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Abstract
Hypertension (HTN) develops very early in childhood 
chronic kidney disease (CKD). It is linked with rapid 
progression of kidney disease, increased morbidity 
and mortality hence the imperative to start anti-
hypertensive medication when blood pressure (BP) 

is persistently > 90th percentile for age, gender, and 
height in non-dialyzing hypertensive children with CKD. 
HTN pathomechanism in CKD is multifactorial and 
complexly interwoven. The patient with CKD-associated 
HTN needs to be carefully evaluated for co-morbidities 
that frequently alter the course of the disease as 
successful treatment of HTN in CKD goes beyond 
life style modification and anti-hypertensive therapy 
alone. Chronic anaemia, volume overload, endothelial 
dysfunction, arterial media calcification, and metabolic 
derangements like secondary hyperparathyroidism, 
hyperphosphataemia, and calcitriol deficiency are a 
few co-morbidities that may cause or worsen HTN in 
CKD. It is important to know if the HTN is caused or 
made worse by the toxic effects of medications like 
erythropoietin, cyclosporine, tacrolimus, corticosteroids 
and non-steroidal anti-inflammatory drugs. Poor treatment 
response may be due to any of these co-morbidities 
and medications. A satisfactory hypertensive CKD 
outcome, therefore, depends very much on identifying 
and managing these co-morbid conditions and HTN 
promoting medications promptly and appropriately. 
This review attempts to point attention to factors that 
may affect successful treatment of the hypertensive 
CKD child and how to attain the desired therapeutic BP 
target. 
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Core tip: Hypertension (HTN) is often difficult to control 
in chronic kidney disease (CKD). Failure to achieve the 
desired therapeutic BP target in the hypertensive CKD 
child could be due to comorbidities and toxic effects 
of HTN promoting medications. So, before starting or 
altering anti-hypertensive medications, it is important 
that patients are evaluated for the roles that HTN 
promoting medications and co-morbidities like chronic 
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anaemia, hyperphosphataemia, progressive tunica 
media calcifications, and serum parathyroid hormone 
levels that are well above the acceptable limits for CKD 
stage could be playing in the entire process. Ways of 
solving this important clinical problem are the focus of 
this article. 

Olowu WA. Pre-treatment considerations in childhood hyper
tension due to chronic kidney disease. World J Nephrol 2015; 
4(5): 500-510  Available from: URL: http://www.wjgnet.
com/2220-6124/full/v4/i5/500.htm  DOI: http://dx.doi.
org/10.5527/wjn.v4.i5.500

INTRODUCTION
In the non chronic kidney disease (CKD) paediatric 
population, hypertension (HTN) is a significant cause 
of morbidities[1,2] that are further escalated when 
it co-exists with CKD[3]. HTN develops very early in 
childhood CKD[3,4]. It is linked with rapid progression 
of kidney disease hence the Kidney Disease: Impro
ving Global Outcomes recommendation that non-
dialyzing hypertensive CKD children should com
mence antihypertensives when blood pressure (BP) 
is consistently > 90th percentile and not wait until it 
is ≥ 95th percentile for age, gender, and height[5]. 
Therapeutic BP target in such children, particularly those 
with proteinuria, should be < 50th percentile for age, 
gender and height except hypotension is a limitation[5]. 

Pathophysiology of HTN in CKD is multifactorial and 
complex. In as much as this is so, the management 
should not be expected to be simple. An individual 
with CKD-associated HTN (CKD/HTN) needs to be 
carefully evaluated for co-morbidities that frequently 
alter the course of the disease as successful treatment 
of hypertensive CKD goes beyond life style modification 
and anti-hypertensive therapy alone. Chronic anaemia, 
volume overload, endothelial dysfunction, and meta
bolic derangements like hyperparathyroidism, hyper
phosphataemia, 1, 25 (OH)2 vitamin D3 (calcitriol) 
deficiency, and tunica media vascular calcification (VC) 
are some of the co-morbidities that may cause or 
worsen HTN in CKD. A satisfactory hypertensive CKD 
outcome, therefore, depends very much on identifying 
and managing these co-morbid conditions promptly 
and appropriately. Before initiating a life style modifying 
plan or any form of antihypertensive treatment, it 
is important to know if the index patient has: Hyper
phosphataemia, secondary hyperparathyroidism 
(SHPT), endothelial dysfunction, VC, anaemia, volume 
overload, and an estimated glomerular filtration rate 
(eGFR) that is < 15 mL/min per 1.73 m2. Questions 
should be asked. Will the patient require dialysis? If so, 
is the patient on calcium-containing phosphate binder? 
Can the patient be dialyzed with a dialysis fluid that 
contains the standard concentration of calcium ions (1.75 
mmol/L)? The doctor needs to know if the patient is 

