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Abstract
The gut microbiota has the capacity to produce a diverse 
range of compounds that play a major role in regulating 

the activity of distal organs and the liver is strategically 
positioned downstream of the gut. Gut microbiota 
linked compounds such as short chain fatty acids, bile 
acids, choline metabolites, indole derivatives, vitamins, 
polyamines, lipids, neurotransmitters and neuroactive 
compounds, and hypothalamic-pituitary-adrenal axis 
hormones have many biological functions. This review 
focuses on the gut microbiota and host metabolism 
in liver cirrhosis. Dysbiosis in liver cirrhosis causes 
serious complications, such as bacteremia and hepatic 
encephalopathy, accompanied by small intestinal bacterial 
overgrowth and increased intestinal permeability. Gut 
dysbiosis in cirrhosis and intervention with probiotics and 
synbiotics in a clinical setting is reviewed and evaluated. 
Recent studies have revealed the relationship between 
gut microbiota and host metabolism in chronic metabolic 
liver disease, especially, non-alcoholic fatty liver disease, 
alcoholic liver disease, and with the gut microbiota 
metabolic interactions in dysbiosis related metabolic 
diseases such as diabetes and obesity. Recently, our 
understanding of the relationship between the gut and 
liver and how this regulates systemic metabolic changes 
in liver cirrhosis has increased. The serum lipid levels 
of phospholipids, free fatty acids, polyunsaturated fatty 
acids, especially, eicosapentaenoic acid, arachidonic acid, 
and docosahexaenoic acid have significant correlations 
with specific fecal flora in liver cirrhosis. Many clinical and 
experimental reports support the relationship between 
fatty acid metabolism and gut-microbiota. Various 
blood metabolome such as cytokines, amino acids, and 
vitamins are correlated with gut microbiota in probiotics-
treated liver cirrhosis patients. The future evaluation 
of the gut-microbiota-liver metabolic network and the 
intervention of these relationships using probiotics, 
synbiotics, and prebiotics, with sufficient nutrition could 
aid the development of treatments and prevention for 
liver cirrhosis patients.
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Core tip: The gut microbiota has the capacity to 
produce a diverse range of compounds that have a 
major role in regulating the activity of distal organs 
and the liver is strategically positioned downstream 
of the gut indicating the importance of the gut-liver 
axis. This review focuses on gut microbiota and host 
metabolism in liver cirrhosis. The serum lipid levels 
of phospholipids, free fatty acids, eicosapentaenoic 
acid, arachidonic acid, and docosahexaenoic acid have 
significant correlations with specific fecal flora in liver 
cirrhosis. Various blood metabolome such as cytokines, 
amino acids, and vitamins are correlated with gut 
microbiota in probiotics-treated liver cirrhosis patients. 
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INTRODUCTION
An increasing amount of recent evidence has de­
monstrated that several diseases, such as irritable 
bowel syndrome, inflammatory bowel disease, diabetes, 
allergy, cancer, obesity, autism and liver disease, are 
related to alterations in intestinal microbiota (known 
as dysbiosis)[1-3]. Gut-derived complications in liver 
cirrhosis such as small intestinal bacterial overgrowth 
and increased intestinal permeability (leaky gut), 
resulting in bacterial or endotoxin translocation-related 
systemic disorders such as spontaneous bacterial 
peritonitis, hyperdynamic state, portal hypertension, 
hepatorenal syndrome, hepatic encephalopathy, and 
multiple organ failure, have been reported in clinical 
settings[2,4-8]. Different etiologies of liver cirrhosis, 
including viral hepatitis, alcoholic liver disease (ALD), 
and non-alcoholic fatty liver disease (NAFLD), have 
different gut microbiota and mechanisms of developing 
liver fibrosis. Furthermore, each disease has a different 
hepatic metabolism, suggesting further development in 
this research area[2,7-9]. However, there have been few 
reports of correlations between gut microbiota and host 
metabolism in cirrhotic patients. This review will discuss 
(1) the relationship between gut microbiota and host 
metabolism in general; (2) the results of intervention 
for liver cirrhosis by probiotics; and (3) gut-microbiota 
and host metabolism in cirrhosis and the use of 
systems biology as a tool for analysis.

