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Abstract
The recombinant DNA technology enabled the produ
ction of a variety of human therapeutic proteins. 
Accumulated clinical experience, however, indicates 
that the formation of antibodies against such proteins 
is a general phenomenon rather than an exception. 
The immunogenicity of therapeutic proteins results 
in inefficient therapy and in the development of 
undesired, sometimes life-threatening, side reactions. 
The human proteins, designed for clinical application, 
usually have the same amino acid sequence as 
their native prototypes and it is not yet fully clear 
what the reasons for their immunogenicity are. In 
previous studies we have demonstrated for the first 
time that interferon-b (IFN-b) pharmaceuticals, used 
for treatment of patients with multiple sclerosis, do 
contain advanced glycation end products (AGEs) that 
contribute to IFN-b immunogenicity. AGEs are the final 
products of a chemical reaction known as the Maillard 
reaction or glycation, which implication in protein 
drugs’ immunogenicity has been overlooked so far. 
Therefore, the aim of the present article is to provide 
a comprehensive overview on the Maillard reaction 
with emphasis on experimental data and theoretical 
consideration telling us why the Maillard reaction 
warrants special attention in the context of the well-
documented protein drugs’ immunogenicity. 
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Core tip: The Maillard reaction occurs spontaneously in 
host cells and causes covalent modifications, proteolysis 
and crosslinking of therapeutic proteins. These are gross 
structural changes, which upon administration may 
provoke in patients classical type innate and adaptive 
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immune responses. The consequences of the Maillard 
reaction, however, reach far beyond. Specific and non-
specific cellular receptors for the advanced products of 
the Maillard reaction may further enhance the immune 
response and elicit inflammation. All together the 
Maillard reaction actions are expected to result in drug 
neutralization and side effects in treated patients such 
as inflammatory and hypersensitivity reactions.

Tsekovska R, Sredovska-Bozhinov A, Niwa T, Ivanov I, 
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from: URL: http://www.wjgnet.com/2219-2824/full/v6/i1/19.
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INTRODUCTION
Protein pharmaceuticals are the major group of biophar­
maceuticals used today in medicine for treatment 
of a large number of diseases. Accumulated clinical 
experience indicates that protein drugs can elicit an 
immune response especially when applied in multiple 
doses over a prolonged period. The antibodies (Abs) 
in treated patients are produced either by a classical 
immune response against non-self-antigens or by 
distortion of the immune tolerance[1]. The development 
of anti-drug Abs is a slow process, in which the fre­
quency of occurrence and the titer of the antibodies 
vary widely from low levels in most cases to very high, 
for example during treatment with some interferon-b 
pharmaceuticals (IFN-b)[2]. The anti-drug Abs may have 
no clinical consequences[3-5]. However, some studies 
show that Abs may neutralize drug activity and that 
of the endogenous drug counterparts thus provoking 
severe complications in patients[6-8]. The most frequent 
side effects are flu-like symptoms and injection-site 
reactions[9,10], although cases of allergy, anaphylaxis and 
serum sickness have also been reported[11-16].  

The amino acid sequence of therapeutic proteins 
may differ from that of the native human prototypes 
and such proteins are therefore recognized by the 
immune system as non-self. This was the case with 
porcine insulin used nearly 60 years (from 1920 
to 1980) for treatment of diabetes. Porcine insulin 
differs by only one amino acid from human[17] but all 
patients treated with porcine insulin developed anti-
insulin Abs[18]. To compensate for drug neutralization 
in such cases drug dosages are increased thus further 
boosting the immune response. The final result of such 
a vicious cycle is loss of therapeutic efficacy[19,20]. The 
deviation from the native protein structure may explain 
why insulin and other therapeutic proteins of animal 
origin are immunogenic. However, the production of 
human insulin by the recombinant DNA technology did 
not fully solve the problem with the immunogenicity. 
Interestingly, the deletion of Tyr-19 in human insulin 

resulted in reduced immunogenicity[21]. We suppose 
that this Tyr-residue might be involved in covalent 
aggregation of insulin via the formation of dityrosine 
crosslinks.  

To date, the reasons for the immunogenicity of 
human proteins are not fully understood. The dose 
and duration of treatment, the route of drug admi­
nistration and patients’ inborn characteristics may 
modulate the immune response[22]. Excipient sub­
stances, used in drugs to stabilize proteins, may also 
be of particular relevance[23-25]. However, the reasons 
for immunogenicity are mainly attributed to protein 
structural changes occurring during fermentation, 
purification, drug formulation and storage, including 
amino acid substitutions, non-native (or lack of) 
glycosylation, proteolysis, aggregation (both covalent 
and non-covalent), denaturation, deamination and 
oxidation. Some of these structural alterations (covalent 
aggregation and proteolysis) may occur during the 
Maillard reaction, which relation to drugs’ immuno­
genicity is poorly studied and has inspired us to write the 
current review. 

MAILLARD REACTION AND MAILLARD 
REACTION PRODUCTS
At the beginning of the past century the French chemist 
Louis Camille Maillard conducted research on peptide 
synthesis[26]. At that time, when the mechanisms of 
protein biosynthesis were still a mystery, his far reaching 
goal was to understand the natural way of amino acid 
polymerization under mild physiological conditions. For 
this purpose Maillard used D-glucose, a widespread 
sugar in biological systems, as a soft condensing agent. 
Thus he realized that glucose, through its aldehyde 
group, is capable of reacting with amino acids[26]. In 
this way Maillard did not only make a contribution to 
basic organic chemistry but ingeniously predicted that 
“The consequences of these facts appear… interesting in 
various fields of science: Not only in human physiology 
and pathology’’[26].