regularly dialyzed or has received a kidney transplant. It 
is important to know if the patient is on HTN promoting 
medications like erythropoietin, cyclosporine, tacrolimus, 
corticosteroids and non-steroidal anti-inflammatory 
drugs (NSAID). Successful answers to these questions 
should guide the physician to further steps in tackling 
the HTN and achieving the therapeutic BP target for the 
patient.

This review attempts to point attention to factors 
that may affect successful treatment of the hypertensive 
CKD child and how to attain the desired therapeutic BP 
target.

EPIDEMIOLOGY OF HTN IN CKD
High CKD and co-morbidities, including HTN, prevalence 
have been reported in many studies. Severe CKDs 
are most commonly associated with the worst co-mor
bidities. The frequencies of co-morbidities, including 
HTN, rise with increasing severity of CKD stage[3,4]. 
Figure 1, generated from data from reference[3], 
shows the prevalence pattern of HTN by CKD stage 
in a population of children. Data on CKD incidence 
and prevalence from different countries vary widely, 
depending on whether they are hospital-based or 
obtained from national renal registries. A hospital-
based study from Nigeria showed that the overall CKD 
incidence in children increased from 6.0 in year 2000 
to 20.0 per million children population (pmcp) per year 
in 2009 while the prevalence increased from 8 to 101 
pmcp; the incidence and prevalence of severe CKD 
(eGFR < 30 mL/min per 1.73 m2) were, however, 3 
pmcp/year and 22 pmcp, respectively[3]. Also from 
Nigeria, another hospital-based study puts the median 
annual incidence of severe CKD (creatinine clearance, 
CrCL: < 30 mL/min per 1.73 m2) at 3.0/million age-
related population (MARP) per year with a prevalence 
of 15 patients per MARP[6]. From a hospital-based 
study in Jordan, the estimated annual incidence and 
prevalence of severe CKD were reported to be 10.7/
MARP per year and 51/MARP, respectively[7]. An Italian 
national survey reported a median annual incidence 
and prevalence of 7.7/MARP per year and 21/MARP, 
respectively for severe CKD[8]. However, in a French 
study severe CKD incidence was estimated at 7.5/
MARP per year in children younger than 16 years while 
the prevalence was between 29.4 and 54/MARP[9]. 
Clearly from the above, the burden of CKD is very 
high and expectedly, the burden of co-morbidities is 
also high. The prevalence of HTN in childhood CKD is 
frequently high; it is reported to range between 20.0% 
and 80.0%[3,10-13]. This contrasts sharply with the 
3.2%-3.6% HTN prevalence in the normal paediatric 
and adolescents’ population[14-16]. Commonly, children 
with CKD are associated with high nocturnal[17] and 
masked HTN prevalence[12,13]. 

Target-organ abnormalities are common features 
of HTN in children and adolescents. Curiously, CKD 
children with mild HTN have been reported to have 
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target-organ damage[18-20]. Left ventricular hypertrophy 
(LVH) is common target-organ damage in HTN[2]. 
About 34%-38% of paediatric patients with mild and 
untreated HTN have LVH[21-23]. When associated with 
proteinuria, HTN has been found to escalate CKD 
progression and mortality in children and adults[24-26]. In 
a report, mortality was escalated from 55.5% in non-
hypertensive CKD children with heart failure to 84.0% 
in hypertensive CKD patients with heart failure[3].

