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Abstract 
The loss of cardiomyocytes during injury and disease can 
result in heart failure and sudden death, while the adult 
heart has a limited capacity for endogenous regeneration 
and repair. Current stem cell-based regenerative medicine 
approaches modestly improve cardiomyocyte survival, but 
offer neglectable cardiomyogenesis. This has prompted 
the need for methodological developments that crease 
de novo  cardiomyocytes. Current insights in cardiac 
development on the processes and regulatory mechanisms 
in embryonic cardiomyocyte differentiation provide a basis 
to therapeutically induce these pathways to generate 
new cardiomyocytes. Here, we discuss the current 
knowledge on embryonic cardiomyocyte differentiation 
and the implementation of this knowledge in state-of-
the-art protocols to the direct reprogramming of cardiac 
fibroblasts into de novo cardiomyocytes in vitro and in vivo 
with an emphasis on microRNA-mediated reprogramming. 
Additionally, we discuss current advances on state-of-the-
art targeted drug delivery systems that can be employed 
to deliver these microRNAs to the damaged cardiac 
tissue. Together, the advances in our understanding of 
cardiac development, recent advances in microRNA-
based therapeutics, and innovative drug delivery systems, 
highlight exciting opportunities for effective therapies for 
myocardial infarction and heart failure.
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Core tip: Cardiac fibroblast reprogramming into cardio
myocytes holds great promise for future cardiac regen
erative medicine therapies. Here, we discuss current 
advances in the state-of-the-art protocols for the direct 
reprogramming of cardiac fibroblasts into de novo 
cardiomyocytes in vitro and in vivo  with an emphasis on 
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microRNA-mediated reprogramming. Additionally, we 
discuss current advances on the state-of-the-art targeted 
drug delivery systems that can be employed to deliver 
these microRNAs to the damaged cardiac tissue. 
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INTRODUCTION
Ischemic cardiac disease is characterized by a chronic or 
acute reduction in myocardial perfusion and affects over 
120 million people globally of which approximately 4% 
suffer from myocardial infarction (MI) annually[1,2]. MI is 
the process of cell death occurring after occlusion of a 
coronary vessel that supplies blood to a specific area of 
the heart and results in a massive loss (up to 11 billion 
cells) of viable muscle cells[3]. This loss of cardiac tissue 
may in turn lead to functional cardiac impairments and, 
if large enough, severe contractile dysfunction with 
an inability of the heart to maintain organ perfusion 
resulting in sudden death.

Although the recognition of MI and the success rates 
of primary angioplasty have greatly improved in the 
past decades, treatment of MI is commenced after the 
cardiac damage response has already started. Cell death, 
either by apoptosis or necrosis, is the initial response 
of cardiomyocytes to the decreased oxygen supply and 
commences already 4 h after MI[4,5]. Cardiomyocyte cell 
death is followed by the influx of inflammatory cells that 
phagocytize the dead cells, resulting in thinning of the 
ventricle wall. Cytokines secreted by these inflammatory 
cells recruit myofibroblasts that secrete collagens and 
replace the lost cardiomyocytes[6,7]. This remodeling 
process culminates in the formation of a scar tissue that 
preserves the ventricle integrity, but possesses little 
contractile function which hampers cardiac function. At 
this stage, chronic heart failure is likely to develop as the 
cardiac tissue is unable to regain its normal function[8,9]. 
Current treatment options consist of appropriate diet 
and lifestyle changes and medicinal in the use of 
diuretics, ACE inhibitors and AT receptor blockers, in an 
attempt to alleviate the heart from the waring strains it 
encounters. However, although these interventions have 
a pronounced effect on increasing the patients lifespan, 
the do not treat the underlying pathology, which is the 
loss of cardiomyocyte mass[10-12].

So, if the morbidity following MI is due to the ma
ssive loss of cardiomyocytes, would it not be logical to 
therapeutically induce cardiomyocyte proliferation to 
compensate for the lost myocytes?