The significance of the Maillard reaction, known 
also as non-enzymatic browning reaction or carbonyl-
amine reaction, for food chemistry was recognized 
soon. However, it took many years for biologists 
and physicians to grasp the physiological role of the 
Maillard reaction. Studies in the late 1960s revealed 
the existence of an abnormal fast-moving hemoglobin 
band in diabetic patients during routine electrophoretic 
screening for hemoglobin variants[27,28]. In the same 
year, it has been shown that the fast-moving hemog­
lobin subfraction HbA1c can be prepared in vitro by 
incubation of hemoglobin with glucose in the absence 
of enzyme catalysts[29]. Later on, in the scientific 
lexicon were introduced the terms “non-enzymatic 
glycosylation” and “glycation” in order to distinguish the 
Maillard reaction, proceeding in biological systems, from 
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the enzymatic glycosylation, which is a quite different, 
genetically programmed process. In the early 1980s, it 
has been hypothesized that glycation plays an important 
role in the pathogenesis of diabetic complications and 
aging[30,31]. Subsequently, this hypothesis found a 
plethora of experimental support, and many reviews 
have been dedicated to the link between glycation, 
diabetes and aging[32-38]. Although the carbonyl-amine 
reaction was discovered a century ago, its chemistry 
remains a still growing avenue of research. Two well 
defined stages can be distinguished in the Maillard 
reaction - early and advanced. The early stage includes 
reversible formation of Schiff bases between carbonyl 
and amino groups of the reactants, followed by a 
rearrangement of the Schiff bases to significantly more 
stable aldoamines (Amadori products) or ketamine 
(Heyns products) (Figure 1).

The early stage of the Maillard reaction is relatively 
well understood[39,40]. However, the same does not hold 
true for the chemical transformations of the Amadori 
and Heyns products into the so called advanced 
glycation end products (AGEs)[41]. Generally, these are 
dehydrogenation, dehydration, cyclization, condensation, 
isomerization, oxidation, and fragmentation reactions, 
taking place in thе advanced stage of Maillard reaction. 
Under anaerobic conditions, AGEs are derived directly 
from the Amadori product. However, under aerobic 
conditions, oxidative degradation of the Amadori 
products takes place, leading to the generation of highly 
reactive dicarbonyl compounds such as glyoxal (G), 
methylglyoxal (MG) and 3-deoxyglucosone (3DG)[42,43]. 

This “interruption” between the early and the advanced 
stage is what we call the intermediate step of Maillard 
reaction. In turn, the intermediate products, which 
are small, diffusible and highly reactive species, again 
attack amino compounds, thus propagating the initial 
chemical burden. The formation of AGEs, either directly 
from the Amadori product or through its degradation 
intermediates, is known as the classical, or Hodge 
pathway[40]. The Schiff base, formed early in the 
Maillard reaction, may also undergo non-enzymatic frag­
mentation to α-oxoaldehydes, which initiate another 
chain of chemical transformations known as the Namiki 
pathway[44]. In addition, under physiological conditions 
free monosaccharides undergo a transition metal ions 
catalyzed autoxidation to H2О2 and the corresponding 
ketoaldehydes, which are precursors for AGEs formation 
in the Wolff pathway, also recognized as a separate 
reaction chain in the Maillard chemistry[45-47]. The picture 
becomes increasingly colorful, pasting therein the 
carbonyl products released during lipid peroxidation, 
which also react with amines to form AGEs-like struc­
tures called Advanced Lipoxidation End Products 
(ALEs)[48,49]. AGEs/ALEs are covalent adducts with 
diverse stability and physicochemical characteristics 
such as blue fluorescence, brown color and crosslinking 
properties. When accumulating in biological amines 
such as proteins, DNA and amino-lipids, AGEs may 
significantly impair their structure and physiological 
function. The chemical structure of a number of AGEs 
formed in vitro as well as in human plasma and tissues 
has been determined so far[50-57]. 

21 March 27, 2016|Volume 6|Issue 1|WJI|www.wjgnet.com

Primary amines
(proteins) NH2

+

Carbonyls
(sugars)

C O

Wolff
pathway

Dicarbonyls

C C

O O

3-Deoxyglucosone

Methylglyoxal

Glyoxal

Proteins

Advanced glycation end products
  Altered (blocked) protein function
  Protein fragmentation and crosslinking
  Immune response

Schiff base Amadori product

HN     C    C     OH HN    C    C     O

H
odge pathw

ay

Chem
ical transform

ations

Ea
rly

 s
ta

ge
In

te
rm

ed
ia

te
st

eg
e

Ad
va

nc
ed

st
ag

e

Figure 1  Maillard reaction.

Tsekovska R et al . Glycation and protein drugs’ immunogenicity



chemical isomerization, which were extensively 
studied by Ahmed et al[54,65]. The authors found that 
hydroimidazolones formed in the reaction of arginine 
with methylglyoxal (MG-H) are composed of three 
structural isomers designated as MG-H1, MG-H2 and 
MG-H3. The reaction of arginine with G and 3DG 
yielded similar structural isomers (Figure 3)[67]. Due 
to racemization in the hydroimidazolone ring, each 
structural isomer may exist in two epimiric forms, 
which cannot be resolved without prior derivatization. 
As a rule, the stability of hydroimidazolones decreases 
with increasing pH and each structural isomer has a 
distinctive stability and half-life. The half-life of the 
individual stereoisomers of MG-H increases in the 
following order: MG-H1 > MG-H2 >> MG-H3. Under 
physiological conditions (pH 7.4, 37 ℃) the half-
life of MG-H1 is approximately 12 d. Ahmed et al[65] 
suggested that in contrast to CML, hydroimidazolones 
are not accumulating in long-lived proteins over time 
in vivo but rather reflecting short episodes of enhanced 
protein glycation under conditions of abnormal rise 
in the concentration of α-oxoaldehydes. The authors 
also assumed that Nω-(1-carboxyethyl)arginine and 
Nω-(1-carboxymethyl)arginine, which are more stable 
and found in in vivo glycated proteins, are probable 
degradation products of hydroimidazolones. 