It is often difficult to control HTN in CKD. Irrespective 
of anti-hypertensive medications used, HTN cannot be 
controlled in more than 50% of children with end-stage 
renal disease (ESRD)[27-29]. Following treatment with 
combination antihypertensive medications, only 56% 
of hypertensive CKD children were able to achieve a BP 
target of < 50th percentile for age, gender and height[3]. 
But why is it so difficult to achieve good BP control 
in hypertensive CKDs? This might be due to failure 
to critically appraise some of the CKD co-morbidities 
highlighted above, before starting antihypertensive 
medications. In a cohort of ESRD children, poor BP 
control was associated with very young age, post 
dialysis fluid overload, and hyperphosphataemia. In 
that report, only 23.5% of treated patients were able to 
achieve a KDOQI BP target of < 90th percentile[29].

PATHOPHYSIOLOGY OF HTN IN CKD
BP regulation is a complex coordination of physiologi
cal functions namely cardiac output, fluid volumes, 
and peripheral resistance among organ systems in 
the human body. These organ systems encompass 
the central nervous system, cardiovascular system, 
kidneys, and adrenal glands[30]. CKD/HTN develops 
through a number of complexly interwoven patho
mechanisms (Figure 2). Fluid overload and renin-
angiotensin-aldosterone-system (RAAS) activation 
are long recognized important HTN pathophysiological 
pathways. More recently, increased parathyroid and 
sympathetic activity and endothelial dysfunction 

have been reported as contributing to CKD/HTN[31]. 
HTN may possibly be due to angiotensin II (ANG II)-
related vascular constriction and aldosterone-related 
sodium retention due to renin hyper secretion by under 
perfused renal scars/cysts and/or severe renal tissue 
damage from microangiopathy or tubulointerstitial 
inflammation[32,33]. Furthermore, high circulating levels 
of ANG II contribute to HTN and end organ injury by 
promoting mesangial cell proliferation, endothelial 
cell damage, cardiac enlargement, inflammation, and 
fibrosis[34]. A further mechanism for CKD/HTN which 
may be in line with Brenner hypothesis is that reduced 
nephron number following progressive kidney damage 
may result in reduced salt and water excretion which 
may predispose to HTN. The Brenner[35] hypothesis 
which has since been confirmed in other studies[36,37] 

is that low sodium excretion with attendant HTN may 
result from congenital nephron number deficit in the 
low birth weight infant[35]. While sodium retention and 
volume overload are established aetiological factors 
in CKD/HTN, sympathetic hyperactivity remains an 
important volume-independent cause of HTN whose 
pathomechanism is unclear[38,39]. Renal afferent signals, 
dopaminergic abnormalities and leptin accumulation 
in CKD may be contributory[38,39]. Renal sympathetic 
nerves in renal tubular epithelial cells and blood ves
sels are stimulated by ANG II to cause an increase 
in the local release of norepinephrine which then 
causes renovascular constriction leading to decreased 
renal blood flow and GFR and HTN[40]. This excessive 
sympathetic activity is blocked by an ANG II receptor 
blocker (ARB)[41]. Hyperparathyroidism is a common 
disorder in CKD that interferes with cardiovascular 
structural geometry and functions. Chronic hyper
parathyroidism increases vascular smooth muscle 
cells’ (VSMC) sensitivity to calcium and norepinephrine 
by promoting calcium ions accumulation within the 
VSMCs[42,43]. The consequence of this is vasoconstriction 
and HTN. This action may be countered with calcium 
channel blockers (CCB)[42,43]. Furthermore, chronic 
hyperparathyroidism promotes VSMC transformation 
to osteoblasts and vascular wall mineralization or 
calcification leading to vascular stiffening, increased 
peripheral resistance to blood flow with consequent 
HTN.

Children on maintenance dialysis are reported 
to have significant incidence of HTN that is as high 
as 53%-65% and 45%-58% in haemodialysis 
and peritoneal dialysis patients, respectively[44]. 
Haemodialysis substantially contributes to HTN by 
increasing both plasma renin activity and catecho
lamines[45].

