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Abstract
Cardiac fibrosis represents an adoptive response in the 
heart exposed to various stress cues. While resolution of 
the fibrogenic response heralds normalization of heart 

function, persistent fibrogenesis is usually associated 
with progressive loss of heart function and eventually 
heart failure. Cardiac fibrosis is regulated by a myriad 
of factors that converge on the transcription of genes 
encoding extracellular matrix proteins, a process the 
epigenetic machinery plays a pivotal role. In this mini-
review, we summarize recent advances regarding the 
epigenetic regulation of cardiac fibrosis focusing on the 
role of histone and DNA modifications and non-coding 
RNAs.
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Core tip: Cardiac fibrosis contributes to the increased 
accidence of sudden cardiac death, heart failure and 
arrhythmia. The molecular mechanisms underlying 
cardiac fibrosis remain obscure. Seminal studies have 
revealed complex pathways associated with cardiac 
fibrosis. How histone/DNA modifying enzymes and 
microRNAs fine-tune these events are actively pursued 
by investigators. This review provides an overview on 
recent advances regarding the epigenetic regulation of 
fibrosis.
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INTRODUCTION
The term “epigenetics’’ was coined in 1953 by 
Waddington CH and the following decades have 
witnessed great progress achieved in this field[1]. By 
consensus epigenetics is defined as stably inheritable 
phenotypes stemmed from changes of chromatin 
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without alterations in primary DNA sequences[2]. The 
nucleosome, the fundamental unit of eukaryotic 
chromatin, is composed of an octamer of four core 
histones (H2A, H2B, H3, H4) surrounding 147 bp of 
DNA. The amino-terminal tails of histones serve as 
a platform for diverse posttranslational modifications 
including methylation[3], acetylation[4,5], ubiquitination[6,7], 
O-linked N-acetylglucosamine (GlcNAc)[6], phosphory
lation[5] and sumoylation[8] on specific residues catalyzed 
by histone-modifying enzymes. These covalent modifi
cations are dynamic[7] and modulate gene regulation 
in a combinatorial manner upon exposure to different 
stimulus[5,9,10]. Histone modifications manipulate gene 
activation/repression by influencing the accessibility 
of transcriptional factors to chromatin or by recruiting 
and/or occluding of non-histone proteins, mostly co-
factors, in contrast to promoter CpG island methylation 
for gene silencing[11]. Proper function of the epigenetic 
machinery, or lack thereof, is implicated in mammalian 
development[12], carcinogenesis[4] and cardiovascular 
diseases (CVDs).

Fibrosis or scarring in different organs, including 
the lungs[13], the kidneys[14], the liver[15], and the 
heart, is characterized by deposition of extracellular 
matrix (ECM) components, such as collagens, laminins 
and fibronectin, caused by diverse insults. Fibrosis 
can be deemed as erroneous ECM “turnover”, i.e., 
imbalance between ECM production (increased) and 
ECM degradation (reduced). Collagen is the most 
abundant component of the ECM in the heart including 
five types (types I‚ III‚ IV‚ V and VI) identified in the 
myocardium. Among these, types IV and V collagens 
are components of the basement membrane‚ while 
types I and III collagen are the main constituents of 
the ECM[16,17]. A number of different cell types in the 
heart are responsible for collagen synthesis: All cardiac 
collagen types are produced by fibroblasts‚ whereas 
endothelial cells synthesize all types except type VI. 
Degradation of collagen is mediated by both intracellular 
and extracellular pathways, the latter involving matrix 
metalloproteinase (MMPs) and tissue inhibitors of MMPs 
(TIMPs)[18]. 