AGEs crosslinks
The Maillard reaction not only yields sugar adducts on 
proteins but also results in gross structural changes 
such as proteolysis[68-70], and intra- or inter-molecular 
crosslinking[71,72]. Proteolysis of glycated proteins usually 
occurs at lysine and arginine residues[73] but may 
also happen randomly as a result of transition metal 
ions catalyzed oxidation[68,69]. In contrast, covalent 
crosslinking of polypeptide chains involves exclusively 
lysine and arginine residues. Lysine residues on the 

Nε-(carboxymethyl)lysine 
Nε-(carboxymethyl)lysine (CML) is one of the best-
characterized AGEs[58]. It is formed in the advanced 
stage of the Maillard reaction and always accompanies 
the formation of brown and fluorescent AGEs, although 
per se it is colorless and non-fluorescent. If proteins 
are glycated with either ribose or 3DG, then CML is 
formed only when the reaction is carried out under 
aerobic conditions[52,59]. This is why the detection of 
CML is an indication that protein modifications have 
occurred in the presence of oxygen. CML is formed by 
different oxidation mechanisms in vitro, involving not 
only reducing sugars. It may also be a product of lipid 
peroxidation[48] and serine oxidation[60] (Figure 2), and 
because of that CML should not be considered a typical 
glycation marker. In most cases of in vitro glycation 
CML is the main product found in proteins[61], and is also 
a dominant AGEs antigen in tissue proteins[62]. Direct 
formation of CML from the Amadori product through its 
autoxidation has been reported by Miki Hayashi et al[63]. 
The authors used as a model of Amadori compound 
glycated human serum albumin (HSA) and found that 
CML is formed by heat treatment of glycated HSA 
over 80 ℃ in a time-dependent manner. Further rise 
in the temperature to 100 ℃ resulted in the formation 
of the glycation intermediates G, MG and 3DG. The 
formation of CML in HSA was inhibited in the presence 
of a reducing agent (sodium borohydride), a chelator 
of transition metal ions (diethylenetriamine pentaacetic 
acid), or a trapping reagent for a-oxoaldehydes (amino­
guanidine), which indicates that CML (AGEs) accumu­
lation in proteins is manageable.   

Hydroimidazolones
Hydroimidazolones are formed in a reaction of the 
guanidino group of arginine with G, MG and 3DG[64-66]. 
The resulting products undergo structural and stereo­
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same or on different polypeptide chains become 
involved in the formation of shared AGEs structures 
such as G-derived lysine dimer (GOLD)[74], MG-derived 
lysine dimer (MOLD)[75], 3DG-derived lysine dimer 
(DOLD)[76], G-derived lysine-lysine crosslinks GOLA 
and GALA[77,78], glucose lysine dimer GLUCOLD[79], 
crossline[80,81] and vesperlysines[82] (Figure 4)[67]. AGEs 
crosslinks formed between lysine and arginine residues 
are G-derived arginine-lysine dimer (GODIC), MG-
derived arginine-lysine dimer (MODIC)[83], 3DG-derived 
arginine-lysine dimer (DOGDIC)[84], pentosidine[78] and 
glucosepane[84]. To the best of our knowledge, to date 
crosslinks formed between two arginine residues or 
between arginine/lysine residues and other amino acids 
have not been detected neither in vivo nor in in vitro 
glycation reaction, although the possible involvement 
of the cysteine thiol group in the formation of such 

crosslinks has been proposed[85].  

MAILLARD REACTION PRODUCTS IN 

THE HUMAN BODY
Endogenous formation of glycation products 
Early and advanced glycation products are formed in the 
human body throughout its existence. Many glycation 
adducts, appearing on proteins in model reactions in 
vitro, have been detected also in physiological systems. 
Fructoselysine (FL), the Amadori product formed by 
glucose on the e-amino group of lysine, has a relatively 
short half-live (2-6 wk)[86]. As a rule, early glycation in 
healthy subjects is not age-dependent, although some 
rise in the physiological FL concentration has been 
observed during aging. For example, the concentration 
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of the collagen-bound FL increases from 5 mmol/mol 
Lys in 20-year-old individuals to 7 mmol/mol Lys in 
70-year-old subjects[87]. Short-lived proteins such as 
albumin (half-life ca. 20 d) and even hemoglobin (half-
life ca. 120 d) accumulate in vivo predominantly early 
glycation products. Approximately 10% of HSA of 
healthy subjects is modified by FL at Lys-525[88], and 
incubation of HSA with glucose under physiological 
conditions in vitro leads to glycation of the same Lys 
residue[89]. Other Lys residues in HSA including Lys-439, 
Lys-199 and Lys-281 are also involved in FL formation in 
vivo[90] and it has been reported that glycation impairs 
HSA binding to physiologically important ligands such as 
bilirubin and cis-parinaric acid[89]. The historically crucial 
hemoglobin HbA1c contains glucose-derived Amadori 
product at the amino group of the hemoglobin b-chain 
N-terminal valine (bVal-1) and amounts 4%-6% of 
the total hemoglobin in healthy individuals. Except the 
N-terminal valine, some internal Lys residues in HbA1c 

also become glycated[91]. Under hyperglycemia HbA1c 

levels increase several times and correlate positively 
with the chronic diabetic pathology[92].  

Most AGEs are either not formed at physiological 
glucose concentrations (5 mmol/L) or their levels are 
quite lower (ten to thundered times) compared with 
hyperglycemic conditions. This makes AGEs relevant 
biomarkers of the glycation status of individuals, which 
changes with age and in disease state such as diabetes 
and kidney failure. Because of their great diversity, 
AGEs cover a wide concentration range in vivo (0.001 
to 15 mmol/mol modified amino acid)[86]. Physiologically 
important AGEs are those having long half-life (CML, 
CEL and pentosidine) and/or high concentration (hydro­
midazolones). Stable AGEs accumulate on long-lived 
proteins such as skin and cartilage collagen[93-96], and 
lens proteins[97], although CML has also been detected 
in the short-lived HSA of diabetic patients[98]. Hidroimi­
dazolones, albeit relatively unstable, may also appear 
on long-lived proteins such as human lens proteins[99]. 

Maillard reaction products (MRPs), which are found 
in the body, are classified into three groups - MRPs 
in proteins (> 12 kDa), MRPs in peptides (< 12 kDa) 
and free MRPs in amino acids. The term MRPs is more 
general than AGEs and applies to both early glycation 
products and AGEs. Peptide MRPs are detected mainly 
in the portal venous plasma and in the urine, and are 
most likely degradation products of glycated proteins. 
Free MRPs are formed during proteasome/lysosome 
degradation of glycated cellular proteins, then released 
into the bloodstream and excreted in the urine, which 
ensures efficient functioning of the cell proteome[100,101].  
Free MRPs may appear in vivo also as a result of amino 
acids glycation though this latter source of free MRPs is 
disputable[55].  