GUT MICROBIOTA AND HOST 
METABOLISM
The anatomy of the liver provides its close interac­
tion with the gut[9,10]. Gut-derived bacteria and their 
components and metabolites, as well as nutrients 

and other signals are delivered to the liver via the 
portal circulation. Then, the liver plays a crucial role 
in defense against gut-derived materials, which is 
defined as the gut-liver axis[9,10]. Gut microbiota 
function as a bioreactor for autonomous metabolic and 
immunological functions that can mediate responses 
within the host environment in response to external 
stimuli[11]. The complexity of the gut microbiota 
suggests that it behaves as an organ. Therefore, the 
concept of the gut-liver axis must be complemented 
with the gut-microbiota-liver network because of 
the high intricacy of the microbiota components and 
metabolic activities[11].

The host and its gut microbiota coproduce a large 
array of small molecules during the metabolism of 
food and xenobiotics (compounds of non-host origin 
that enter the gut with the diet or are produced 
by microbiota), many of which play critical roles in 
communication between host organs and the host’s 
microbial symbionts. The metabolite, gut microbiota, and 
potential biologic functions are shown in Table 1[12-40].

Short-chain fatty acids (SCFAs), predominantly 
butyrate, acetate and propionate, are anaerobically 
produced by gut microbiota in the intestine. SCFAs, 
particularly butyrate, are a significant source of energy 
for gut enterocytes, and influence the gastrointestinal 
barrier function through the stimulation of tight junction 
and mucous production[41-43]. The authors showed that 
tight junction permeability was decreased by SCFAs 
in a Caco-2 intestinal monolayer and human umbilical 
vein endothelial cell monolayer, via lipoxygenase 
activation in in vitro studies[44,45]. This suggests that 
SCFAs may have biological effects in other organs 
as well as the gastrointestinal tract. Furthermore, 
there is growing evidence to suggest a role for SCFAs 
in reducing inflammation[41]. Our previous reports 
showed that increased pro-inflammatory cytokine 
production and nuclear factor kappa B activity induced 
by lipopolysaccharide (LPS) were downregulated by 
SCFAs using human peripheral blood mononuclear cells 
and co-culture of macrophages and adipocytes[46-48]. 
LPS-induced acute liver injury was attenuated by 
orally administered tributyrin, a prodrug of butyrate 
and a dairy food component, via increased portal vein 
concentration up to one to two orders of magnitude 
in rats[49]. In humans, two reports by Bloemen et 
al[50,51] measuring portal and hepatic venous SCFA 
concentrations indicated a porto-systemic shunting 
effect in liver cirrhosis patients.

SCFAs are also proposed to increase satiety fol­
lowing the consumption of a diet rich in fiber as they 
act as agonists for free fatty acid receptors 2 and 
3 (FFAR2/3 known as G-protein coupled receptor; 
GPR43/41). Both of these GPRs trigger the production 
and release of glucagon-like peptide 1 (GLP-1), peptide 
YY (PYY) and other gut hormones that stimulate 
satiety in the host[52]. Gut intestinal (GI) hormones 
such as ghrelin and leptin secretion are mediated on 
enteroendocrine cells by the action of SCFAs[18,53]. 
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SCFAs that traffic to distal sites and can be carried by 
monocarboxylate transporters, which are abundantly 
expressed at the blood-brain barrier then enter the 
central nervous system[54-57]. However, it remains to be 
definitively established whether alterations in intestinal 
microbiota-derived SCFAs are actually reflected at 
physiologically relevant concentrations in the central 
nervous system[13]. 

Bile is composed of individual bile acid moieties, 
mucous, phospholipids and biliverdin, and their 
main physiological roles in the small intestine are 
the emulsification of fats, the release of fat-soluble 
vitamins and regulation of cholesterol metabolism[58]. 
Specific bile acids differentially act as ligands to 
activate or repress host receptors, including farnesid X 
receptor, pregnane X receptor, vitamin D receptor and 
the GPR, TGR5. These receptors are expressed locally 
on various intestinal epithelial cells and systematically, 
within a diverse range of organs including both the liver 
and adipose tissue[21]. Therefore, bile acids function 

as systemic signaling molecules and significantly alter 
host gene-expression profiles[21,59]. 