Although most cardiomyocytes form terminally 

differentiated binucleated cells that withdraw from the 
cell cycle[13,14], limiting the myocardial regenerative 
capacity, some evidence exists for postnatal cardio
myocyte proliferation. Retrospective birth dating of 
human cardiomyocytes using carbon-14 in the DNA of 
cardiomyocytes demonstrated that human cardiomyocytes 
have a turnover rate of approximately 0.45%-1% per 
year[15]. During normal human wound healing, cell cycle 
activation occurs which compensates for the loss of 
tissue[16,17]. Indeed, a small number of cardiomyocytes 
enters the cell division cycle following myocardial infarction[18], 
however the level of proliferation is insufficient to regenerate 
the lost tissue. 

The observation that the postnatal heart retains some 
proliferative capacity has inspired therapeutic approaches 
that aim to enhance the endogenous cardiomyocyte 
proliferation for regeneration. Indeed, forced expression 
of cell cycle activators such as Cyclin A2 and D2 promotes 
the proliferation of postnatal cardiomyocytes and limits 
damage following MI[19,20]. Additionally, regenerative 
medicine approaches using a wide variety of growth 
factors (i.e., ERBB2[21], FGF1[22,23], HGF[24,25], IGF1[25], 
NRG1[22,26,27], MYDGF[28], and POSTN[29], reviewed in[30,31]) 
induce cardiomyocyte proliferation after MI, albeit relatively 
ineffectively.

The relative ineffectiveness of cardiomitogenic ther
apies using growth factors in restoring cardiomyocyte 
numbers following myocardial infarction warrants the 
need to increase cardiomyocyte numbers from exogenous 
sources. The effectiveness of adult stem and progenitor 
cells of various origins (i.e., bone marrow-derived cells 
[Mesenchymal stem cells (MSC)[32] and endothelial 
progenitor cells (EPC/ECFC)[33]], adipose tissue-derived 
regenerative cells (ADRC)[34] and cardiac-derived 
progenitor cells (CPC)[35] to induce cardiac regeneration 
has been assessed in numerous clinical studies (reviewed 
in[36-39]). In general, intramyocardial transplantation 
of adult stem and progenitor cells in the post-infarct 
myocardium induces neoangiogenesis and promotes 
cardiomyocyte survival[40] and thereby reduces the 
infarct size and improves cardiac function long term[39]. 
Although these effects are beneficial to the survival of 
the myocardium, retention of therapeutic cells at the site 
of cardiomyocyte death is highly limited[41,42] and their 
cardiomyogenic effects are neglectable[43,44]. Hence, the 
regenerative effectiveness of transplantation of adult 
stem and progenitor cells is under debate[43,45].

Thus, MI results in a massive loss of cardiomyocytes 
that are replaced by scar tissue. Endogenous repair 
mechanisms, such as cardiomyocyte proliferation, are 
insufficient to efficiently regenerate the lost myocardial 
tissue and therapeutic approaches to induce cardiomyocyte 
proliferation using growth factors are ineffective. Current 
regenerative medicine therapies using stem and progenitor 
cells improve cardiomyocyte survival, but pose neglectable 
cardiomyogenesis. This warrants the development of new 
therapeutic strategies that focus on increasing the number 
of viable cardiomyocytes at the infarct site, reviewed below.
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Cellular plasticity as the new 
therapeutic opportunity
Induced pluripotent stem cells and cardiomyogenesis
In 2006, Takahashi et al[46] challenged the dogma of 
terminal cell differentiation. Probing the effects of trans
cription factors that are pivotal to embryonic stem cell 
maintenance in terminally differentiated skin fibroblasts, 
four transcription factors (i.e., Oct4, Sox2, Klf4 and 
c-Myc) were identified that could convert skin fibroblasts 
into a more primitive pluripotent stem cell resembling 
embryonic stem cells[46,47]. These data exemplify that 
cell fate is not fixed, but is determined by the available 
transcription factors and can be altered by the addition 
of alternative transcription factors. The obtained induced-
pluripotent stem cells (iPSC) introduced a new era in 
regenerative medicine wherein cellular reprogramming is 
used to treat disease.  