The impact of glycation on human physiology 
depends on many factors including the target amino 
compound and its half-life, the adduct stability and its 
location. Especially harmful are the consequences of 

the formation of covalent cross-links in proteins that 
render them resistant to proteolysis[102]. Both early 
glycation products and AGEs can cause damage via 
various mechanisms such as (1) release of oxygen 
radicals by early products[103]; (2) altered (blocked) 
activity of enzymes[104,105], receptors[106] and regula­
tory proteins[107,108]; (3) crosslinking of structural 
proteins[78,109]; (4) damage of signaling pathways[110,111], 
(5) damage of protein recycling[112,113]; and (6) induction 
of an immune response[114]. 

Dietary intake of glycation products 
Sugar-rich and processed foods are also a source of FL 
and AGEs in the human body[115]. The biodistribution 
and metabolism of these products have not been sys­
tematically studied, except the dietary intake of FL 
in humans[116]. Among foods rich in FL and AGEs are 
bread, biscuits, chocolate, breakfast cereals and hot 
milk. It has been reported that lactulose-lysine, an 
Amadori product formed during heat treatment of milk, 
is poorly digested in the gastrointestinal tract[117]. Some 
microorganisms can hydrolyze FL in the intestine. For 
example, an enzyme has been discovered in E. coli that 
degrades Ne-fructoselysine-6-phosphate to lysine and 
glucose-6-phosphate[118]. FL ingested with food and 
resorbed by the intestine, enters the circulatory system 
and then penetrates liver and muscle cells by passive 
diffusion. It is not clear yet whether lysine and glucose 
can be recycled from FL, because no human enzymes 
have been identified so far catalyzing the breakdown 
of FL to free lysine and glucose. In rats, about 60% of 
dietary FL is excreted in urine[119], whereas in humans 
this percentage is only 3%. In newborns, however, 16% 
of FL is found in the urine, and 55% is recovered in the 
feces[116] (Figure 5).  

Foods with high FL and AGEs content are poorly 
digestible, because glycated proteins are resistant to 
proteolysis. In addition, some AGEs inhibit intestinal 
proteases[120]. It is thought that dietary AGEs are 
absorbed mainly in the form of free and peptide MRPs. 
The highest concentration of absorbed food AGEs is 
expected in the plasma of the portal vein, where MG-H1 
is detectable mainly in peptides[121]. Although CML is 
formed in vivo, it is hypothesized that urinary CML is 
mostly of exogenous nature[122]. Studies with rats have 
shown that another product of the advanced glycation, 
5-Hydroxymethyl-2-furaldehyde (HMF), administered per 
os or intravenously is present in the liver but is mostly in 
the kidney and the bladder. Also, HMF or its metabolites 
are rapidly eliminated in the urine with a recovery of 
95%-100% after 24 h[123]. Only 10% of dietary AGEs are 
absorbed, of which only 30% are excreted in the urine 
of healthy individuals with unimpaired renal function[124]. 
Some dietary AGEs, after entering blood circulation, 
interact with low density lipoprotein (LDL) and tissue 
proteins (e.g., collagen) or bind to cellular receptors for 
AGEs to trigger intracellular oxidative stress, endocytosis 
and degradation of AGEs.
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ROLE OF THE IMMUNE SYSTEM IN THE 
ANTI-GLYCATION DEFENSE
Cellular receptors for AGEs 
Many cellular receptors are capable of binding AGEs. 
The AGE-receptor complex consists of AGE-R1 
(oligosaccharyl transferase-48), AGE-R2 (80K-H pho­
sphoprotein)[125,126] and AGE-R3 (galectin-3)[127]. Some 
receptors belonging to different classes of the scaven­
ger receptor (SR) supergroup[128,129] also bind AGEs. 
These are SR-A1 (SCARA1)[130] and SR-A1.1 (SR-
AII)[131], SR-B1 (SR-BI)[132] and SR-B2 (CD36)[133], SR-E1 
(LOX-1)[134], SR-H1 (FEEL-1) and SR-H2 (FEEL-2)[135]. 
These receptors are involved in detoxification of 
AGEs by intracellular degradation (endocytosis). 
Best characterized is the specific receptor for AGEs 
called Receptor for Advanced Glycation End Products 
(RAGE)[136]. RAGE is a multi-ligand receptor of the 
immunoglobulin superfamily, which plays a key role 
in inflammatory responses. Its extracellular domain 
is composed of three immunoglobulin-like domains 
- one V (variable) type Ig domain followed by two C 
(constant) type Ig domains[137]. RAGE also possesses 
a transmembrane domain and a cytoplasmic tail 
of 43 amino acids. Crucial for ligand binding is the 
V-domain, while the cytoplasmic tail is implicated in 
further transduction of captured signals[138]. RAGE is 
expressed weakly on a number of cell types and tissues 
under physiological conditions, however, an increased 
expression is observed in sites of ligands’ deposition. 
RAGE exists also in a soluble form (sRAGE)[139], which 
is hypothesized to participate in detoxification of 
circulating ligands. 

