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Abstract
Best known for their anti-resorptive activity in bone, 
bisphosphonates (BPs) have generated interest as 
potential antineoplastic agents given their pleiotropic 
biological effects which include antiproliferative, 
antiangiogenic and immune-modulating properties. 
Clinical studies in multiple malignancies suggest that 
BPs may be active in the prevention or treatment of 
cancer. Digestive tract malignancies represent a large 
and heterogeneous disease group, and the activity 
of BPs in these cancers has not been extensively 
studied. Recent data showing that some BPs inhibit 
human epidermal growth factor receptor (HER) 
signaling highlight a potential therapeutic opportunity 
in digestive cancers, many of which have alterations in 
the HER axis. Herein, we review the available evidence 
providing a rationale for the repurposing of BPs as 
a therapeutic adjunct in the treatment of digestive 
malignancies, especially in HER-driven subgroups.
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Core tip: Bisphosphonates demonstrate antineoplastic 
activity in various malignancies but have received 
little attention in cancers of the digestive tract. We 
review the preclinical and clinical experience with 
bisphosphonates in digestive cancers and discuss 
their potential therapeutic application in this disease 
group, particularly in the context of recent data on 
bisphosphonate-induced inhibition of human epidermal 
growth factor receptor signaling.
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INTRODUCTION
Cancers of the digestive system, including eso­
phagogastric, hepatocellular, pancreatobiliary, small 
and large bowel carcinomas were projected to 
comprise about 17% of the 1.6 million new cancer 
diagnoses made in the United States during 2014[1]. 
Systemic therapy with cytotoxic chemotherapy 
and/or molecularly targeted agents is the mainstay 
of treatment for these cancers when they are 
at an advanced stage. Despite advances in drug 
development and improved insights into the molecular 
pathobiology of these diseases, median survival for 
most stage Ⅳ digestive cancers is less than 12 mo, 
the exceptions being small bowel and colorectal 
adenocarcinoma. These sobering facts underscore the 
chasm between theoretical knowledge and clinical 
application, and highlight the urgent need for novel 
therapeutic approaches.

In recent years, there has been a growing recog­
nition that some drugs that are effective in treating 
one type of disease can be “repurposed” for treatment 
of an unrelated condition. Repurposing is a particularly 
attractive option because the therapeutic agents have 
known safety profiles.

Bisphosphonates (BPs) inhibit osteoclast-induced 
bone resorption which is a property that underlies 
their use in the treatment of bone resorption dis­
orders such as osteoporosis and Paget’s disease. In 
patients with advanced cancer, BPs are used in the 
supportive management of complications such as 
hypercalcemia of malignancy, and the prevention of 
skeletal-related complications in patients with bone 
metastases. Indications that BPs might have direct 
antineoplastic effects came from randomized clinical 
trials of adjuvant estrogen suppression therapy in 
women with resected breast cancer which revealed 
that the addition of BPs not only decreased bone 
density loss but also decreased the risk of contralateral 
breast cancer and improved disease-free survival[2-4]. 
The beneficial effects of BPs on clinical outcomes 
were most pronounced in postmenopausal women in 
whom systemic estrogen levels are low[4]. Subsequent 
randomized trials in patients with multiple myeloma 
and other advanced solid tumors such as lung and 
prostate cancer provided additional evidence that BPs 
improve oncologic outcomes including overall survival 
and prevention of bone metastases[5-10]. In addition, 
a number of observational studies have reported 
decreases in risk of breast and colorectal cancer 
among BP users[11-17]. Collectively, these data suggest 
that BPs may be clinically active in the prevention as 
well as treatment of cancer. Studies focusing on the 

activity of BPs in patients with digestive tract cancers 
are limited, however.