Choline synthesized by intestinal biota is im­
portant for lipid metabolism and is metabolized to 
trimethylamine, then further metabolized in the liver 
to trimethylamine-N-oxide that contributes to the 
development of cardiovascular disease[22]. Reducing 
the bioavailability of choline can contribute to NAFLD 
and altered glucose metabolism[60]. Phenolic, benzoyl, 
and phenyl derivatives produced by the detoxification 
of xenobiotics have various bioactivities, are indicators 
of microbial composition and activity, and are useful 
biomarkers for several diseases including liver disease[25]. 

A significant amount of the neurotransmitter do­
pamine is produced in the human gut[61]. Norepinephrine 
and dopamine production in the gut is mediated by 
the expression of β-glucuronidases from commensal 
gut bacteria through the cleavage of their inactive 
conjugated forms[62]. Nitric oxide produced by gut 
microbes plays a pivotal role in gastric emptying[63]. The 
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Table 1  Metabolite, gut microbiota, and potential biologic functions 

Metabolites Related bacteria Potential biological functions Ref.

Short-chain fatty acids Clostridial clusters IV and 
XIVa of Firmicutes, including 

species of Eubacterium, Roseburia, 
Faecalibacterium, and Coprococcus

Decreased colonic pH, inhibit the growth of pathogens; stimulate water and 
sodium absorption; participate in cholesterol synthesis; provide energy to 

the colonic epithelial cells; GI hormones secretion via enteroendocrine cells, 
implicated in human obesity, insulin resistance and type 2 diabetes, colorectal 

cancer. Immunological homeostasis in the gut

[14-18]

Bile acids Lactobacillus, Bifidobacteria, 
Enterobacter, Bacteroides, Clostridium

Absorb dietary fats and lipid-soluble vitamins, facilitate lipid absorption, 
maintain intestinal barrier function, signal systemic endocrine functions to 

regulate triglycerides, cholesterol, glucose and energy homeostasis

[19-21]

Choline metabolites Faecalibacterium prausnitzii, 
Bifidobacterium

Modulate lipid metabolism and glucose homeostasis. Involved in nonalcoholic 
fatty liver disease, dietary induced obesity, diabetes, and cardiovascular 

disease

[22,23]

Phenolic, benzoyl, and 
phenyl derivatives

Clostridium difficile, F. prausnitzii, 
Bifidobacterium, Subdoligranulum, 

Lactobacillus

Detoxification of xenobiotics; indicate gut microbial composition and 
activity; utilize polyphenols. Urinary hippuric acid may be a biomarker 

of hypertension and obesity in humans. Urinary 4-hydroxyphenylacetate, 
4-cresol, and phenylacetate are elevated in colorectal cancer. Urinary 4-cresyl 

sulfate is elevated in children with severe autism

[24,25]

Indole derivatives Clostridium sporogenes, E. coli Protect against stress-induced lesions in the GI tract; modulate expression 
of proinflammatory genes, increase expression of anti-inflammatory genes, 
strengthen epithelial cell barrier properties. Implicated in GI pathologies, 

brain-gut axis, and a few neurological conditions

[26-28]

Vitamins Bifidobacterium Provide complementary endogenous sources of vitamins, strengthen immune 
function, exert epigenetic effects to regulate cell proliferation

[29,30]

Polyamines Campylobacter jejuni, Clostridium 
saccharolyticum

Exert genotoxic effects on the host, anti-inflammatory and antitumoral effects. 
Potential tumor markers

[31,32]

Lipids Bifidobacterium, Roseburia, 
Lactobacillus, Klebsiella, Enterobacter, 

Citrobacter, Clostridium

Impact intestinal permeability, activate intestine-brain-liver neural axis to 
regulate glucose homeostasis; LPS induces chronic systemic inflammation; 

conjugated fatty acids improve hyperinsulinemia, enhance the immune 
system and alter lipoprotein profiles. Cholesterol is the basis for sterol and 

bile acid production

[33,34]

Neurotransmitters and 
neuroactive compounds:
serotonin, tryptophan, 
kynurenine. dopamine, 
noradrenaline, GABA

Lactobacillus ,Bifidobacterium, 
Escherichia, Bacillus, Saccharomyces, 
Candida, Streptococcus, Enterococcus

Neurofunction related as mood, emotion, cognition, reward (CNS), motility/
secretion and behavior

[35-39]

HPA hormones: cortisol Lactobacillus, Bifidobacterium Indirect regulation of HPA. Regulation of stress response, host metabolism, 
anti-inflammation, wound healing, endocrine abnormalities prominent in 

stress related psychiatric disorders

[40]