Fibrosis is an evolutionarily conserved process that 
serves to facilitate host defense and wound healing. 
Deregulated fibrosis, however, is invariably associ
ated with loss of organ function. For instance, cardiac 
fibrosis is correlated with elevated mortality in dilated 
cardiomyopathy[19], which is the most common 
cardiomyopathy globally and directly correlates with 
sudden cardiac death, heart failure and arrhythmia[20-22]. 
Despite numerous progress made in identifying mole
cular mechanisms and/or factors that contribute to 
hypertrophy over the past decades, the mechanistic 
underpinnings of cardiac fibrosis is poorly understood. 
Although an extensive body of evidence suggests that 
cardiac fibroblast may participate in the pathogenesis 
of cardiac fibrosis, other cell types involved remain 
to be determined, especially endothelial cells and 
macrophages[23-26]. This review summarizes our current 

understanding of the involvement of epigenetic 
machinery in cardiac fibrosis and attempts to identify 
some of the previously unaddressed questions that 
require further investigation. We only briefly discuss 
the pathways and transcriptional factors involved in 
cardiac hypertrophy because models used to study 
cardiac hypertrophy and fibrosis often overlap and 
excellent reviews on cardiac hypotrophy are available 
elsewhere[27,28].

SIGNALING CASCADE IN CARDIAC 
FIBROSIS 
Cardiac fibrosis usually appears in patients with hyper
trophic cardiomyopathy, hypertension and/or diabetes 
mellitus, suggesting that cardiac fibrosis may be 
secondary to these conditions[29-33]. Myocardial infarction 
(MI), aging, and mutation in cardiac fatal genes such 
as Mhy7, Troponin T and BNP can also trigger cardiac 
fibrosis[34-38]. Studies in animal models have revealed 
a convoluted network of signaling cascades and trans
criptional factors. A body of evidence suggests that the 
calcineurin–nuclear factor of activated T cells (NFAT) 
circuit, the β-adrenergic–receptor signaling pathway, 
and the IGF-Akt signaling pathway all contribute to 
cardiac fibrosis by modulating the activities of such 
transcription factors as serum response factor, myocyte 
enhancer factor (MEF), and kruppel-like factor during 
development and in response to pathophysiological 
stimuli[29,30,39-43]. Meanwhile, evidence from different 
groups shows that extracellular-regulated kinases 
Erk1 and Erk2 (Erk1/2), downstream effectors of the 
mitogen-activated protein kinase cascades, play a 
prominent role in cardiac hypertrophy and fibrosis. 
ERK activation mediated by auto-phosphorylation at 
Thr188 enhances TAC-induced cardiac hypertrophy and 
fibrosis[26,39,40].

TGF-β is believed to play the most central role in 
cardiac fibrosis based on the fact that TGF-β is acti
vated in different models of cardiac fibrosis, which 
in turn facilitates the synthesis of ECM proteins and 
contributes to endothelial-mesenchymal transition 
(EndMT)[33,44-47]. Meanwhile, TGF-β represses ECM degra
dation by suppressing the expression of MMPs[48] and 
by augmenting the levels of protease inhibitors such as 
plasminogen activator inhibitors and TIMPs[44,49]. TGF-β 
drives fibrotic process by binding to the heterodimeric 
membrane receptor, which results in phosphorylation 
and subsequently nuclear translocation of SMAD family 
of transcription factors[50]. Thus, inhibition of the specific 
cellular receptors, kinases and other mediators involved 
in the activation of TGF-β pathway may provide effective 
therapeutic targets for cardiac fibrosis.

HISTONE MODIFYING ENZYMES IN 
CARDIAC FIBROSIS
Numerous enzymes that catalyze specific residues 
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of core histones have been implicated in cardiac 
hypertrophy and fibrosis. For instance, p300, a histone 
acetyltransferase, accelerates left ventricular remodeling 
after MI[9,10]. Inactivation of Ezh2, the catalytic subunit 
of the Polycomb repressor complex 2 responsible for 
histone H3K27 methylation (H3K27me3), induces 
cardiac fibrosis[3,51]. These histone modifying enzymes 
influence cardiac fibrosis via the interaction with 
sequence-specific transcriptional factors to manipulate 
fibrosis-associated gene activation or repression. For 
example, p300 and GATA-4 synergistically activate 
GATA-4-dependent transcription of the ET-1 and 
ANF genes[10] and Ezh2-mediated H3K27me3 on 
the promoter zones directly represses fetal gene 
expression[51].