BPs, especially nitrogen-containing bisphosphonates 
(NBPs), have antiproliferative, antimotility, pro-
apoptotic, antiangiogenic and immunomodulatory 
properties[5,18,19]. Many of these activities are attributed 
to inhibition of the mevalonate synthesis pathway by 
NBPs[20,21]. Recently, NBPs have been shown to bind to 
and inhibit signaling by the human epidermal growth 
factor receptor (human EGFR/HER), causing apoptosis 
in HER-driven cancer cell lines and synergizing with 
HER tyrosine kinase inhibitors[22,23]. Many digestive 
cancers have alterations in the HER axis, highlighting 
an actionable target for NBPs. In this review, we 
summarize the preclinical and clinical experience with 
BPs in digestive malignancies and discuss how BPs 
might be integrated into current treatment strategies.

BISPHOSPHONATE STRUCTURE, 
FUNCTION AND MECHANISM OF 
ACTION
BPs are inorganic pyrophosphate derivatives with a 
central nonhydrolyzable carbon atom, a hydroxyl group, 
and two flanking phosphate groups (Figure 1). The 
chemical structure of BPs confers a strong affinity for 
the mineral component of bone, which facilitates their 
uptake by osteoclasts[24]. Bone resorption is inhibited 
by BPs due to osteoclast growth arrest and apoptosis. 

The addition of a nitrogen group increases the 
antiresorptive potency of BPs by up to 10000 fold[21,24]. 
NBPs currently used in clinical practice include the oral 
agents alendronate, ibandronate and risedronate, and 
intravenous formulations such as pamidronate and 
zoledronic acid (ZA).

The molecular mechanisms of action differ 
between BPs and NBPs. Early generation BPs, such 
as etidronate and clodronate, induce osteoclast death 
by generating cytotoxic ATP analogs, which impair 
mitochondrial oxygen consumption[25]. As previously 
mentioned, many of the biological effects of NBPs are 
attributed to their interactions with the mevalonate 
synthesis pathway. Among the key components of 
this pathway are farnesyl pyrophosphate synthase 
and geranylgeranyl pyrophosphate synthase, which 
mediate the posttranslational prenylation and activation 
of small signaling GTPases (e.g., Rab, Rac, Rho, 
Rap1A and Ras), promoting cell growth, proliferation, 
migration and survival (Figure 1)[18-21,26,27]. Suppression 
of the mevalonate synthesis pathway inhibits protein 
prenylation, arresting these processes in osteoclasts 
as well as other cell types. In breast cancer cells, 
ZA inhibits farnesylation of centromere protein-F, 
preventing assembly of the mitotic spindle apparatus 
and halting cell cycle progression. The addition of 
farnesol reverses this process, allowing mitosis to 
resume[28]. Interestingly, dendritic cells treated with 
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ZA have an enhanced ability to stimulate expansion 
of γδ T cells, which are cytotoxic against a variety of 
solid tumor cell lines[29,30]. These events are associated 
with the accumulation of isopentenyl pyrophosphate, 
a potent chemoattractant and stimulator of γδ T 
cells. Increased isopentenyl pyrophosphate also 
promotes formation of cytotoxic ATP analogs, which 
disable mitochondrial adenine nuclear translocase, 
causing apoptosis[31]. Furthermore, tumor cells 
treated with NBPs show increased sensitivity to 
γδ T cell-mediated cytotoxicity[32]. BPs also target 
angiogenesis and cell invasion by countering hypoxia-
inducible factor-1α, vascular endothelial growth factor, 
tumor associated macrophages (TAMs) and matrix 
metalloproteinases[33-35]. These findings illustrate the 
pleiotropic effects of BPs on cancer cells and the tumor 
microenvironment (Figure 2).

A novel mechanism of action of NBPs involving 
the HER pathway has recently been described. Using 
protein thermal shift, cell-free kinase assays and 
computational modeling, NBPs have been shown 
to bind to the tyrosine kinase domain of HER1/2. 