GI: Gastrointestinal; LPS: Lipopolysaccharide; GABA: g-aminobutyric acid; CNS: Central nervous system; HPA: Hypothalamic-pituitary-adrenal. Adapted 
from Ref. [12, 13] and revised by the authors. 
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axis may be complemented with the gut-microbiota-
liver network because of the high intricacy of the 
microbiota components and metabolic activities; these 
activities form the active diet-driven power plant of the 
host[11,74]. However, there have been few descriptive 
studies on gut-microbiota composition under NASH 
and NAFLD conditions; therefore, the type and role 
of gut microbes in human liver damage are poorly 
understood[11]. The use of meta-omic platforms to 
assist the understanding of NAFLD gut-microbiota 
alteration as a tool and its application in patients has 
been proposed[11]. A detailed explanation of the meta-
omic platform is described later.

As for the therapeutic approach to control dysbiosis, 
selective digestive decontamination (SDD), probiotics, 
prebiotics, and synbiotics have been performed. SDD 
is a method to treat bacterial translocation-related 
complications caused by poorly absorbed antibiotics 
such as quinolone. SDD was effective in some studies 
but a major concern of long-term antibiotic prophylaxis 
is the development of antibiotic-resistant bacteria and 
increased infections in chronic disease situations[75].

In this review, probiotics and synbiotics in liver 
cirrhosis are discussed. Probiotics were defined 
by the World Health Organization in 2001 as “live 
microorganisms, when administered in adequate 
amounts, confer a health benefit on the host”. Prebiotics 
belong to a group of nondigestive food constituents that 
selectively alter the growth and/or activity of bacteria in 
the colon. The combined use of probiotics and prebiotics 
is called synbiotics. Bifidobacteria and Lactobacilli, 
the main species of probiotics, are considered as 
nonpathogenic to humans. The pathophysiologic 
basis for using probiotics in liver disease is as follows: 
(1) prevention of infection; (2) improvement of 
the hyperdynamic circulatory state of cirrhosis; (3) 
prevention of hepatic encephalopathy; (4) improvement 
of liver function; and (5) therapeutic potential of 
NAFLD[76].

Infection, such as spontaneous bacterial peritonitis 
and endotoxemia, can be induced in compensa­
ted and decompensated cirrhotic patients with or 
without surgery. Rayes et al[77,78] also reported the 
beneficial effects of probiotics against infectious 
complications in cirrhosis patients that underwent liver 
transplantation or liver resection. We reported that 
synbiotics (Bifidobacterium, Lactobacillus, and galacto-
oligosaccharides) treatment attenuated the decrease 
in intestinal integrity as assessed by serum diamine-
oxidase activity and reduced infectious complications 
after hepatic surgery[79]. Meta-analysis indicated an 
apparent reduction of infectious complications (odds 
ratio 0.24) in abdominal surgery[80]. However, a small 
size randomized controlled clinical trial showed that 
VSL#3® treatment to decompensated cirrhotic patients 
reduced plasma aldosterone, but did not reduce the 
incidence of spontaneous bacterial peritonitis[81]. As for 
hyperdynamic circulation, a prospective study reported 
that VSL#3® improved hemodynamic states, hepatic 

inhibitory transmitter γ-aminobutyric acid is generated 
by Lactobacillus brevis and Bifidobacterium dentium, 
both of which have been isolated from humans[64,65]. 
The precursors to neuroactive compounds, such as 
tryptophan for serotonin function and the kynurenine 
pathway, are controlled by gut-microbiota as a 
bidirectional communication component of the brain-gut 
axis[39].

The role of gut microbiota in the development of 
the hypothalamic-pituitary-adrenal (HPA) axis has 
been extensively analyzed using germ-free mice[40]. 
The concept of Microbial Endocrinology was reported 
and the importance of controlling gut microbiota in 
relation with various host functions was discussed by 
Lyte and colleagues[13,66].

