catheters or through the working channel 
of a cholangioscope. In the first study of pCLE for the 
evaluation of IDBSs, Meining et al[74] reported that the 
visualization of irregular, dilated (“angiogenic”) vessels 
predicted malignancy with a sensitivity of 83% (compared 
to 50% for standard histopathology), specificity of 88%, 
and accuracy of 86% among 14 patients. A subsequent 
study with 37 patients revealed similar findings[75]. 
In an effort to more uniformly identify pCLE imaging 
findings associated with malignancy, a standardized 
classification system (i.e., Miami classification) was 
proposed consisting of: (1) the presence of thick, white 
bands (> 20 pm); (2) thick dark bands (> 40 μm); (3) 
dark clumps; (4) epithelial structures; and (5) fluorescein 
leakage[76]. Suggested criteria for benign strictures were: 
(1) thin, dark (branching) bands; and (2) thin, white 
bands. In a blinded consensus review that validated this 
classification schema, combining two or more of the 
criteria suggestive for malignancy (except fluorescein 
leakage) provided a sensitivity, specificity, positive 
predictive value (PPV), and NPV of 97%, 33%, 80%, and 
80%, respectively, compared with 48%, 100%, 100%, 
and 41% for standard tissue acquisition[77]. Interobserver 
variability was moderate for most of the criteria. A 
prospective, multicenter study assessing the role of pCLE 
in the evaluation of 89 patients with IDBSs reported a 
sensitivity, specificity, PPV, and NPV of 98%, 67%, 71%, 
and 97% for the detection of malignancy, respectively, 
compared with 45%, 100%, 100%, and 69% for index 
pathology[78]. Moreover, when combined with ERCP, pCLE 
was significantly more accurate than ERCP with tissue 
acquisition (90% vs 73%). Among the subset of patients 
with PSC, a small retrospective study found that pCLE 
detected malignancy with a sensitivity, specificity, PPV, 
and NPV of 100%, 61%, 22.2% and 100%, respectively, 
compared to 0%, 94.4%, 0% and 89% with standard 
tissue sampling[79]. Given its high sensitivity and NPV, 
pCLE may ideally be used to exclude malignancy in this 

high-risk population. The technique is limited by the 
need for point contact and by movement. Additional 
study is needed to optimize image interpretation and to 
determine the cost benefit.

A limitation of the Miami classification is the subo
ptimal interobserver agreement. In contrast to the 
initially reported moderate interobserver variability with 
most criteria, a subsequent study among 6 experienced 
endoscopists from 5 institutions reviewed 25 de-identified 
pCLE video clips of IDBSs and found interobserver 
agreement for individual criteria to range from poor to 
fair and for final diagnosis to be slight[80]. Further training 
and standardization is needed to improve interobserver 
reliability, as may be expected with most evolving 
techniques[81]. 

In an effort to improve the low specificity of pCLE, 
which has been attributed to inflammatory changes (e.g., 
chronic inflammation, stent-related changes, previous 
endoscopic procedures), descriptive criteria (i.e., Paris 
classification) have recently been proposed[82]. These 
criteria aim to distinguish benign inflammatory strictures 
by assessing for vascular congestion, dark glandular 
patterns, increased interglandular space, and thickened 
reticular structures, and reportedly have increased 
the specificity from 64% to 76%[82]. A prospective, 
multicenter study evaluating 112 patients with IDBSs 
incorporating the Paris classification found pCLE to 
be 89% sensitive, 71% specific, and 82% accurate 
compared with 56%, 100% and 72% with standard 
tissue sampling alone[83]. 