Binding leads to global inhibition of HER signaling 
and decreased viability of HER-driven breast and 
lung cancer cell lines[22]. The growth inhibitory effects 
persist despite knockdown of farnesyl pyrophosphate 
synthase, but are completely abrogated by knockdown 

of HER, indicating that they are dependent on HER and 
not the mevalonate synthesis pathway. ZA enhances 
the antineoplastic efficacy of HER1 tyrosine kinase 
inhibitor, erlotinib, in lung cancer cells, and inhibits 
tumor growth and viability in cells that have become 
erlotinib-resistant[23]. These findings highlight the 
therapeutic potential of co-targeting HER with both 
NBPs and anti-HER agents, particularly in patients with 
HER-driven cancers.

It is important to note the unique toxicities of 
BPs stemming from their mechanism of action. 

Osteonecrosis of the jaw is one of the most 
serious side effects BPs, with a reported incidence 
ranging from 0.85%-18.6%[36]. The use of BPs for 
malignant vs benign indications, intravenous vs 
oral BP formulations, prolonged duration and high 
cumulative dose of therapy, recent dental procedure, 
and concurrent therapy (e.g., glucocorticoids, anti-
angiogenic agents) are variables that may increase 
the risk of developing osteonecrosis of the jaw. 

Atypical femoral fractures are another unusual side 
effect of BPs, the reported incidence ranging from 
0.3 to 11 per 100000 person years[37]. Patients with 
a prior history of low-energy fracture, glucocorticoid 
exposure, long duration of BP therapy, pre-existing 
rheumatoid arthritis or collagen disease and low 
serum vitamin D levels may be at higher risk. Other 

Figure 1  Chemical structure of nitrogen-containing bisphosphonates and effects on the mevalonate synthesis pathway.
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reported adverse events include nephrotoxicity, flu-
like symptoms, ocular inflammation, atrial fibrillation 
and hypocalcemia[38].

BISPHOSPHONATES IN DIGESTIVE 
CANCERS
Esophagogastric cancers
Studies assessing activity of BPs in esophagogastric 
cancers are in early stages, but have yielded 
promising results. In vitro chemosensitivity testing 
performed on the bone marrow aspirate of a patient 
with metastatic signet ring gastric adenocarcinoma 
demonstrated synergy with the combination of 
gemcitabine, oxaliplatin and ZA[39]. The patient was 
treated with this combination and experienced a 
durable complete response that included clearance 
of cancer cells from the bone marrow. In another 
study, an alendronate-fluoropyrimidine conjugate 
showed cytostatic activity in gastric adenocarcinoma 
cell lines[40]. In esophageal squamous cell carcinoma, 
high centromere protein F expression has been 
associated with decreased survival, but confers an 
increased sensitivity to the combination of ZA and 
cisplatin[41]. In cells that overexpress centromere 
protein F, the antiproliferative activity of ZA and 

cisplatin is synergistic whereas it is additive in cells 
with low centromere protein F levels. In another 
study, a synthetic BP analog induced cell cycle arrest, 
apoptosis and inhibited growth of well, moderate 
and poorly-differentiated human gastric cancer cell 
lines in vitro, and in a mouse xenograft model[42]. 
The induction of apoptosis appeared to be linked to 
activation of ERK1/2, though activation of MEK and 
Raf-1 was also observed (Table 1).

HER-2 overexpression in 15%-20% of gastric 
and gastroesophageal junction adenocarcinomas 
highlights a patient subgroup who might be par­
ticularly responsive to the antineoplastic effects of 
BPs. Patients with HER-2-positive disease experience 
improved response rates and survival outcomes with 
the addition of the anti-HER-2 antibody, trastuzumab, 
to chemotherapy with 5-fluorouracil and cisplatin[43]. 
In light of recent data showing that NBPs bind to 
and inhibit HER1/2 signaling[22], there is rationale for 
evaluating combination therapy with ZA, trastuzumab 
and chemotherapy in HER-2-positive gastric and 
gastroesophageal junction adenocarcinomas. There are, 
however, currently no trials assessing the combination 
of BPs and trastuzumab in these cancers. The only 
clinical study evaluating BPs in gastroesophageal 
cancers is a phase Ⅰ trial of ZA, IL-2 and IMAB 362 in 
patients with Claudin-18.2-expressing cancers (PILOT 