GUT MICROBIOTA AND ITS 
MANIPULATION IN LIVER CIRRHOSIS
The gut microbiota plays an important role in 
the pathophysiology of cirrhosis. Changes in gas­
trointestinal functions, including malabsorption and 
small intestinal bacterial overgrowth, is common with 
concomitant portal hypertension in cirrhosis patients[67]. 
Recent reviews reported the pathophysiologic changes 
of gut microbiota in cirrhotic patients, gut-bacterial 
interactions, “leaky gut”, translocation of bacteria 
and gut-derived LPS in infectious complications, 
spontaneous bacterial peritonitis, and hepatic 
encephalopathy[2,5,68,69]. Hyperdynamic circulation, 
portal hypertension, hepatic encephalopathy, renal 
disturbance including hepatorenal syndrome, and 
cirrhotic cardiomyopathy in cirrhosis are correlated 
with endotoxemia[6]. 

ALD is a spectrum of alcoholic diseases inclu­
ding steatosis, steatohepatitis, acute alcoholic 
steatohepatitis, alcoholic fibrosis, and cirrhosis 
(Laennec’s Cirrhosis) caused by excessive alcohol use 
over a prolonged period of time[9]. Multiple pathogenic 
factors are involved in the development of ALD. Alcohol 
and its metabolites induce reactive oxygen species and 
hepatocyte injury through mitochondrial damage and 
endoplasmic reticulum stress[70,71]. The activation of 
Kupffer cells has been identified as a central element 
in the pathogenesis of ALD. Kupffer cells and recruited 
macrophages in the liver are activated by LPS through 
Toll-like receptor (TLR) 4, and LPS levels increase in 
the portal and systemic circulation after excessive 
alcohol intake[72]. Fibrosis is a dynamic and progressive 
process governed by stellate cell activation by LPS, 
TLR4 and inflammatory cytokines such as transforming 
growth factor-β signaling[73]. 

NAFLD is the most common cause of chronic 
liver disease worldwide as a result of the increasing 
prevalence of obesity, characterized by a spectrum 
of liver diseases ranging from simple fatty liver 
(NAFL) to steatohepatitis (NASH) with a possible 
progression to fibrosis[11]. The concept of the gut-liver 
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venous pressure gradients, cardiac index, heart 
rate, systemic vascular resistance, and mean arterial 
pressure, without any adverse reactions in cirrhosis 
patients with ascites[82]. Several reports showed that 
probiotics treatment to cirrhosis patients prevented 
hepatic encephalopathy with decreased blood 
ammonia or bilirubin levels[83,84]. The mechanism of 
hepatic encephalopathy prevention is the improvement 
of small intestinal bacterial overgrowth and gut 
dysbiosis[84]. VSL#3® treatment improved hepatic 
function, serum aspartate transaminase and alanine 
transaminase levels, both in NAFLD and cirrhosis 
patients with ALD and hepatitis C virus infection[85]. 
As for NAFLD, the immune-regulatory effects of 
probiotics may be beneficial in NAFLD treatment, 
and they should be considered a complementary 
therapeutic approach in NAFLD patients as indicated in 
a review by Ferolla et al[86]. The mechanisms of action 
are increased fatty acid formation, change in colonic 
pH, growth factor induction, change in intestinal 
flora, bacterial adherence inhibition by colonization 
resistance, immune modulation, increased phagocyte 

activity, increased IgA secretion and modulation of 
lymphocyte functions[87].

Table 2[69,77-79,81,83,85,88-94] shows the main randomized 
controlled studies in cirrhosis patients. These reports 
suggest that probiotics treatment improved gut 
dysbiosis and bacterial translocation, leading to 
the improvement of cirrhosis prognosis. Trials with 
probiotics in general have been limited by a lack of 
stability of the products as a drug and differences 
among bacterial species and subspecies[93,95]. Therefore, 
the results have been heterogeneous with regard 
to the duration, type of organism or combination 
of organisms and outcomes, and mixed results 
been achieved. The properties of different probiotic 
species vary and can be strain-specific. This is also 
complicated by a lack of uniformity in batch-to-batch 
formulations and studies not being performed under 
an investigational new drug regulatory procedure. 
The variety of available probiotics also makes the 
accumulation of evidence difficult. Furthermore, a 
risk of bacterial sepsis and fungal sepsis should be 
considered in infants and immune-deficient patients[96].

Table 2  Effects of the probiotics intervention on gut microbiota composition and its clinical and/or biochemical consequences

Type of 
study

Category of patients/duration of 
treatment

Probiotics Clinical outcome Ref.