Apart from AGEs, ligands for RAGE are pro-inflam­
matory cytokine-like mediators from the S100/cal­
granulin family[140], the b-amyloid peptide[141] and 
amfoterin also known as High Mobility Group Box 
1 (HMGB1) - a nuclear protein released during cell 
necrosis[142-144]. AGEs and non-AGEs ligands bind to 
RAGE on endothelial cells, neurons, smooth muscle and 
immune cells to activate a variety of signaling pathways 
including expression of NF-kB - a transcription factor, 
which plays a key role in regulation of the immune 
response[145]. While expressed inducibly on T-cells 
of healthy subjects upon T-cell receptor activation, 
RAGE is constitutively synthesized in diabetics’ T-cells, 
and a role for RAGE in the adaptive immunity has 
been proposed[146,147]. In has been demonstrated that 
ovalbumin (OVA) modified with AGEs (pyrraline), but 
not native OVA, induces SR-A mediated uptake of the 
antigen by dendritic cells and enhances CD4+ T-cell 
immunogenicity and potential antigenicity of OVA[148,149]. 
Characteristic for RAGE is that it recognizes tertiary 
structures rather than amino acid sequences. This 
feature endows RAGE with properties of the pattern 
recognition receptor (PRR), which recognizes repeated 
antigenic motifs of the type of pathogen-associated 
molecular patterns (PAMPs)[150]. RAGE can also recruit 
immune cells in the sites of inflammation. For example, 
RAGE on endothelial cells can function as an adhesive 
receptor interacting with the leukocyte b2-integrins[151]. 
Intriguing findings in recent years suggest that RAGE’s 
actions contribute to perpetuation of AGEs production 
by sustaining oxidative stress and inflammation, and 
by suppressing the detoxification of MG as one of the 
major AGEs precursors[152,153]. 
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Anti-AGEs antibodies
Apart from cellular immune responses, AGEs may elicit 
a humoral immunity. Excessive accumulation of AGEs 
with age and in pathology appears to correlate with 
elevated levels of anti-AGEs antibodies[154]. Glycated 
proteins [histone H2A[155], HSA[156], poly-L-lysine 
(PLL)[157], IgG[158]], DNA[159,160] and LDL[161,162] have 
demonstrated higher immunogenicity in experimental 
animals than the non-glycated counterparts, and 
sera of diabetic patients were found to exhibit higher 
binding activity to glycated HSA[163], PLL[157], IgG[158] and 
DNA[159] than to the unmodified molecules. In addition, 
patients with renal failure of diabetic or non-diabetic 
etiology had higher autoantibody activity against CML 
(an AGE structure) than normal subjects or diabetics 
without renal failure[164]. The injection of rats with in 
vitro glycated rat skin collagen leads to the formation 
of anti-collagen Abs, which do not cross-react with 
non-glycated collagen. The binding of the serum Abs 
to the glycated collagen is inhibited by 92% when the 
reaction is conducted in presence of glycated Lys as 
a competitor. This result indicates that glycated Lys 
residues on collagen are the most probable epitopes 
captured by the anti-collagen Abs[165]. Of note, sera 
from streptozotocin-induced diabetic rats contained Abs 
that clearly bound glycated collagen.

Vay et al[166] have observed 289 diabetic patients 
and 120 healthy individuals for serum Abs against CML 
(anti-CML Abs). Although they have found an increased 
titer of anti-CML Abs (IgG-isotype) in sera of diabetic 
patients compared to controls (P < 0.0001), there was 
no correlation between the titer of the anti-CML Abs and 
patients’ glycemic status. In a similar study including 
58 children with type I diabetes, 19 children have been 
found to be anti-AGEs Abs positive[167]. In contrast to 
the previous study, the authors have found that the titer 
of the anti-AGEs Abs correlates positively with some 
diabetic markers such as HbA1c, microalbuminuria and 
retinopathy. While some studies show higher titer of 
circulating anti-AGEs Abs in diabetic patients than in 
healthy individuals[164,166], others report on the reverse 
condition, i.e., lower anti-AGEs Abs titers in diabetics 
than in normal controls[168,169]. To explain this paradox 
the authors suggested that circulatory anti-AGEs 
Abs are either captured by tissue-bound AGEs[168] or 
entrapped in immune complexes[169] hampering their 
determination. If real, such events could explain the 
lack of a correlation between the titer of the serum anti-
CML Abs and the patients’ glycemic status in the above 
cited study[166].

It is well known that some patients with rheumatoid 
arthritis (RA) develop auto-Abs against the IgG constant 
(Fc) region, which is designated as rheumatoid factor 
(RF). A pilot study with RA patients has shown that only 
RF-positive patients have serum IgM Abs binding to in 
vitro glycated IgG (IgG-AGEs), suggesting that the IgM 
anti-IgG-AGEs together with IgG-AGEs may contribute 
to the pathogenesis of RA[170]. Further studies have 

shown that immune complexes isolated from patients’ 
sera indeed contain AGEs (CML and imidazolone) 
modified IgG. It is very likely that the anti-IgG-AGEs 
prevent the normal clearance of IgG-AGEs by AGEs 
receptors[171]. Noteworthy, as with most biologics, some 
RA patients treated with antagonists of the human 
tumor necrosis factor (TNF) (infliximab, etanercept and 
adalimumab) develop anti-drug antibodies[172]. The TNF-
antagonists are in fact anti-TNF Abs of IgG isotype[172] 
and in light of the current review two events could be 
proposed: (1) if the Fc regions of the therapeutic anti-
TNF Abs are also glycated (anti-TNF-AGEs Abs), they 
could compete with patients’ IgG-AGEs for binding RF 
in human plasma; and (2) if the patients’ antibodies 
against the glycated biologic are specifically directed 
against the glycated moiety (AGEs) of the anti-TNF-
AGEs Abs, apart from binding the drug, they would 
be also capable of interacting with patients’ IgG-AGEs. 
The net result of this hypothetical and intertwined 
scenario is difficult to predict, but it should be taken 
into consideration by pharmacists, pharmacologists and 
clinicians. Intriguingly, subcutaneous immunization with 
AGEs modified LDL (AGEs-LDL) significantly inhibited 
atherosclerosis progression in hyperlipidemic diabetic 
mice possibly through activation of specific humoral 
and cell mediated immune responses[173]. The anti-
atherogenic effect of the anti-AGEs-LDL Abs, however, 
is disputable yet[174] in so far as immune complexes 
containing such Abs are detected in human sera[175] 
and shown to be important predictors of carotid intima-
medial thickening in patients with type 1 diabetes[176].

REASONS FOR THE IMMUNOGENICITY 
OF PROTEIN THERAPEUTICS
Aggregation of proteins
The most important structural change contributing to 
protein drugs’ immunogenicity is aggregation, which 
may be both covalent and non-covalent. The non-
covalent aggregation results from interaction between 
non-native transient protein conformers with partially 
preserved secondary structure called aggregation 
competent particles. Such particles accumulate pro­
gressively in the time course of protein storage due 
to structural fluctuations and beget intermolecular 
interactions resulting in protein aggregation. The 
aggregation process is often accompanied by protein 
precipitation and loss of biological activity[177]. It is 
believed that the formation of aggregates proceeds 
by a cooperative mechanism, i.e., the non-native con­
formers react with other native molecules to render 
them aggregation competent. The formation of dimers 
and higher order multimers in turn accelerates the 
aggregation process[178,179].