Figure 2  Pleiotropic biological effects of bisphosphonates.
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Table 1  Summary of selected clinical studies of bisphosphonates in digestive cancers

Study Design Cancer type Population Therapy Main Findings

Prospective studies
Phase Ⅰ pilot Esophagus, 

gastric 
Advanced disease IMAB362 + ZA +/- IL-2 Ongoing

(NCT01671774) Claudin 18.2 expression+
Phase Ⅰ Pancreas n = 23 with resectable disease ZA once pre-op, and twice 

post-op
Median/1 yr/2 yr OS: 

18 mo/86%/33%
Median/1 yr/2 yr PFS: 

12 mo/27%/9%
No improvement

Phase Ⅱ HCC Advanced disease Sorafenib + ZA Ongoing
(NCT01259193)
Observational studies
Restricted open cohort 
study[15]

Colorectal Region: Denmark
30505 postmenopausal female BP 
users matched 1:4 BP non-users

Alendronate Alendronate associated with decreased 
incidence (HR = 0.69, 95%CI: 0.6-0.79), risk 
of death (HR = 0.62, 95%CI: 0.52-0.72) and 

longer survival (HR = 0.82, 95%CI: 0.7-0.97, 
P < 0.05)1

Systematic review and meta-
analysis[16]

Colorectal Country: various Alendronate, 
pamidronate, etidronate, 
ibandronate, risedronate, 

ZA

Significant decrease in cancer incidence (HR 
= 0.83, 95%CI: 0.76-0.90)

20001 cancer cases
392106 patients total

Case control[17] Colorectal Country: Israel Any oral BP (95% 
alendronate)

BP use > 1 yr associated with significant 
decrease in cancer risk (RR = 0.5, 95%CI:I 

0.35-0.71)2
Postmenopausal women

933 cancer cases matched 1:1 
with controls without cancer

Case control[46] Esophagus, 
gastric

Country: United Kingdom Any BP except 
pamidronate and 

ibandronate

Esophagus cancer risk significantly higher 
in female BP users than non-users (OR = 1.43, 

95%CI: 1.18-1.72)3

8636 cancer cases matched 1:4 
with controls without cancer

Higher risk with alendronate

No difference in gastric cancer risk
Nested case control[47] Esophagus, 

gastric, 
colorectal

Country: United Kingdom Any oral BP
15613 cancer cases matched 1:5 
with controls without cancer

Rx for BP associated with significant 
increase in risk of esophagus (RR = 1.3, 

95%CI: 1.02-1.66, P = 0.02) but not gastric or 
colorectal cancer4

Matched cohort[48] Esophagus, 
gastric

Country: Denmark Highest risk: ≥ 10 Rx, ≥ 3 yr
History of fracture Any oral BP 85 cancer cases total

13678 cases who filled BP Rx 
matched 1:2 with controls who 

did not fill BP Rx

(alendronate > 
etidronate > ibandronate, 
risedronate, clodronate)

BP use associated with significantly 
decreased risk of esophagus cancer (HR = 

0.35, 95%CI: 0.14-0.85, P = 0.02)5

No effect on gastric cancer risk
Matched cohort[49] Esophagus, 

gastric
Country: United Kingdom Any oral BP 207 cancer cases total

41826 cases Rx BP matched 1:1 
with controls not Rx BP

No increase in risk of esophagus or gastric 
cancer. Risk not affected by NBP vs non-
NBP, duration of use, history of GERD6

Nested matched case 
control[50]

Esophagus Country: United States Etidronate, tiludronate, < 2% of cases and controls filled Rx for BP