RCT 36 cirrhotics/6 mo Lactobacillus.acidophilus, Lactobacillus 
bulgaricus, Bifidobacterium lactis and S. 

thermophiles

Blood ammonia levels [88]

RCT 65 cirrhotics/6 mo Lactobacilli Incidence of HE, hospital admission, plasma-
ammonia level, serum bilirubin level

[83]

R 50 cirrhotics/14 d Bifidobacterium, L. acidophilus and Enterococcus 
vs Bacillus subtilis and Enterococcus faecium

Bifidobacterium count, fecal pH, fecal and 
blood ammonia in both groups, endotoxin 

level only with B. subtilis and E. faecium

[89]

RCT 17 cirrhotics with HVPG > 10 mmHg/2 
mo

VSL # 3® Plasma aldosterone [81]

RCT 41 chronic liver disease/14 d Bifidobacterium bifidus, L. acidophilus, 
Lactobacillus bulgaricus, and S. thermophilus

E. coli count, intestinal flora imbalance, 
improvement in debilitation, food intake, 

abdominal distension, and ascitic fluid

[90]

RCT 66 cirrhotics underwent liver 
transplantation/2 wk after the operation

Pediacoccus pentosaceus, Leuconostoc 
mesenteroides, Lactobacillus paracasei and 

Lactobacillus plantarum

Infectious complication [78]

RCT 39 cirrhotics/42 d E. coli Nissle Endotoxemia, Child-Pugh score, Restoration 
of normal colonic colonization

[91]

RCT 63 cirrhotics patients with large 
oesophageal varices without history of 

variceal bleeding/2 mo

Propranolol plus VSL # 3® HVPG, plasma TNF-α levels. [92]

RCT 25 nonalcoholic minimal HE cirrhotics 
(defined by a standard psychometric 

battery)/60 d

Yogurt contained L. bulgaricus and S. 
thermophilus

Minimal HE [93]

RCT 61 cirrhotics underwent hepatic 
surgery/2 wk before and after surgery

Lactobacillus casei strain Shirota, 
Bifidobacterium breve strain Yakult, and 

galactooligosaccharides

Intestinal integrity, infectious complication [79]

RCT 63 cirrhotics underwent liver 
transplantation/12 d after the operation

L. plantarum 299 and oat fiber Infectious complication [77]

RCT 50 cirrhotics underwent living donor 
liver transplantation/2 d and 2 wk before 

and after the operation, respectively

L. casei strain Shirota, B. breve strain Yakult, 
and galactooligosaccharides

Infectious complication [94]

RCT 30 cirrhotics with minimal HE/4 wk Lactobacillus GG Endotoxemia, gut dysbiosis, gut microbiome-
metabolome linkages

[69]

RCT 138 cirrhotics/3 mo VSL # 3® HE, small intestinal bacterial overgrowth [84]

HE: Hepatic encephalopathy; HVPG: Hepatic venous pressure gradient; RCT: Randomized controlled trial; R: Randomized.
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GUT MICROBIOTA AND HOST 
METABOLISM IN LIVER CIRRHOSIS
The effect of gut microbiota on host metabolism has 
been reported in the context of host-gut microbiota 
metabolic interactions in dysbiosis related metabolic 
diseases (diabetes, obesity and chronic liver disease) 
as various obesity-associated mechanisms including 
insulin resistance, fibrosis, and abnormalities in 
lipid metabolism[8,86,97]. However, few studies on the 
association between gut microbiota and metabolism in 
cirrhosis have been reported. 

We previously reported the measurement of fecal 
microbiota, organic acids, and plasma lipids in hepatic 
cancer patients in three different groups characterized 
by histopathology as normal liver, chronic hepatitis/
liver fibrosis, and liver cirrhosis[46]. These data were 
obtained by fecal culture without using probiotics 
and by comparison among different liver diseases. 
The serum lipid levels of phospholipids, free fatty 
acids, eicosapentaenoic acid (EPA), EPA/arachidonic 
acid (AA) ratio, AA and docosahexaenoic acid (DHA) 
had significant correlations with specific fecal flora, 
such as Bifidobacterium, Bacteroides, Lactobacillus, 
Enterococcus, Enterobacteriaceae, and Candida (Figure 
1). These correlations differed among the three groups 
suggesting that chronic liver disease itself modifies 
fatty acid metabolism induced by intestinal flora. 
These data indicate that the relationship between gut 
microbiota and host metabolism differs by metabolic 
activity of the liver, indicating that individual “the gut-
microbiota-liver network” exists in each clinical disease 
entities and the importance to evaluate in future 
studies[11].