Aggregates in protein drugs substantially contribute 
to immune response in treated patients[23,180-185]. Studies 
with interferon-a have shown that the magnitude of 
the immune response does not depend on the size 
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of the aggregates but rather on the structure of the 
protein molecules involved in aggregation. Aggregates, 
formed by molecules with largely preserved secondary 
structure (native-like) are more immunogenic com­
pared to aggregates composed of fully denatured 
molecules[22,186]. This could explain why Purohit et 
al[187] have not observed an immune response against 
recombinant human factor VIII in model animals. Before 
injection into animals the authors heated the protein 
to stimulate aggregation, which perhaps caused its 
denaturing. The prevalent hypothesis, which explains 
the immunogenicity of the protein aggregates, is the 
“array” hypothesis[188-194]. The human immune system 
is specialized to recognize proteins that are presented 
in an array format, as is the case with viral capsids 
and bacterial cell walls. In fact, aggregated proteins 
are arranged in similar “pathogen-like” structures and 
thus may be sensed by the immune system as foreign 
antigens. 

Post-translational modifications of proteins
The enzymatic glycosylation is an inborn post-trans­
lational modification of many eukaryotic proteins and in 
most cases is indispensable for their biological activity 
and stability. Also, the lack of native polysaccharide 
residues may unmask potentially immunogenic epito­
pes in proteins. Increasing evidence in the last decade 
shows that glycoproteins are not a eukaryotic privilege. 
Competent to enzymatically glycosylate proteins 
are many prokaryotes including Escherichia coli - 
the “workhorse” of the current biotechnology[195-198]. 
Prokaryotic glycosylation, however, differs significantly 
from that in eukaryotes. Therefore, it is preferable that 
naturally glycosylated human proteins are produced in 
eukaryotic cell lines. On the other hand, glycosylation 
in eukaryotes is species and cell specific[199]. Polysa­
ccharides may vary in composition, chain length, 
binding sites on proteins and points of chain branching. 
This means that for the production of human proteins 
with preserved glycosylation pattern appropriate host 
cells have to be selected performing identical or similar 
glycosylation to that of the natural proteins[200] .  

While native glycosylation of human therapeutic 
proteins is desirable, other non-enzymatic post-trans­
lational modifications should be avoided[201]. Spontaneous 
oxidation and deamination, sometimes followed by 
isomerization, are major causes of proteolysis during 
protein isolation, purification and storage. Deamination 
affects mainly asparagine residues and leads to their 
conversion into aspartate or iso-aspartate residues[202,203]. 
Glutamine in proteins may undergo similar spontaneous 
deamination to glutamate. Studies with oxidized and 
non-oxidized forms of IFNb have shown that oxidized 
protein species are significantly more immunogenic[204]. 
The oxidation may lead to covalent aggregation of 
therapeutic proteins through the formation of cysteine 
and/or tyrosine covalent cross-links[54,205]. This is the 
reason why functionally unimportant Cys residues in 

therapeutic proteins are often replaced by alternative 
amino acids. To our knowledge, no one has tried so far 
to reduce covalent cross-linking of therapeutic proteins 
through replacement of Tyr residues. Last but not least, 
the leitmotif of the current review, the Maillard reaction, 
is another non-enzymatic post-translational modification 
of proteins, which contribution to the immunogenicity of 
protein drugs will be discussed in detail below. 

OUR FOCUS ON THE LINK BETWEEN 
THE MAILLARD REACTION AND 
THE IMMUNOGENICITY OF PROTEIN 
THERAPEUTICS
We entered the Maillard reaction field nearly 15 years 
ago when searching a reasonable explanation of the 
unexpected behavior of a cysteine-less variant of 
human interferon-gamma (hIFNg) expressed in E. coli. 
Despite the lack of Cys residues, the protein underwent 
progressive covalent dimerization during storage under 
anaerobic conditions, which excluded oxidation (i.e., 
formation of disulfide bridges and tyrosine dimers) 
as a cause of the observed phenomenon (Figure 
6). Brief literature survey led us to suppose that the 
Maillard reaction may provide a rational explanation 
of hIFNg covalent dimerization and proteolysis. At 
that time, however, it was not yet clear whether the 
Maillard reaction may occur in prokaryotes because 
of their short life span and intense protein turnover. 
We undertook relevant investigations in this direction 
and found that both endogenous and recombinant 
proteins[73,206] as well as chromosomal DNA[207] of E. coli 
are involved in glycation under normal physiological 
conditions. The short life span of E. coli does not 
disagree with these observations. During batch fermen­
tation of E coli a generation time of ca. 20 min and 
a few divisions are sufficient for the Maillard reaction 
to take off through the formation of Schiff bases in 
proteins. Then, the whole Maillard cascade of chemical 
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Figure 6  Covalent dimerization and proteolysis of Escherichia coli-
derived hIFNg (A) after storage for one month in solution (0.4 mol/L NaCl, 
Tris-HCl pH 8.2) at 4 ℃ under nitrogen (B). Protein species were separated 
on 15% denaturing (sodium dodecyl sulfate) polyacrylamide gel.
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transformations resulting in AGEs formation may happen 
in vitro during protein isolation, purification, formulation 
and storage. We indeed found that freshly isolated 
hIFNg contains Amadri products but not AGEs, which 
accumulated in the protein over time accompanied by 
covalent aggregation, proteolysis and loss of biological 
activity[73,208]. Interferons are basic proteins rich in lysine 
and arginine residues and because of that susceptible 
to glycation. On the other hand, human interferons 
Type I (a and b) are the active ingredients of a number 
of pharmaceuticals used today for treatment of various 
cancers, autoimmune and viral diseases. For this reason 
we decided to analyze interferon-based pharmaceuticals 
for the presence of AGEs.  