History of Barrett’s esophagus alendronate, ibandronate, 
risedronate

Non-significant association between BP 
116 with cancer matched 1:6 with 

controls without cancer
use and esophagus cancer risk (incidence 

density ratio 0.92, 95%CI: 0.21-4.15)7

Nested case control using 2 
datasets[51]

Esophagus, 
gastric, 

colorectal

Country: United Kingdom
55952 cancer cases matched 1:5 
with controls without cancer

Alendronate, etidronate, 
ibandronate, risedronate

BP use not associated with risk of esophagus 
or colorectal cancer

Short but not long term alendronate 
associated with increased risk of gastric 
cancer (OR = 1.91, 95%CI: 1.34-2.72, P < 

0.001) in one dataset8

Case control[52] Esophagus Country: Taiwan Alendronate, risedronate, No relationship between BP use and 
esophagus cancer risk

16204 cancer cases matched 1:4 
with  controls without cancer

clodronate, etidronate Inverse relationship between esophagus 
cancer risk and BP duration and frequency 

of use
Meta-analysis observational 
data[53]

Esophagus Country: various
3778 cancer cases
173612 BP users

483797 BP non-users

Ibandronate, etidronate, 
clodronate, zoledronate, 

pamidronate, alendronate

No association between BP use and 
esophagus cancer risk

Ang C et al . Bisphosphonates in digestive cancers
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trial; NCT01671774).
The potential benefits need to be balanced against 

potential risks, keeping in mind that BP use in patients 
with a diagnosis of advanced esophagogastric cancers 
might be of relatively short duration so side effects could 
be less of a limitation. Severe esophagitis has been 
reported in users of oral BPs, especially alendronate[44]. 
Decreasing the dosing frequency of oral BPs, and use 
of intravenous BPs like ZA which do not come into 
direct contact the esophageal mucosa have helped to 
decrease the incidence of esophagitis[38]. Concerns of 
a potential carcinogenic effect of BPs were raised with 
reports of esophageal cancer among relatively short-
term users (median duration of exposure 1-2 years) of 
oral BPs[45]. Results of several population-based studies 
evaluating esophageal cancer risk among BP users and 
non-users have been inconsistent. Some studies have 
reported a significantly increased risk among female 
and long term users of BPs[46,47], while others have 
reported a decreased risk[48] or no increase in the risk 
of esophageal cancer among BP users compared to 
non-users, including those with a history of Barrett’s 
esophagus[49-53]. At this time, the FDA has not concluded 
that oral BPs increase the risk of esophageal cancer, nor 
does it endorse endoscopic screening of patients taking 
oral BPs who do not have symptoms of esophagitis[54]. 
Concerning the risk of gastric cancer, studies have 
reported either a decreased risk or no association with 
oral BP use[46,47,50,53,55,56]. Additional studies are needed 

to clarify the risk/benefit ratio.

Colorectal carcinoma
NBPs may exert a protective effect on intestinal 
mucosa. Several observational population-based studies 
have reported a decreased incidence of colorectal 
cancer as well as increased post-cancer-diagnosis 
survival among long-term users of oral NBPs[15-17,57]. 
Mechanisms underlying the chemoprotective properties 
of NBPs on the intestine have not been well defined, 
but direct effects on intestinal epithelial cells as well 
as the stromal compartment are considered likely 
possibilities. Macrophage activation by intestinal 
commensal bacteria can precipitate intestinal epithelial 
inflammation, genetic abnormalities and malignant 
transformation. Administration of encapsulated 
liposomal clodronate was shown to deplete colonic 
macrophages, inhibit inflammation, Wnt/β-catenin 
signaling and carcinogenesis in IL-10 knockout mice 
colonized with Enterococcus faecalis[58].

NBPs demonstrate antineoplastic activity in 
colorectal cancer. ZA induces apoptosis and decreases 
growth of colon cancer cells in vitro[59]. ZA also 
promotes colon cancer cell death through adoptive 
immunotherapy. Colon cancer stem cells exposed to 
ZA demonstrate an enhanced capacity to expand and 
activate s Vγ9Vδ2 T cells and are, in turn, rendered 
more susceptible to cytolysis by Vγ9Vδ2 T cells[60].