IPSC have been used in preclinical models of MI 
repair[48-51]. Transplantation of iPSC directly into the 
infarcted myocardium improves cardiac function [e.g., left 
ventricle ejection fraction (LVEF), fractional shortening, 
and contractility] and reduces infarct size[48-50]. Although 
transplanted iPSC contribute to cardiac repair, a major 
impediment to their clinical use in human patients lies 
in the inefficiency of transplanted iPSC to form cardio
myocytes (0.5%-2%)[49], their tumorigenicity[52], and 
their limited retention in the infarcted tissue. Yet, proof-
of-concept that iPSC can differentiate into functional 
cardiomyocytes has tantalized researchers in studying 
cardiac embryology as iPSC differentiation into functional 
cardiomyocytes is merely a reiteration of embryology.

Embryonic cardiogenesis (Figure 1A) begins from the 
mesoderm that arises from the primitive streak during 
gastrulation. Gene regulation and cell movement that 
control cardiogenesis are spatially and temporally stringently 
regulated (reviewed in[53]). Bone morphogenetic protein 
(BMP)-4, activin A and fibroblast growth factor (FGF)-2 
induce mesoderm specification[54-56] from pluripotent 
progenitors in the primitive streak by inducing Wnt3a 
expression, whereas Notch signaling inhibits the transition 
from mesodermal precursors into cardiac mesoderm[57]. 
MESP1, the most early expressed marker of the cardiac 
lineage[58,59], is expressed by all cardiac precursors that 
arise from the cardiac mesoderm and drives further cardiac 
specification by the Dkk1-mediated repression of Wnt 
signaling[60], resulting in the formation of specialized cardiac 
progenitor cells. This pool of cardiac precursors gives rise to 
the endocardium, the first heart field (from which the atria, 
left ventricle and nodal conduction system are formed) 
and the second heart field (from which the right ventricle 
and outflow tract are formed)[61]. Specification of cardiac 
precursors into cells of the first and second heart field is 
regulated by the complex interplay of transcription factors 
downstream of MESP1[62,63]. Herein, GATA4, MEF2c, HAND2 
and NKX2.5 represent common transcription factors to 
all cardiac precursors, whereas the expression of TBX5 
is restricted to the first heart field[64] and ISL1 and TBX1 
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are restricted to the second heart field[65,66]. Once formed, 
cardiac cells of the first and second heart field proliferate in 
response to endocardial-derived Neuregulin (NRG1) and 
epicardial-derived retinoic acid and FGF2[67,68].

Indeed, reiteration of key steps in cardiogenesis 
by supplying iPSC with stage-specific pivotal signaling 
molecules efficiently differentiates iPSC into the cardiac 
lineage. Differentiation protocols rely on progressive 
sequential inductive signals using growth factors (Figure 
1B). Monolayers of iPSC are stimulated with BMP4, 
Activin A and Wnt3a in the first 4 d of differentiation to 
induce cardiac mesoderm formation[69-72]. Inhibition of Wnt 
signaling using small molecule inhibitors after day 4 of 
differentiation advances mesodermal precursors to cardiac 
progenitors and reiterates the actions of Dkk1-mediated 
inhibition of Wnt signaling during embryology[69,70]. The 
addition of ascorbic acid[73] or G-CSF[74] at this stage 
enhances cardiomyocyte formation by stimulating pro
liferation of cardiac progenitor cells (Figure 1B). Culture 
of the obtained cardiac progenitor cells in the presence 
of NRG1 or IGF1 allows further maturation of cardiac 
progenitor cells into immature cardiac cells from the first 
and second heart field[75]. Modifications to this general 
protocol include embedding in extracellular matrix[76], 
mechanical[77] and electrical[78] stimulation of the immature 
cardiomyocytes. These modifications may influence the 
maturity of the iPSC-derived cardiomyocytes but do not 
increase the differentiation efficiency. 

Direct reprogramming of cardiac fibroblasts into 
cardiomyocytes
In equivalence to the iPSC generation, where pluripotency-
associated transcription factors are expressed in terminally 
differentiated cells, direct conversion of fibroblasts into the 
cardiac lineage has been attempted[79-83]. Although no single 
master regulator of cardiomyogenesis has been identified to 
date, in analogy to the pioneering iPSC work of Yamanaka, 
Ieda et al[79] used a reductionist approach to test fourteen 
different transcription factors to induce cardiomyogenic 
gene expression in fibroblasts, and found that the com
bination of cardiac-specific transcription factors GATA4, 
Mef2c and Tbx5 successfully reprograms murine cardiac 
fibroblasts directly into immature cardiomyocytes (Figure 
1C)[79]. Although the efficiency of fibroblast reprogramming 
is rather low, with only about 30% of transduced cells 
display spontaneous contraction (about 6% of the total 
fibroblast population)[79,84], the proof-of-concept that 
cardiac fibroblasts can be converted into cardiomyocytes by 
retroviral expression of GATA4, Mef2c and Tbx5 paved the 
way for in vivo delivery of these transcription factors.