Trivedi et al[52] show that the mice deficient in 
Hdac2, a class I histone deacetylase (HDAC), are resis
tant to isoproterenol-induced cardiac hypertrophy and 
fibrosis. Mechanistically, Hdac2 deletion leads to the de-
repression of inositol polyphosphate-5-phosphatase f 
(Inpp5f). Consequently, glycogen synthase kinase 3β 
(GSK3β) is constitutively activation thereby causing 
the inactivation of cardiac fetal genes[52]. However, the 
authors did not address whether fibrosis is independent 
of GSK3β or GSK3β is responsible for both cardiac 
hypertrophy and fibrosis. Olson and colleagues report 
that class II HDACs interact with MEF2 and repress 
its activity, acting as signal-responsive repressors of 
transcription of cardiac fetal genes[53]. This observation 
is verified by several complementary studies. First, 
inhibition of class I and II HDACs by trichostatin A 
(TSA) protects the mammalian heart from pressure 
overload-induced cardiac fibrosis and attenuates 
hypertrophy-associated protein expression[51]. Zhang 
et al[53] show that calmodulin binding transcription 
activator 2 (CAMTA2), transcriptional coactivator for 
Nkx2-5, is repressed by an interaction with class 
II HDAC. Activation of PKC/PKD signaling leads to 
phosphorylation of class II HDACs, creating docking 
sites for 14-3-3 proteins to exclude HDACs from the 
nucleus and relieving the inhibition of CAMTA2, which 
proceeds to activate cardiac hypertrophy and fibrosis[54]. 
Recently, our laboratory has identified a histone H3K4 
trimethylation-dependent pathway that contributes 
to cardiac fibrosis. Specifically, we have discovered 
that SET1, an H3K4me3 modifying enzyme, induces 
the transcription of endothelin (ET-1) in vascular 
endothelial cells. Once released into the circulation, ET-1 
then serves as an angiocrine factor to induce cardiac 
fibrosis in response to chronic angiotensin II infusion or 
mechanic stretch[55].

Histone modifying enzymes can communicate 
with each other or other branches of the epigenetic 
machinery to modulate cardiac fibrosis. A study by Eom 
et al[56] further highlights the role of crosstalk between 
HDACs and HATs and post-translational modifications 
of these proteins in cardiac hypertrophy and fibrosis. 
These authors propose that the acetylation status 
of HDAC2 and by extension its activity in regulating 
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cardiac fibrosis is controlled by p300/CBP-associated 
factor and HDAC5[56]. Weng et al[57] have found that the 
H3K4 methyltransferase complex (COMPASS) can forge 
a dialogue with chromatin remodeling proteins BRG1 
and BRM to transactivate ET-1, which in turn invokes 
a pro-fibrogenic response in the heart; depletion of 
either COMPASS or BRG1/BRM alleviates Ang II-induced 
cardiac fibrosis in mice[57]. 

Overall, although there is abundant evidence suppor
ting a role for histone modifying enzymes in cardiac 
fibrosis, the dataset appears to be fragmental with 
many outstanding issues awaiting resolution. For 
instance, what is the genome-wide role for any given 
histone modifying enzyme in cardiac fibrosis? How are 
different histone modifying enzymes are recruited to 
the chromatin? Is there a unique histone signature that 
defines cardiac fibrosis? How to differentiate histone 
modifications and non-histone protein modifications? 
These lingering questions will have to be addressed in 
future studies.

MICRORNA INVOLVED IN CARDIAC 
FIBROSIS
MicroRNAs (miRNAs), usually 20-30 nucleotide in length, 
are one major form of small non-coding regulatory RNAs 
that also include short interfering RNAs (siRNAs) and 
piwi-interacting RNAs (piRNAs)[58]. In general, miRNAs 
act to silence gene expression by targeting specific 
mRNA at the posttranscriptional level. MiRNA expression 
profiles are widely used in cancer classification, diag
nosis, therapy and prognosis[59], but mounting evidence 
shows that circulatory miRNAs, such as miR-29a and 
miR-21, may also be used as a diagnostic marker 
for cardiac fibrosis[60,61]. Numerous studies aimed to 
investigate the potential impact of miRNAs in the heart 
have demonstrated a key role for miRNAs in cardiac 
fibrosis in response to multiple injury stimulus.