With regards to polyunsaturated fatty acids, Wall 
et al[98] performed a mouse study investigating the 
effects of Bifidobacterium breve NCIMB 702258 
administration with coadministration of α-linolenic acid 
on fatty acid composition of the liver, adipose tissues, 
large intestine and brain, and showed increased c9, 
t11 conjugated linoleic acid and EPA levels in the liver, 
while Bifidobacterium administration alone did not 
change the EPA levels in normal mice. Wall et al[99] 
also demonstrated increased EPA levels in adipose 
tissues from severe combined immunodeficient 
mice after Bifidobacterium breve NCIMB 702258 
administration. Conjugated linoleic acid is a microbial 
metabolite associated with the alleviation of NAFLD[100]. 
Kankaanpää et al[101] reported the effects of 8 wk 
of Bifidobacterium Bb-12- or Lactobacillus CG-
supplemented infant formula administration on the 
plasma fatty acid composition in infants. They found 
that Bifidobacterium decreased serum phospholipid EPA 
to 61% and AA levels to 77% compared with baseline 
values. In addition, Lactobacillus decreased EPA to 22% 
and AA to 62%. These reports described the effects 
of probiotics on host fatty acid compositions, but the 
results differed among the probiotics used and the host 

conditions. It was recently demonstrated that exposure 
of the human intestinal mucosa to Lactobacillus 
plantarum WCFSI induced the upregulation of genes 
in the intestinal mucosa involved in lipid/fatty acid 
transport, uptake and metabolism, such as CD36 and 
microsomal triglyceride transfer protein[102]. Several 
genes participating in mitochondrial and peroxisomal 
fatty acid metabolism were also upregulated[102].

With regards to liver damage and metabolism in 
hepatitis C virus patients, hepatitis C virus genotype 3 
infection perturbed glucose homeostasis through several 
direct and indirect mechanisms, leading to both hepatic 
and extrahepatic insulin resistance and accelerated 
disease progression including the development of 
hepatocellular carcinoma and type 2 diabetes[103]. 
Furthermore, changes in polyunsaturated fatty acids 
and lipid metabolism induced by hepatitis C core protein 
is thought to be involved in the pathogenesis of lipid 
metabolism disorders[102,104]. The administration of AA 
or EPA modulated the hepatitis C viral mechanism in 
hepatocytes[105]. Every step of the hepatitis C virus life 
cycle is intimately connected to lipid metabolism[106].

Bajaj et al[69] reported gut microbiota and serum/
urine metabolome in a phase I randomized clinical 
trial using probiotic Lactobacillus GG (LGG) in patients 
with cirrhosis. They showed the safety and tolerance 
of 4 wk LGG administration in cirrhosis patients, 
which improved endotoxemia and gut dysbiosis. 
Furthermore, significant gut microbe-metabolome 
linkage was obtained by LGG as the results of system 
biology analysis. Figure 2 shows the correlation 
network among changed gut microbiota by LGG 
and metabolomic analysis. For example, a reduction 
in Enterobacteriaceae was associated with a linked 
change with anti-inflammatory cytokine IL-13 and 
ammoniagenic amino acids that was not seen in 
the placebo group. Changes in the levels of several 
vitamins in the blood were also observed following 
the co-administration of multivitamins with sufficient 
nutrition in both the LGG and placebo groups in their 
study.

Obesity-associated hepatocellular carcinoma was 
recently attributed to molecular mechanisms such 
as chronic inflammation caused by adipose tissue 
remodeling and pro-inflammatory adipokine secretion, 
ectopic lipid accumulation and lipotoxicity, altered 
gut microbiota, and disrupted senescence in stellate 
cells, as well as insulin resistance leading to increased 
levels of insulin and insulin-like growth factors. LPS, a 
pathogen-associated molecular pattern recognized by 
TLR4, initiated various inflammatory and oncogenic 
pathways to develop hepatocarcinogenesis and 
was enriched in the intestine of obese humans and 
rodents[97,107].