Nitric oxide (NO) is a major vasodilator factor that 
vascular endothelia secrete, and lack of it causes 
severe HTN[46]. Endothelium-dependent vasodilatation 
is impaired in uraemia due to deficient NO synthesis[47]. 
A circulating endothelium-derived NO synthase inhi
bitor, presumably asymmetric dimthylarginine, which 
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Figure 1  Prevalence of hypertension by chronic kidney disease stage in 
children. Data for this Figure were obtained from reference[3]. CKD: Chronic 
kidney disease.
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and Cl- ions reabsorption in the loop of Henle (thick 
ascending segment) and anti-diuretic hormone-medi
ated increased water reabsorption. Through another 
metabolic pathway, NSAID may cause HTN by promo
ting the release of cytochrome P450-mediated vaso
constricting metabolites of arachidonic acid such as 
epoxyeicosatrienoic and hydroxyeicosatetraenoic 
acid[52]. Calcineurin inhibitors, namely cyclosporine and 
tacrolimus cause HTN through reduced productions of 
PGI2 and NO but increased productions of ET-1 and 
TXB2[53] with consequent vasoconstriction, reduced 
renal blood flow and GFR, sodium and water retention. 
The mechanism by which corticosteroids causes HTN is 
not yet clear; however, one of the mechanisms known 
currently is inhibition of the release of arachidonic acid 
from phospholipids thereby preventing prostaglandins 
formation leading to decreased production of vasodilator 
prostanoids[54]. In-vitro, cortisol has been demonstrated 
to potentiate vascular smooth muscles cells pressor 
responsiveness to epinephrine and norepinephrine by 
inhibiting catechol-o-methyl transferase, an enzyme 
that degrades catecholamines neurotransmitters such 
as dopamine, epinephrine, and norepinephrine[54]. 
While, for obvious reasons, these drugs cannot be 
stopped the dosages can be lowered, in order to achieve 
good BP control, to levels that will not compromise the 
primary indications for their prescription.

HTN in the transplanted CKD patient is often caused 
by volume overload, corticosteroids, and calcineurin 
inhibitors. ACEi and ARB are avoided in the first few 
weeks post-transplant to avoid renal insufficiency 
in the setting of diminished effective arterial blood 

accumulates in uraemia is possibly responsible. 
Endothelin-1 (ET-1), the most potent vasoconstrictor 
known, is secreted by the vascular endothelium. Plasma 
ET-1 concentrations rise directly with BP increase in 
ESRD, suggesting a role for ET-1 in the causation of 
CKD/HTN[48]. By preventing the breakdown of vaso
dilatory kinins, angiotensin converting enzyme inhibitors 
(ACEi) are able to reduce ET-1 expression and suppress 
ET-1 induced HTN[49,50]. 

For a number of reasons, CKD patients receive 
medications like erythropoietin, NSAID, cyclosporine, 
tacrolimus, and corticosteroids that could predispose to 
or make HTN worse. These agents cause HTN through 
a variety of mechanisms that involve interference with 
arachidonic acid metabolism, ET-1 and NO syntheses. 
The ultimate result of this interference is HTN through 
increased TPR due to vasoconstriction with reduced 
renal perfusion and GFR, increased sodium and water 
reabsorption as a consequence of RAAS activation. In a 
review by Krapf et al[51], post erythropoietin therapy HTN 
occurs through increased syntheses of vasoconstrictors 
like ET-1 and thromboxane (TXB2) but decreased 
productions of vasodilators like prostacyclin (PGI2) 
and NO. Reduced production of NO is secondary to 
decreased expression of endothelium-derived nitric 
oxide synthase (NOS), an enzyme that catalysis the 
production of NO. NSAID associated HTN occurs 
through cyclooxygenase inhibition by preventing 
arachidonic acid conversion to vasodilator prostanoids 
like prostaglandin E2 (PGE2) and PGI2[52]. This action 
leads to increased TPR and volume overload and HTN 
through increased production of ET-1, increased Na+ 

Hypertension Hypertension

COVolume
due to sodium and water 
retention caused by:

 RAAS                       Oligoanuria

Nephron number      Chronic anaemia

Overload

[B] Vasoconstriction                 

Vasoconstriction  due to:
  RAAS from renal scars,
cysts, renal artery stenosis,
reduced nephron number, 
and endothelial cell damage

 Sympathetic 
nervous 
system activity 
following 
ANG II stimulation
Chronically high 
serum PTH levels
ET-1 release 
from endothelial 
cell damage