OPTICAL COHERENCE TOMOGRAPHY 
Optical coherence tomography (OCT) is analogous 
to ultrasound but relies on low-intensity infrared light 
(700 to 1500 nm wavelength range) instead of sound 
to generate high-resolution, cross-sectional tissue 
imaging. The delay in time of light back-scattered by the 
various tissues is measured using a technique known 
as low coherence interferometry, which has a depth of 
penetration of 1-3 mm and lateral and axial resolution 
down to 10 μm. This technology provides much greater 
spatial resolution than IDUS and, unlike endomicroscopy, 
does not require contrast administration. OCT achieves 
visualization of layer architecture similar to histologic 
sections[84,85]. In doing so, OCT allows visualization of 
microscopic structures such as blood vessels, lymphoid 
aggregates, crypts, and submucosal glands and can 
aid in differentiating malignant from benign tissue in 
real-time[86-88]. Miniaturization of early OCT probes has 
enabled insertion into a transparent biliary catheter that 
can be passed through the working channel of an ERCP 
scope for biliary cannulation and in vivo imaging[89]. 

OCT has been shown to increase the sensitivity 
for detecting malignant biliary strictures as compared 
to biliary brushing cytology alone. Arvanitakis et al[90] 
evaluated 2 OCT criteria, namely unrecognizable layer 
architecture and presence of large nonreflective areas 
compatible with tumor vessels, for diagnosing malignant 
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strictures when compared to the gold standard of tissue 
acquisition in 35 patients undergoing ERCP for evaluation 
of IDBSs. Nineteen patients ultimately had malignant 
strictures, and these 2 OCT criteria were associated 
with a sensitivity, specificity, PPV, NPV and accuracy of 
53%, 100%, 100%, 64% and 74%, respectively. The 
sensitivity of biliary mucosal brushings and/or biopsy 
improved from 67% to 84% when at least 1 criterion 
was added. In another study, the diagnostic utilities of 
OCT and ERCP-guided brush cytology were compared 
while evaluating 12 patients with main pancreatic 
duct stricture. Six patients ultimately had malignancy 
and OCT demonstrated greater sensitivity (100% vs 
67%) than cytology while maintaining equal specificity 
(100%)[91]. OCT, unlike confocal imaging, permits larger 
surfaces areas to be examined. Improved resolution is 
paramount. The limited existing data are encouraging, 
but additional studies are awaited to better define the 
potential role of OCT in evaluating IBDSs, particularly 
among patients with high-risk conditions such as PSC. 

FUTURE DIRECTIONS
Other technologies may be amenable to use in the 
evaluation of IDBSs. These include high-resolution 
endomicroscopy, Raman spectroscopy, EUS elasto
graphy, and CLE with chromocholangioscopy or auto
fluorescence. Each will be challenged by the need for 
miniaturization and must satisfy value in the face of 
added cost. 

CONCLUSION
IDBSs pose a diagnostic challenge for which more 
accurate diagnostic tests are critically needed. Although 
ERCP offers therapeutic options for biliary obstruction, 
conventional methods of tissue acquisition remain 
generally insensitive, albeit to a lesser degree with use 
of advanced cytologic techniques such as FISH. EUS 
can be of additional benefit in evaluating distal strictures 
and staging, though concerns remain regarding tumor 
seeding. IDUS may supplement ERCP and EUS and aid 
in local staging but, despite its longstanding availability, 
is seldom employed. Cholangioscopy permits direct 
visualization and directed sampling; design enhance
ments may simplify its use and improve performance. 
Emerging techniques such as pCLE and OCT enable real-
time, in vivo, endohistologic assessment, but additional 
study is needed to standardize interpretation, improve 
inter-rater reliability, and validate performance. The 
challenges in diagnosis often result in multimodal testing 
that marginally enhances diagnosis but substantially 
increases cost. While application of new and innovative 
technologies is of interest to endoscopists, their use 
must be tempered by the realization of only marginal 
improvements in diagnostic sensitivity and frequent 
decrement in specificity, their potential for adverse 
events, associated cost, and often limited availability 
to a small number of diagnostic centers. In addition, 

more research is needed to determine how to best 
guide important clinical decisions using these and other 
established and emerging modalities.
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