AGEs in interferon pharmaceuticals
Type I interferon pharmaceuticals manufactured by 
different companies worldwide were tested: E. coli-
derived hIFNa-2b (Intron-A, Schering-Plough Corp., 
Kenilworth, NJ, United States), natural (lymphoblast) 
nhIFNa (IFNa MOCHIDA1000, Mochida Pharmaceutical 
Co., Ltd, Tokyo, Japan), E. coli-derived hIFNa-con1 
(Advaferon-1800, Yamanouchi Pharmaceutical Co., 
Ltd., Tokyo, Japan), natural (fibroblast) nhIFNb (IFNb 
MOCHIDA600, Mochida Pharamceutical Co., Ltd, Tokyo, 
Japan), E. coli-derived hIFNb-1b (Betaferon, Schering 
AG, Berlin, Germany), CHO-derived IFNb-1a (Rebif 44 
mg, New Formulation, Merck Serono, Bari, Italy), and 
CHO-derived IFNb-1a (Avonex 30 mg, Biogen Idec 
Inc., Weston, MA, United States). All pharmaceuticals 
except Adaferon and Rebif were powders containing 
HSA as a stabilizer while Advaferon and Rebif were 
liquid formulations without protein excipients. We tested 
all drugs for AGEs by enzyme-linked immunosorbent 
assay (ELISA) using two monoclonal antibodies specific 
for CML and 3DG-derived imidazolone (Figure 7). 
Lymphoblast IFNa MOCHIDA was negative for both 
CML and 3DG-imidazolone, whereas the content of 
both AGEs in fibroblast IFNb MOCHIDA was higher 
than that in the E-coli-derived Intron-A and Advaferon. 
Also, Rebif produced in Chinese hamster ovary (CHO) 
cells proved to contain higher levels of AGEs compared 

to the E. coli-derived Betaferon. Based on these 
observations we concluded that therapeutic proteins 
are affected by glycation independently of whether they 
are produced by native or recombinant (either pro- or 
eukaryotic) cells. This result is not surprising bearing 
in mind both pro- and eukaryotic cells are glycation-
proficient. Whether there are any differences in the 
glycation power between pro- and eukaryotic cells is 
a largely unexplored issue and a direction for future 
investigations. We suggest that the variable AGEs 
content in the drugs reflects different manufacturing 
technologies rather than specific characteristics of the 
cell-producers. 

Five of the pharmaceuticals are formulated with 
HSA at concentrations ten to hundred times higher 
than that of interferons. Thus the reasonable question 
emerged whether AGEs, we are measuring, are located 
in HSA or in interferons. The answer of this question is 
“in interferons” because of the following reasons: (1) 
a highly purified pharmaceutical grade HSA is used for 
drugs’ formulation. Own mass-spectral analyses of all 
five HSA containing drugs confirmed the low glycation 
status of HSA[209], although 50% of HSA proved to 
be cysteinylated as shown also by other authors[210]. 
How HSA-Cys impacts drug stability is not yet clear 
and should be outlined as another direction for future 
investigations; (2) we have isolated an IFNb enriched 
fraction from Betaferon by size-exclusion HPLC, which 
demonstrated 15 times higher concentration of CML 
as compared to Betaferon’s HSA[211]; and (3) as seen 
in Figure 7, the HSA-free drug Rebif demonstrated the 
highest concentration of CML and 3DG-imidazolone 
among all seven drugs while the HSA containing IFNa 
MOCHIDA was deprived of these two AGEs. 

AGEs and immunogenicity of IFNb pharmaceuticals 
In most cases AGEs are bulky chemical moieties 
that may behave like haptens rendering self-proteins 
immunogenic. As seen in Figure 7, the four IFNb 
pharmaceuticals tested proved to contain more CML 
and 3DG-imidazolone than the three IFNa drugs. 
Also, a number of studies report on immunogenicity 
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of IFNb[2,212-227]. Therefore, to either verify or reject 
the hypothesis that AGEs contribute to IFNb immuno­
genicity, we studied sera from patients suffering from 
relapsing-remitting multiple sclerosis (MS) treated with 
Avonex (12 patients), Betaferon (15 patients) or Rebif 
(15 patients)[211]. Seventy four percent (31/42) of the 
patients enrolled in our study had flu-like symptoms, 
injection-site reactions, or both. Sera were tested for 
binding anti-IFNb and anti-AGEs Abs of IgG isotype by 
direct ELISA. The percentage of anti-IFNb Abs positive 
(Abs+) patients was highest in the Betaferon group 
(60%) followed by the Rebif (40%) and Avonex (17%) 
groups (Figure 8), which is consistent with data about 
the relative incidence of persistent neutralizing Abs 
(NAb) in patients treated with the same drugs[228]. 
Although CML and 3DG-imidazolone levels were higher 
in Rebif (Figure 7), Betaferon demonstrated higher 
immunogenicity than Rebif. Note that besides AGEs-
modifications, and in contrast to the CHO-derived 
IFNb1a (Rebif), the E. coli-derived IFNb1b (Betaferon) 
lacks glycosylation at Asn-80, has an amino acid 
substitution (Ser17 for Cys17) and is prone to non-
covalent aggregation[229], which could explain its higher 
immunogenicity. Seventeen percent (2/12) of the 
patients in the Avonex group were anti-AGEs Abs+, 
whereas for the other two groups (Betafeon and Rebif) 
the percentage of anti-AGEs Abs+ patients was 20% 
(3/15). All anti-AGEs Abs+ patients were anti-IFNb 
Abs+. This, however, does not necessarily mean that 
the formation of anti-AGEs Abs in these patients was 
provoked by the IFNb therapy. Convincing evidence for 
the link between the formation of anti-IFNb and anti-
AGEs Abs was obtained by competitive ELISA. The 
addition of an external AGEs-competitor (AGEs-BSA) 
to sera inhibited binding to IFNb of two (Avonex), three 
(Rebif) and five (Betaferon) sera with inhibition ranging 
from 9% to 70%. The different degree of inhibition 
most likely reflects the relative contribution of AGEs 
to the overall IFNb immunogenicity in each particular 
patient. All ten sera responding to inhibition by AGEs-
BSA were tested also for response to inhibition by mAbs 

raised against CML and 3DG-imidazolone. Significant 
inhibition (P < 0.05) of sera reactivity to IFNb was 
obtained with one serum from the Avonex group and 
with two sera from the Rebif group. One can suggest 
that in the remaining seven anti-AGEs Abs+ sera, which 
did not respond to inhibition by the two mAbs, the anti-
AGEs Abs were raised against other AGEs (not CML and 
3-DG-imidazolone) in IFNb.