[C] Vascular stiffness
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Figure 2  Pathophysiologic mechanisms of hypertension in chronic kidney disease. A: Volume overload is associated with increase in cardiac output (CO) 
which ultimately leads to hypertension; B: Increase in total peripheral resistance (TPR) due to systemic vasoconstriction leads to hypertension; C: Arterial tunica media 
calcification causing vascular stiffening and failure of vasodilatation and vasoconstriction are illustrated. Chronic hyperparathyroidism promotes vascular wall mineralization 
or calcification leading to vascular stiffening and increase in TPR with consequent hypertension. Blood pressure = CO × TPR. RAAS: Renin-angiotensin-aldosterone 
system; ANG II: Angiotensin II; ET-1: Endothelin 1; PTH: Parathyroid hormone.
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volume[55]. To prevent calcineurin inhibitor-induced graft 
dysfunction, therefore, HTN is treated with CCB in the 
immediate post-operative period[55]. CCBs like nifedipine 
and amilodipine have been used with satisfactory 
outcomes in paediatric transplant patients[56]. 

WHAT FACTORS MAY PREVENT 
ATTAINMENT OFTHERAPEUTIC BP 
TARGET IN CKD-ASSOCIATED HTN?
It is inconceivable that in the setting of chronic anaemia, 
progressive arteriosclerosis, uncontrolled SHPT, and 
HTN promoting medications, the therapeutic BP target 
can be attained in CKD/HTN. Successful HTN treatment 
outcome demands that these factors be carefully 
evaluated and managed accordingly.

Volume overload due to chronic anaemia
Anaemia is a frequent comorbidity in childhood CKD[3,4,57]. 
Failure to attain the target therapeutic BP goal in 
CKD/HTN may be due to untreated or poorly treated 
anaemia. Anemia-associated tissue hypoxia causes 
peripheral vasodilatation. Reduced BP caused by vasodi
latation stimulates increased sympathetic activity with 
attendant tachycardia and increased stroke volume. 
This is accompanied by increased cardiac output and 
vasoconstriction. The latter causes reduced renal blood 
flow, increased RAAS activity and anti-diuretic hormone 
production leading to salt and water retention[58]. 
The long term effect of this is HTN or worsening of 
existing HTN. All hypertensive CKD patients should be 
carefully assessed for anaemia and volume overload 
and managed accordingly. Anaemia in childhood CKD 
is defined as haemoglobin (Hb) concentration < 11.0, 
< 11.5, and < 12.0 g/dL in children aged 0.5-5, 5-12, 
and 12-15 years, respectively[57]. It is suggested that 
when correcting anaemia, the target Hb concentration 
in all paediatric CKD patients receiving erythrocytes 
stimulating agent therapy should be maintained within 
11.0 to 12.0 g/dL range[57]. Excess volume can be 
removed with a low ceiling diuretic, like a thiazide, when 
eGFR is ≥ 60 mL/min per 1.73 m2 or with frusemide, 
a high ceiling diuretic, when eGFR is < 60 mL/min per 
1.73 m2. eGFR ≤ 15 mL/min per 1.73 m2 will rarely 
respond to diuretics. Fluid removal will have to be by 
dialytic ultrafiltration. It is important to note that when 
treating anaemia with erythropoietin, HTN may occur 
following weeks of therapy; this is partly due to increase 
in the red blood cell mass, increased blood viscosity 
and resistance to blood flow. Other mechanisms include 
vascular wall remodeling with resultant rise in vascular 
resistance[59]. It is also possible that due to direct 
action of erythropoietin on voltage-independent Ca2+ 
channels in the VMSCs, the sensitivity of the latter to 
the vasodilatory action of NO may be diminished[60]. 
Erythropoietin has been reported to exacerbate HTN in 
both non-dialyzing and dialyzing CKD children[61,62]. This 
complication can be ameliorated by reducing the dose 

of erythropoietin.