Upregulation of the HER pathway is pathogenic in 

Cohort study[55] Esophagus, 
gastric

Country: United States
1.64 million patients > 68 yr old 

with history of osteoporosis and/
or BP use

Any oral BP No association between BP use and 
esophagogastric cancer risk9

2308 cancer cases
624840 BP users

Meta-analysis of 
observational data[56]

Esophagus, 
gastric, 

colorectal

Country: various
16662 cancer cases

Any oral BP No significant association between BP use 
and overall digestive cancer risk

79379 controls without cancer
Meta-analysis of 
observational data[61]

Colorectal Country: various
63363 cancer cases

200047 BP users

Any oral BP No significant change or borderline 
significant decrease in risk of colorectal 

cancer
1038526 BP non-users

Case series[70] HCC Country: Italy
n = 15 patients with bone 

ZA Decreased pain score and analgesic 
requirements

metastases, heavily pre-treated Median OS 10 mo
Retrospective cohort study[73] HCC Country: Japan

n = 31 patients with bone 
metastases treated with radiation, 

12 also received ZA

ZA Significant decrease in 6-mo time to pain 
progression of radiated (0% vs 34%, P = 

0.045) and non-irradiated (20% vs 66%, P = 
0.005) bone metastases

Significant decrease in 3-mo radiographic 
progression rate of non-irradiated bone 

metastases (29% vs 91%, P = 0.009)

1Adjusted for age, colon cancer risk factors, hormone replacement therapy (HRT), non-steroidal anti-inflammatory drugs (NSAIDs)/prednisolone/acetyl-
salicylic acid (ASA) use in the past 12 mo; 2Controlled for alcohol consumption, body mass index; 3Adjusted for smoking, alcohol intake, dyspepsia, proton 
pump inhibitor (PPI) use, BMI, H. pylori status; 4Adjusted for smoking status, alcohol intake, BMI; 5Adjusted for Charlson index, concomitant medications; 
6Adjusted for smoking, alcohol consumption, BMI, use of HRT/NSAIDs/PPI/H2-receptor antagonists, history of Barrett’s esophagus, gastroesophageal 
reflux disease (GERD); 7Adjusted for race, noncancer disease comorbidity index, use of PPI/NSAIDsPPI, H2-receptor antagonist; 8Adjusted for BMI, 
smoking status, alcohol consumption, ethnicity, history of osteoporosis, use of systemic corticosteroids, acid suppressive therapy, anti-inflammatory drugs, 
vitamin D use, comorbidities (rheumatoid arthritis, diabetes), gastrointestinal disease; 9Adjusted for age, gender, race, Medicare Part D low-income subsidy, 
comorbidities (Barrett’s esophagus, gastroesophageal disease, alcohol abuse, smoking status and/or chronic obstructive pulmonary disease, obesity, acid-
suppressive therapy, bone density testing, diagnosis of fragility fracture, receipt of institutional care, NSAID use. OS: Overall survival; PFS: Progression-
free survival; ZA: Zoledronic acid; HCC: Hepatocellular carcinoma.

Ang C et al . Bisphosphonates in digestive cancers
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colorectal cancer. Anti-HER1 monoclonal antibodies 
cetuximab and panitumumab are useful in the treat­
ment of patients with metastatic colorectal cancer 
whose tumors lack activating KRAS mutations. Growth 
of HER-driven colon cancer cells, but not cells with 
low EGFR expression, is inhibited by NBPs[22]. Since 
KRAS-mutated colorectal cancers are resistant to the 
antineoplastic effects of anti-HER1 antibodies, it would 
be interesting to test whether NBPs sensitize tumors to 
these agents via dual inhibition of HER and RAS.