Whether the anti-AGEs Abs that cross-react with 
IFNb neutralize drug activity and/or contribute to the 
observed inflammatory side reactions in treated patients 
are questions to be addressed in the future. Also, 
besides injection-site reactions and flu-like symptoms, 
cases of allergy[13-15] and anaphylaxis[11,16] have been 
reported for MS patients on IFNb therapy. Therefore, it is 
worth to conduct case studies with such patients in order 
to answer the question of whether AGEs in IFNb have 
contributed to the observed hypersensitivity reactions. 

POSSIBLE SCENARIOS UPON 
TREATMENT WITH IFNb-AGEs
AGEs are formed in the human body under normal and 
pathological conditions, and are consumed with food as 
well. Because of the negative impact of AGEs on human 
physiology, elaborate mechanisms do exist for anti-
AGEs defense ranging from enzymatic detoxification of 
AGEs’ precursors (i.e., carbonyl compounds[230-234], Schiff 
bases[235] and Amadori products[236]) going through 
intracellular proteasome/endosome degradation of 
protein AGEs, and ending up with renal clearance of 
free and peptide AGEs. Anti-AGEs antibodies have 
been detected in sera of healthy individuals as part of a 
homeostatic mechanism, which clears altered structures 
via in situ destruction or via opsonization[237]. The 
formation of AGEs starts during embryonic development 
and one can assume that against some stable AGEs 
in long-lived proteins an immune tolerance might be 
developed. IFNb, however, is a short-lived protein (half-
life of hours) and it is expected that upon administration 
in patients IFNb-AGEs would be recognized as non-
self-antigen thus provoking a classical type immune 
response.  

The adaptive immunity against IFNb may be 
preceded by activation of the innate immunity. The 
binding of IFNb-AGEs to non-specific (for AGEs) 
cellular receptors, such as the scavenger receptors 
and AGE-R3 on macrophages can result in IFNb-AGEs 
degradation by phagocytosis (Figure 9). On the other 
hand, it has been shown that the specific receptor for 
AGEs, RAGE, belongs to the immunoglobulin superfamily 
and has the properties of a pattern recognition receptor 
(PRR)[137,238,239], which can sense recurring structures 
of the type of PAMPs[150]. It is well-known that the 
interaction of PRR with PAMPs triggers an intrace­
llular signaling cascade, which initiates an innate, 
inflammatory by nature, immune response[240] resulting 
in degradation of the pathogen and in enhancement 
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of the adaptive immune response. We have shown 
that Advaferon, Betaferon and Rebif contain covalent 
IFNb aggregates[211,241], which are formed perhaps 
by glycoxidation via the mediator role of crosslinking 
AGEs like GOLD, MOLD, pentosidine etc. Such covalent 
aggregates may resemble PAMPs thus interacting with 
RAGE on macrophages, natural killer (NK) cells and 
other immune cells to elicit an innate immune response.

RAGE may play further role in inflammatory rea­
ctions[151,242] during IFNb-AGEs therapy. It has been 
reported that CML[243,244] and MG-derived hydroimi­
dazolone[245] are ligands for RAGE. Binding of RAGE 
with these and other AGEs and non-AGEs ligands such 
amfoterin does not result in ligands’ degradation but 
rather triggers different signaling pathways, including 
proinflammatory responses via the activation of trans­
cription factor NF-kB[138,246,247]. Also, RAGE on endothelial 
cells may act as an adhesive receptor interacting with 
leukocyte b2 integrins[151] to recruit immune cells into 
sites of inflammation. Taken together the different 
pathways, in which the immune system may react 
against IFNb-AGEs, are expected to result in neutrali­
zation of IFNb activity (inefficient therapy), and in 
immune-mediated side effects (risky therapy). 

CONCLUSION
Many proteins used today in medicine (erythropoietin, 
insulin, human growth hormone, clotting factors VIII 
and IX) have been shown to elicit varying incidence of 
antibody generation in treated patients[5]. Proteins are 
susceptible to glycation and it is the protein structure 
that determines to what extent given protein will 

accumulate AGEs. Scaling up the studies by including 
other therapeutic proteins will reveal the magnitude 
of AGEs as a causal factor of drugs’ immunogenicity. 
On the other side, not only the protein structure but 
the whole manufacturing process may impact the 
glycation status of proteins. Therefore, specific anti-
glycation strategies have to be applied to prevent 
protein glycoixidation. The choice and engineering of 
appropriate host cells are of particular importance. The 
glycation potential of host cells should be controlled at 
all stages of the Maillard reaction including its initiation, 
propagation and progression. Engineering host cells to 
overexpress enzymes that detoxify carbonyl compounds 
will block glycation initiation and its propagation. In a 
similar way, the overexpression of deglycases[235,236] 
in host cells may interfere with early glycation stages. 
Also, a number of studies report on synthetic and 
natural compounds with anti-glycation activity[248]. Such 
substances can be added to the fermentation media 
of host cells to inhibit protein glycation. Fermentation 
parameters such as glucose concentration[249], oxygen 
supply (when applicable), temperature, and pH-
control are also of particular relevance. If despite all 
these measures there are glycation adducts still left 
on proteins, additional techniques could be applied 
such as: (1) boronate affinity chromatography for 
extraction of protein species modified by early glycation 
products[250]; and (2) use of AGEs-breakers[251,252] for 
removal of AGEs. Although costly, isolation, purification, 
formulation and storage of proteins are best to be 
conducted under anaerobic conditions, thereby avoiding 
the use of carbonyl compounds and transition metal 
ions at each step. Finally, health care authorities 
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including the American Food and Drug Administration 
and the European Medical Agency are recommended to 
undertake relevant initiatives for AGEs assessment of 
protein drugs. 
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