Tunica media VC or arteriosclerosis
It is a well-known fact that tunica media VC, a form of 
CKD-mineral and bone disorder, is associated vascular 
wall rigidity with attendant progressive vascular pulse 
wave deceleration and abnormal vascular wall geometry. 
Increasing vascular rigidity ultimately leads to cardiac 
damage from long standing cardiomyocytes ischaemia, 
from high oxygen consumption, and diminished coro
nary blood flow[63]. Dialysis history, consumption of high 
doses of active vitamin D, deficiencies of inhibitors of 
calcification, hypercalcaemia and hyperphosphataemia 
are risk factors for VC in CKD[64]. Hyperphosphataemia 
is an important and possibly a principal promoter of 
VC because it has been clearly linked with increased 
VC and mortality[65,66]. Fibroblast growth factor-23 
(FGF23) together with its anti-ageing cofactor, Klotho 
have been recognized as major regulators of phosphate 
homeostasis, in addition to inhibiting production and 
release of parathyroid hormone (PTH) and suppre
ssing renal production of 1, 25 (OH)2 vitamin D. In 
an experiment by Sitara et al[67], FGF23 null mice 
and Klotho null mice developed similar phenotypes, 
characterized by very high serum concentrations 
of phosphate and 1, 25-dihydroxyvitamin D3 with 
disordered bone mineralization including multiple soft-
tissue calcifications. A 13-year-old child with a Klotho 
gene mutation suffered severe vascular and soft-tissue 
calcifications, despite markedly elevated serum FGF23. 
Thus, deficiency of Klotho in this patient prevented 
FGF23 from exerting its phosphate-lowering effects and 
its protection against soft tissue calcification[68]. This 
shows that without Klotho, FGF23 cannot correctly exert 
its normal physiological functions. Klotho prevents soft 
tissue calcification by three main mechanisms namely, 
phosphaturia, kidney function preservation and directly 
inhibiting phosphate uptake and dedifferentiation by 
the VSMCs[69]. In CKD, serum levels of FGF23 increase 
in proportion to the decrease of GFR[70]. This increase 
can be considered as an appropriate compensatory 
mechanism in the defense against phosphate retention, 
in concert with PTH, although it also leads to an inhi
bition of renal calcitriol synthesis, in contrast to PTH 
which promotes renal calcitriol synthesis[71]. Of note, 
chronic dialysis patients and uremic animals have been 
shown to exhibit a relative resistance to the inhibitory 
action of FGF23 on parathyroid gland function[72-74]. 
This is probably due to down regulation of Klotho and 
FGF23 receptor expression in CKD. Increased systolic 
BP, resulting in elevated cardiac afterload and LVH and 
decreased diastolic BP and impaired coronary perfusion 
are initial major consequences of arterial stiffening[75]. 
Cardiovascular calcification (CVC) is not only a pro
gressive disorder; it is also severer among CKD patients, 
with poorer cardiovascular outcome, compared with 
other populations[76]. VC must, therefore, be recognized 
very early in CKD and aborted as progression will worsen 
both the kidney disease and HTN thereby making BP 
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therapeutic goal unattainable with dire consequences 
for the patient. High pulse pressure suggests arterial 
stiffening/rigidity and therefore, should be an indi
cation for anyone or combination of the following 
investigations: flow mediated dilation for endothelial 
dysfunction, carotid intimal medial thickness (cIMT), 
pulse wave velocity (PWV) and echocardiography for 
valvular calcification; plain X-rays of the hands including 
the wrists can also detect VC in the radial and digital 
arteries[76,77]. Similarly, lateral lumbar spine (lateral 
abdominal X-ray) and pelvic radiographs can detect VC 
in the abdominal aorta and femoral and iliac arteries[64]. 
However, in detecting and quantifying CVC, including 
the coronary arteries, the electron-beam computed 
tomography (EBCT) and multislice CT (MSCT) are the 
most sensitive radiologic techniques available[78-82]. 
cIMT, PWV, EBCT and MSCT are established indicators 
of structural and functional anomalies of blood vessels, 
including calcification in children and adults[78-82]. cIMT in 
paediatric CKD patients was adversely affected by high 
plasma phosphate[78-80]. In 85 dialyzing children, the 
cIMT increased by 0.15 mm for each mmol/L rise in the 
serum phosphate concentration[78].