Despite the strong preclinical rationale and bene­
ficial effects reported by observational studies, 
composite data from 6 cohort and 4 case-control 
studies suggest the preventive effect of BPs on the 
risk of colorectal cancer, if any, is small[61]. Prospective 
studies are clearly needed to determine the effect of 
BPs on colorectal cancer outcomes. While it is unlikely 
that a randomized study of BPs as chemoprevention 
will be performed, the utility of BPs as adjuncts to 
standard therapy in patients diagnosed with colorectal 
cancer warrants investigation. There are no ongoing 
clinical trials of BPs in colorectal carcinoma currently 
posted on ClinicalTrials.gov.

Pancreas carcinoma
Activating mutations in RAS and HER overexpression 
are among the most common molecular alterations 
in pancreas cancer and are actionable targets 
for NBPs. ZA-induced inhibition of RAS and its 
dependent downstream signal transduction cascades 
prevents migration and causes growth suppression 
and apoptosis of human pancreatic cancer cells in 
vitro[62,63]. Erlotinib is FDA approved for metastatic 
pancreas cancer in combination with gemcitabine 
based on a phase Ⅲ trial demonstrating a statistically 
significant, though clinically modest increase (6.24 
mo vs 5.91 mo, HR = 0.82, P = 0.038) in overall 
survival compared to gemcitabine alone[64]. Low 
doses of gemcitabine and ZA demonstrate synergy in 
inhibiting pancreatic cancer cell growth, invasion and 
metastases in vitro and in vivo[65]. Given the enhanced 
antiproliferative activity observed with the addition of 
ZA to erlotinib[23], it would be interesting to assess the 
effects of combining chemotherapy with RAS inhibition 
and dual HER inhibition using ZA and erlotinib in 
advanced pancreas cancer.

BPs promote pancreatic cancer cell death through 
other mechanisms. Pancreatic cancer cells cultured 
in ZA are significantly more susceptible to γδ T cell 
cytotoxicity than non-cultured cells[63]. BPs may also 
improve the radiosensitivity of pancreas cancer. 

Genes involved in cholesterol synthesis, including 
farnesyl diphosphate synthase have been implicated 
in pancreatic cancer radioresistance[66]. Inhibition of 
farnesyl disphosphate synthase by ZA was shown to 
radiosensitize pancreatic cancer cells in vitro and in 
vivo in an allograft mouse model.

In addition to their direct effects on tumor cells, 

BPs may also act upon the stromal compartment in 
pancreas cancer. TAMs and myeloid derived suppressor 
cells promote pancreas cancer cell progression by 
secreting growth factors and impairing host adaptive 
immune response. In murine pancreatic cancer 
models, BPs diminish both of these macrophage 
populations, causing decreases in tumor growth and 
neoangiogenesis, increased T cell recruitment and 
improved survival[67,68].

Results of a phase Ⅰ clinical trial of perioperative 
ZA in patients with resectable pancreas cancer were 
recently reported[69]. Treatment with ZA was safe but 
did not significantly improve overall survival compared 
to historical institutional data (18 mo vs 17.7 mo, P = 
0.9404), and there was no decrease in granulocyte- 
myeloid-derived suppressor cells in peripheral blood 
or bone marrow as had been observed in vitro[69]. 
Potential explanations for the absence of an observed 
benefit include small sample size (n = 23) and 
heterogeneity in the use of adjuvant chemotherapy 
and/or radiotherapy following surgery.