It has been demonstrated that mice depleted of 
miR-212/132[62], miR-25[61,63], or miR-29[61] are protected 
from pressure-overload-induced cardiac fibrosis while 
miR-101[64] and miR-24[65] regulate fibrosis after 
MI. Knockdown of miR-133a[66] and cardiac-specific 
overexpression of miR-195 induces spontaneous 
cardiac hypertrophy and fibrosis. Thum et al[26] have 
shown that miR-21 silencing in fibroblasts decreases 
ERK-MAP kinase activity and curbs interstitial fibrosis. 
Follow-up studies have shown several different but 
not mutually exclusive mechanisms underlying the 
pro-fibrotic effect of miR-21. For instance, Roy et al[67] 
have found that miR-21 regulates fibroblast MMP-2 
via targeting phosphatase and tensin homologue 
(PTEN). Alternatively, miR-21 also partly influences 
TGF-b-mediated EndMT via the PTEN/Akt pathway[68]. 
Conceivably, miR-21 might elicit a range of different 
pathways responsible for cardiac fibrosis at multiple 
levels. Cardiac-specific miR-208, transcribed from the 
a-myosin heavy chain (a-MHC) gene locus, regulates 
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of RASAL1, resulting in elevated Ras-GTP activity to 
enhance EndMT and cardiac fibrosis. Mechanistically, 
this process is associated with ten eleven translocation 
family enzyme (TET3)-mediated RASAL1 promoter 
hydroxymethylation (or demethylation) and reversal 
of EndMT[78]. A recent study indicates that mice with 
cardiac-specific knockout of DNMT3b, predominantly 
expressed in the heart, exhibit extensive interstitial 
fibrosis and myo-sarcomeric disarray[79]. Further explo
ration suggests that dysregulation of DNA methylation-
induced alternatively spliced myh7 transcript may be 
accountable for these phenotypes, which is similar to 
the aforementioned effects of miR-208 derived from 
myh6[60]. 

Methylation of DNA is not an isolated event but 
instead forges crosstalk with non-coding RNAs and 
histone modifications. For instance, Wang et al[80] 
show that lysine demethylase (LSD1) interacts and 
demethylates DNMT1 to increase DNMT1 stability, 
indicating that LSD1 may coordinately modulate 
histone and DNA methylation by acting directly on 
both histones and Dnmt1. Meanwhile, DNMT3a/b 
are recruited to tri-methylated H3-K9 positions via 
interacting with heterochromatin protein 1 (HP1a)[81], 
synergistically silencing transcription at the pericentric 
satellite repeats[82]. Whether these interactions and/
or cooperations function in the heart remain elusive. 
Dakhlallah et al[83] demonstrated that in lung fibroblasts 
from patients with idiopathic pulmonary fibrosis, 
there was a negative correlation between increased 
DNA methylation-induced repression of miR-17-92 
cluster and DNMT1 expression. Several miRNAs from 
the miR-17-92 cluster, most prominently miR-19b, 
directly regulated DNMT1 expression by targeting 
seed sequences in the 3-UTR in a negative feedback 
loop. To further study whether this system function in 
vivo, Dakhlallah et al[83] use a classical murine model 
of pulmonary fibrosis. After the initiation of fibrosis, 
treatment with 5-aza-2-deoxycytidine in bleomycin-
challenged mice alleviated lung fibrosis by decreasing 
DNMT-1 gene expression while restoring miR-17-92 
cluster expression[83]. These results are consistent with 
findings from Bechtel et al[84] that long-term TGFβ1 
exposure induced RASAL1 hypermethylation depends 
on DNMT1, which is intimately linked to the perpetuation 
of kidney fibroblast activation and renal fibrosis. More 
importantly, 5-aza-2-deoxycytidine attenuated folic 
acid-evoked renal fibrosis by reducing DNMT1–induced 
methylation of RASAL1[84]. In the heart, whether 
miRNAs regulate DMNTs in a similar fashion needs to be 
addressed in the future study.