Can VC be treated or reversed?
Currently, there is no definitive treatment for VC reversal 
but the process leading to it can be halted through 
preventive measures. The most important preventive 
measure is to ensure that serum phosphorous level is 
kept within the normal age-specific range. The appro
aches to reducing high plasma phosphate level should 
include reducing dietary phosphate intake[83], and 
gastrointestinal absorption with phosphate binders[84], 
and giving more dialysis to increase clearance in those 
with 5D-CKD[85,86]. Stages 3-5 CKD patients can have 
their serum phosphorous kept within acceptable limits of 
0.81-1.45 mmol/L (2.5-4.5 mg/dL); high values should, 
however, be brought down to the normal limits in CKD-
5D. On the other hand, serum calcium should be kept 
within the normal limits of 2.1-2.6 mmol/L (8.8-10.5 
mg/dL) in individuals with 3-5D CKD[85,86]. However, 
a dialysate fluid having low calcium concentration 
of 1.25-1.50 mmol/L (2.5-3.0 mEq/L) is advised for 
use in order to avoid hypercalcaemia, adynamic bone 
disease and rapid VC progression that may occur with 
the standard dialysate fluid, containing 1.75 mmol/L of 
calcium, when used in CKD-5D[76]. It is recommended 
that serum concentrations of calcium, phosphorus, PTH, 
and alkaline phosphatase should be determined starting 
from CKD-2 in paediatric patients[76]. Furthermore, it 
is suggested that serum calcium and phosphorous be 
measured in CKD 3, CKD 4, and CKD 5/5D at 6-12, 
3-6, and 1-3 mo intervals, respectively[76]. In hyperpho
sphataemic individuals with 3-5D CKD, calcium-based 
phosphate binders are best avoided when there is 
evidence for arterial calcification and/or adynamic bone 
disease and/or persistently low serum concentrations of 
PTH. Calcium-based phosphate binders and/or calcitriol 
or vitamin D analog are similarly contraindicated when 

such patients have hypercalcaemia that is persistent 
or recurrent[76]. Increased dialytic phosphate removal 
is suggested for CKD stage 5D if hyperphosphataemia 
is persistent. Effective alternatives to calcium-based 
phosphate binders include non calcium-based phosphate 
binders like sevelamer, and lanthanum salts. Although 
Sevelamer hydrochloride possesses the additional 
benefit of reducing total cholesterol and low density 
lipoprotein cholesterol concentrations in the plasma, 
patients may need to be on calcium supplement when 
there is overt hypocalcaemia[76]. Sevelamer hydro
chloride has been reported in some studies to attenuate 
arterial calcification progression in stages 3-5 and 5D 
CKD patients when compared to similar patients treated 
with calcium-based phosphate binders[87-91]. Zhang et 
al[92] have shown in their systematic review of literature 
on adult patients that lanthanum carbonate efficaciously 
reduces serum phosphorus and intact PTH levels 
without raising the serum calcium concentration. The 
author is currently not aware of any published study on 
lanthanum carbonate use in children.

The use of pyrophosphate, bisphosphonate and 
thiosulfate in the prevention of VC is largely experi
mental. With current level of information available from 
various experimental studies, they show a lot of future 
promise for the prevention of VC in humans when they 
become clinically available. Schibler et al[93] were able to 
demonstrate that high dose pyrophosphate could inhibit 
tunica media calcification in rats that were intoxicated 
with vitamin D. High dose pyrophosphate was used to 
prevent its rapid hydrolysis to orthophosphate. However, 
to obviate the need for high dose pyrophosphate, 
bisphosphonate a non hydrolysable analogue of the 
former was developed. Medial calcification has been 
effectively inhibited with bisphosphonate in uraemic 
rats[94]. Pasch et al[95] demonstrated that tunica media 
calcification developed within four weeks in a Wister rat 
model of uraemic renal failure caused by adenine diet-
induced severe interstitial nephritis. Using thiosulfate at 
doses and frequencies that were similar to that used in 
patients with calcific uraemic arteriolopathy, Pasch et 
al were able to completely prevent VC in their animal 
model. However, the drawbacks with the thiosulfate 
study of Pasch et al[95] are that: (1) the mode of action is 
unknown; (2)thiosulfate prevents but does not reverse 
VC; (3) its safety limits in man are unknown; and (4) 
there is the possibility of reduced bone mineralization.

VC is a common complication of high doses of vitamin 
D receptor agonists (VDRAs) especially when associated 
with hypercalcaemia[96-99]. However, using lower doses of 
VDRAs that are currently in use in clinical practice, Lau 
et al[100], were able to demonstrate that active vitamin D 
(calcitriol, 30 ng/kg) and its analog (100 ng/kg paricalcitol) 
prevented arterial medial VC in CKD mice given high 
phosphate diet (1.5%). Independently of serum calcium 
and PTH both VDRAs reduced the degree of VC via: 
(1) elevated serum Klotho, increased phosphaturia as 
well as normalized serum phosphate and FGF23 levels; 
and (2) up regulation of VSMC osteopontin but reduced 
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circulating osteopontin that is associated with VC 
reduction. Using much lower (physiological) dosages, 
Mathew et al[97] had earlier noted that both calcitriol 
and paricalcitol prevent VC. The clinical benefit of both 
studies with regard to VC needs to be determined by 
further studies. 