The complexity of the gut microbiota could be 
revealed using a recent systems biology culturomics-
based method, genomic- and metagenomic-based 
methods, and proteomic- and metabolomic-based 
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methods[11]. Samples from the gut or other microbiota 
(e.g., feces and saliva) are assayed on solid media 
selective for axenic cultivation. Isolated microbial 
colonies are subjected to peptide extraction before 
matrix-assisted laser desorption/ionization time-
of-flight (MALDI-TOF)-based mass-spectrometry 
processing and species identification by peptide 
fingerprinting in the culturomics-based method. 
After standardized DNA extraction and quality control 
protocols, metagenomic sequences from the microbiota 
are generated by prosequencing selected 16S rRNA 

regions from microbial genomes by metagenomic-
based methods. The detection of metabolites from 
samples such as feces, urine, blood, plasma and saliva, 
can be performed using metabolomic approaches 
including gas-chromatography mass spectrometry, 
proton nuclear magnetic spectroscopy (1H-NMR) 
and a liquid chromatography mass spectrometry in 
metabolomic-based method. These are recommended 
as platforms to understand further the gut-microbiota-
liver metabolic network[11,108].

This review highlighted recent studies that re­
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Figure 1  Correlation networks among fecal microflora and organic acid and serum organic and fatty acid concentrations in hepatic cancer patients. 
Square boxes indicate fecal components and ellipsoids indicate serum components. Solid lines indicate positive correlations and dotted lines indicate negative 
correlations. A: Normal liver group; B: Chronic hepatitis or liver fibrosis group; C: Liver cirrhosis group. aP < 0.05 and bP < 0.01 by Pearson’s correlation coefficient test. 
Bact: Bacteroidaceae; Bifi: Bifidobacterium; Lact: Lactobacillus; Enteroba: Enterobacteriaceae; Enteroco: Enterococcus; Cand: Candida; C1: Formic acid; C2: Acetic 
acid; C3: Propionic acid; C4: Butyric acid; AA: Arachidonic acid; EPA: Eicosapentaenoic acid; DHA: Docosahexaenoic acid; FFA: Free fatty acid; PL: Phospholipid. 
Data adapted from Usami et al[46]. 
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ported an association between gut microbiota and 
host metabolism in cirrhosis. However, those reports 
mark the beginning of a new research area of the 
gut-liver axis. The liver is the central organ in host-

metabolism and future studies are important and will 
form a new research area in the setting of the gut-
microbiota-liver metabolic network. Hopefully this will 
contribute to interventions for the development of 

Figure 2  Sub-networks showing correlation network differences from baseline to week 8 in placebo and in Lactobacillus GG groups separately centered 
on selected bacterial taxa. Color of nodes: Blue, inflammatory cytokine; light green, serum metabolites; dark green, urine metabolites. Color of edges: pink, negative 
remained negative but there is a net loss of negative correlation; dark blue, negative changed to positive; yellow, positive remained positive but there is a net loss of 
positive correlation; red, positive to negative; dark green, complete shift of negative to positive; military green, complete shift of positive to negative. A, B: Sub-networks 
of correlation changes centered around Enterobacteriaceae; C, D: Sub-networks of correlation changes centered around Clostridiales Incertae Sedis XIV; E, F: Sub-
networks of correlation changes centered around Ruminococcaceae; G, H: Sub-networks of correlation changes centered around Lachnospiraceae. NSE: Neuron-
specific enolase; IL: Interleukin; IFN: Interferon; LysoPC: Lysophosphatidylcholine; LysoPE: Lysophosphatidylethanolamine; ADMA: Asymmetricdimethylarginine; 
Rumino: Ruminococcaceae. Data adapted from Bajaj et al[69].
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liver cirrhosis and related infectious and non-infectious 
complications including metabolic disturbances evoked 
by the gut-liver axis, especially in ALD, NAFLD and 
hepatocarcinogenesis. 

CONCLUSION
Gut microbiota can produce a diverse range of 
compounds that play a major role in regulating the 
activity of distal organs and the liver is strategically 
positioned downstream of the gut. We are gaining 
increased insight into the close relationship between 
the gut and the liver evoked by systemic metabolic 
changes. The evaluation of the gut-microbiota-liver 
metabolic network and the intervention of these 
relationships using probiotics, synbiotics, prebiotics 
with sufficient nutrition might aid the development of 
treatment and prevention for liver cirrhosis patients.
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