FUTURE DIRECTIONS IN CARDIAC 
FIBROSIS
The past two decades have seen a sea of groundbrea
king discoveries in epigenetics fueling the research on 
CVD[85-88]. This mini-review only provides a snapshot 

stress-dependent fibrosis by negatively modulating 
expression of thyroid hormone receptor associated 
protein 1[69]. The role of miR-208 in cardiac fibrosis is 
further supported by the observation that inhibition of 
miR-208 by antisense oligonucleotide improves cardiac 
function and attenuates remodeling[70].

Sometimes miRNAs and their targets form feedback 
(forward or backward) loops to manipulate downstream 
pathophysiological events. For instance, da Costa 
Martins et al[41] have reported that pressure overload 
activates the calcineurin/NFAT axis to stimulate the 
expression of miR-199b. MiR-199b, once transcribed, 
targets dual-specificity tyrosine-(Y)-phosphorylation 
regulated kinase 1a (Dyrk1a), which activates NFAT by 
phosphorylating and thereby excluding NFAT from the 
nucleus. Conceivably, reduced levels of Dyrk1a as a 
result of miR-199b activation will release NFAT from the 
cytoplasm, which will lead to increased expression of 
miR-199b[41]. 

Cardiac- and skeletal muscle–enriched miR-22 
regulates cardiomyocyte hypertrophy and cardiac 
fibrosis in response to stress via targeting Sirt1 and 
Hdac4[71], supporting the possibility that microRNAs 
could communicate with other epigenetic factors by 
directly influencing their abundances. Meanwhile, 
miRNAs could also suppress fibrotic genes transcription. 
MiR-133 and miR-30 could reduce production of 
collagens by directly down-regulating connective tissue 
growth factor (CTGF) through specific binding to its 3′ 
untranslated region (3′-UTR)[72]. MiR-101a can restrain 
interstitial fibrosis in post-infarct rats by targeting c-Fos 
to repress downstream effectors of TGF[64]. Intriguingly, 
miR-18/19 and miR-34a dampen age-related cardiac 
remodeling by negatively regulating the CTGF and 
thrombospondin-1[73] expression and directly targeting 
protein phosphatase 1 nuclear-targeting subunit[38], 
respectively.

DNA METHYLATION IN CARDIAC 
FIBROSIS
Patterns of mammalian DNA methylation vary in time 
and space. Similar to histone modifications, levels of 
DNA methylation are dependent on the balance of 
methyltransferases (DNMTs) and demethylases. In 
general, DNA methylation modulates gene transcription 
via changing chromatin conformation and/or influencing 
the interplay between DNA and proteins[74,75]. Based on 
the structural and functional differences, the enzymes 
responsible for DNA methylation identified so far include 
two categories: DNMT1 and DNMT3a/3b. DNMT1 
is responsible for maintenance of DNA methylation 
using hemimethylated DNA strand as substrate[76], 
while DNMT3a/3b catalyze de novo DNA methylation 
operating on two un-methylated “clean” DNA strands[77].

A recent investigation by Xu et al[78] showed that 
TGF-β induces aberrant methylation of RASAL1 (a Ras-
GTPase) promoter and subsequently down-regulation 
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of how research on cardiac fibrosis has benefitted 
from epigenetic theories and tools. Many of the factors 
discussed here are enzymes, the activities of which 
can be manipulated via small-molecule compounds 
for therapeutic interventions. For instance, HDAC 
inhibitors have been successfully used to treat certain 
forms of cancer in the clinic[89,90]. The recent elucidation 
of the human functional genome has re-affirmed the 
notion that epigenetic regulation is the bedrock of 
human diseases[91]. In perspective, continued effort in 
investigating the epigenetic mechanisms underlying 
cardiac fibrosis will eventually bring cure to this 
debilitating pathology.
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