SHPT
As discussed above, hyperparathyroidism causes 
HTN through vasoconstriction and vascular medial 
wall calcification[42,43]. PTH level should be determined 
early in the course of managing CKD/HTN as this may 
be elevated beyond the expected level for the CKD 
stage in the patient. Appropriate management of the 
inappropriately elevated PTH for CKD stage may impact 
significantly on HTN outcome. In children with CKD, 25 
(OH) vitamin D (calcidiol) is a common deficiency; it 
is one of the factors that may be responsible for SHPT 
in CKD. The serum level of calcidiol (normal: 8-50 ng/
mL) should be determined at baseline in every CKD 
patient. The ways by which active vitamin D sterols 
suppress PTH levels include: Increased intestinal calcium 
absorption, and PTH gene transcription suppression. 
Given either in daily or intermittent doses, calcitriol 
and alfacalcidol effectively suppress PTH and improve 
growth in childhood CKD[101,102]. Hypercalcaemia is, 
however, a serious side effect especially when ingested 
with phosphate binders containing calcium. The 
newer vitamin D analogues namely 22-oxacalcitriol, 
19-nor-1, 25-dihydroxy vitamin D2 (paricalcitol) and 
1α-hydroxyvitamin D2 (doxercalciferol) are associated 
with minimal intestinal calcium and phosphorus absor
ption. PTH levels are effectively reduced by doxer
calciferol and paricalcitol; both have the ability to 
reduce serum calcium levels better than calcitriol in 
CKD children and adults[103,104]. Where SHPT is due to 
hyperphosphataemia, appropriate use of phosphate 
binders may just be sufficient. Cinacalcet is a type 
II calcimimetic that allosterically modulates the 
calcium sensing receptor, CaSR thus making it more 
sensitive to circulating calcium ions with resultant 
reduction in PTH release[105]. Studies have shown that 
calcimimetics effectively act on the parathyroid gland 
of CKD-5 patients to promote reasonable decreases in 
circulating serum phosphorus and calcium ions[106,107]. 
Calcimimetics have on the other hand been associated 
with unwanted increases in serum phosphorus, through 
unknown pathways, in CKD-3/4. They should, therefore, 
be avoided in such patients[108,109]. Calcimimetics have 
been found useful in the few paediatric CKD-5 patients 
studied so far[110,111]. Six CKD 5D children aged between 
11 mo and 14 years who had uncontrolled SHPT 
and treated with cinacalcet (doses: 0.4-1.4 mg/kg) 
showed satisfactory and sustained correction of the 
hyperparathyroidism[112]. Whatever medication that is 
chosen for the hyperparathyroidism, it is suggested 
that the target serum PTH in CKD 3, CKD 4, and CKD 
5/5D should, respectively be in the 35-70, 70-110, and 
200-300 pg/mL range to avoid adynamic bone disease 

from too low serum PTH[113]. In CKD, the serum PTH 
should be maintained within 2-9 times the upper limits 
of the normal laboratory range[76]. It is important that 
serum PTH and alkaline phosphatase are determined 
at baseline, every 6-12, and 3-6 mo, respectively in 
patients with progressive CKD 3, CKD 4, and CKD 
5/5D[76].

CONCLUSION
The pathomechanism of HTN in CKD is multifactorial and 
complexly interwoven. Successful treatment of HTN in 
CKD, therefore, goes beyond life style modification and 
anti-hypertensive therapy alone. The patient with CKD/
HTN needs to be carefully evaluated for co-morbidities 
that frequently alter the course of the disease. It is also 
important to know if the HTN is caused or made worse 
by the toxic effects of medications like erythropoietin, 
cyclosporine, tacrolimus, corticosteroids and NSAID. A 
satisfactory therapeutic outcome in the hypertensive 
CKD, therefore, depends very much on identifying and 
managing these co-morbid conditions promptly and 
appropriately.
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