Hepatocellular carcinoma
Several case reports and small single institutional 
series have reported improvements in symptoms 
and disease control among hepatocellular carcinoma 
(HCC) patients treated with NBPs[70-74]. Benefits 
include alleviation of pain and hypercalcemia from 
bone metastases and improved survival. A patient 
with HCC and bone metastases experienced a durable 
complete response with the combination of ZA and 
sorafenib that persisted for 12 mo after treatment 
discontinuation[71]. In hepatoma cells BPs activate 
pro-apoptotic cascades, induce cell cycle arrest and 
inhibit signaling pathways responsible cell proliferation, 
survival, adhesion, motility and differentiation[75-79]. 
ZA also suppresses HCC progression through its 
effects on several immune cell populations. TAMs 
enable angiogenesis and are associated with increased 
tumor microvessel density and disease recurrence 
after surgery or radiofrequency ablation in HCC[80,81]. 
Treatment with sorafenib strongly induces peripheral 
blood recruitment and tumor infiltration by TAMs, 
and suppresses IL-12b, which stimulates natural killer 
cells. The addition of ZA restores IL-12b levels and 
depletes TAMs, causing tumor shrinkage, decreased 
angiogenesis and lung metastases in HCC mouse 
models[82,83]. ZA-induced amplification of cytotoxic γδ 
T cells also enhances hepatoma cell lysis[84,85]. These 
observations suggest that ZA can enhance the activity 
of sorafenib or rescue sorafenib-resistant HCC.

The human EGFR pathway has been implicated 
in the progression of liver fibrosis to cirrhosis and 
hepatocarcinogenesis[86]. Increased EGF expression 
is part of a 186-gene signature associated with 
an increased risk of recurrence and poor survival 
following resection[87]. In mouse and rat models with 
chemically or surgically induced liver injury, erlotinib 
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decreased and even reversed fibrosis in some animals, 
inhibited hepatic stellate cell activation, and prevented 
hepatocarcinogenesis[86]. These physiological changes 
were associated with upregulation and downregulation 
of good and poor-prognosis genes, respectively, thus 
reversing the poor risk gene signature. A study of 
erlotinib for the chemoprevention of HCC is currently 
underway (NCT02273362). Given the inhibitory 
effects of ZA on HER, it would be interesting to assess 
combination therapy with erlotinib and ZA in primary 
as well as secondary prevention of HCC. A phase Ⅱ 
clinical trial of sorafenib and ZA for advanced HCC was 
initiated in 2010 (NCT01259193), but results have not 
been reported yet.

Other digestive malignancies
There are no data, preclinical or clinical, on the activity 
of BPs in small bowel cancers, likely owing to the 
rarity of this disease. Next-generation sequencing has 
identified alterations in ERBB2/HER2 in 15%-30% of 
duodenal adenocarcinomas[88,89], providing a basis for 
assessing HER-2-targeted therapies with or without 
BPs.

In vitro studies in cholangiocarcinomas have shown 
that ZA causes cell cycle arrest and decreases tumor 
colony formation, but does not cause apoptosis[90]. The 
combination of ZA with ABT-737, a BH3 mimetic that 
sequesters pro-survival BCL-2 proteins, is synergistic 
in causing apoptosis in cholangiocarcinoma cell 
lines[91]. The microenvironment of cholangiocarcinomas 
contains an active immune cell infiltrate that includes 
TAMs[92], which may be targeted by NBPs to induce 
tumor cell death and prevent disease dissemination.

CONCLUSION
Bisphosphonates have pleiotropic biologic effects on 
cancer cells and their microenvironment, providing 
a rationale for evaluating their use as therapeutic 
adjuncts in the management, and possibly prevention, 
of cancer. Mechanistically, BPs target key processes 
that are universally operational in oncogenesis, 
maintenance and progression, suggesting their utility 
across a broad array of malignancies. Though the 
reported experience on the clinical use of BPs in 
digestive cancers is limited, preclinical studies across 
this diverse disease group consistently show that 
BPs exert antitumor effects as monotherapies, and 
may increase the efficacy of other systemic agents 
when given in combination. The combination of anti-
HER agents and NBPs is of particular interest given 
recent mechanistic insights into the interactions of 
BPs with the HER family as well as the prevalence of 
HER aberrations in digestive malignancies. Studies to 
assess the clinical relevance of BPs as antineoplastic 
adjuncts in digestive cancers represent a largely 
untapped research opportunity.
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