Cardiac fibroblasts account for the majority of cells 
in the heart[85] and are therefore considered a viable 
cell population for reprogramming and restoration of 
cardiac function. Lineage tracing models[86,87], wherein 
the cardiac fibroblasts are genetically tagged with a 
marker protein, were subjected to cardiac damage (either 
coronary ligation[86,87] or cryoinjury[84]) and treated with 
GATA4, Mef2c and TBX5 retroviruses. Up to three months 
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transcription factor-A (Mrtf-a)[81], MESP1 and estrogen-
related receptor beta (ESRRB)[82], or MESP1 and ETS2 
(Figure 1C)[83] all increase reprogramming efficiency of 
human cardiac myocytes and underscore the need for 
further research in this area before a definite transcription 
factor cocktail can be put to the test in human trials.

Moreover, additional major impediments need to be 
addressed prior to clinical translation. Although issues 
such as tumorigenicity and retention encountered with 
iPSC and stem cell therapeutics, may be minimalized 
by the direct conversion of cardiac fibroblasts into cardio
myocytes, heterogeneity in reprogramming efficacy, 
leading to the formation of immature cardiomyocytes that 
do not properly couple to adjacent cardiomyocytes, may 
cause fatal arrhythmias. Furthermore, current strategies 
rely on the use of viruses integrating randomly in the 
genome of cells that undergo reprogramming, which 
may elicit tumorigenic events. It is evident that in vivo 
reprogramming protocols without the use of viruses are 
essential before clinical translation can commence. 

after treatment, cardiac transcription factor delivery to 
the heart reduces infarct sizes and attenuates cardiac 
dysfuntion[84,86,87], providing therapeutic proof-of-concept 
for in vivo cellular reprogramming, although efficiencies 
differ widely (1%-30%) between studies. Surprisingly, 
in vivo reprogrammed cardiomyocytes develop more 
characteristics (e.g., binucleation, assembled sarcomeres) 
of native cardiomyocytes as compared to their in vitro 
counterparts[87]. This improvement in reprogramming 
may be derived from microenvironmental clues, exp
osure to native extracellular matrix or mechanical forces 
during reprogramming and could provide clues for further 
improvements to the reprogramming protocols.

Additionally, it must be noted that reprogramming of 
cardiac fibroblasts into cardiomyocytes is efficient in mice, 
however the conversion of human fibroblasts into the 
cardiac lineage proves more difficult[80-83]. The expression 
of GATA4, Mef2c and TBX5 in human cardiac fibroblasts 
is insufficient for cardiac induction. The addition of MESP1 
and Myocardin (MyoCD)[80], MyoCD and MyoCD-related 
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Figure 1  Schematic of factors involved in cardiomyocyte differentiation in embryology, embryonic stem cell/induced-pluripotent stem cells and cardiac 
fibroblast reprogramming. Factors that influence the progression through the five steps in cardiomyocyte differentiation and maturation: mesoderm differentiation, 
mesoderm specification, cardiac specification, cardiomyocyte differentiation and cardiomyocyte maturation in: A: Embryonic cardiomyocyte differentiation; B: 
Cardiomyocyte differentiation from ESC and iPSC using exogenous (growth) factors; C: In direct reprogramming of cardiac fibroblasts into cardiomyocytes. 
Transcription factors associated with each of the seven cell types during cardiomyocyte differentiation are presented in the boxes below. ESC: Embryonic stem cell; 
iPSC: Induced-pluripotent stem cells.

Kamps JAAM et al . Micromanaging cardiac regeneration



167 February 26, 2016|Volume 8|Issue 2|WJC|www.wjgnet.com

to several cardiac failures, including defective morpho
genesis, electrical conduction and cardiomyocyte pro
liferation[101,105]. MicroRNA-1 and microRNA-133 are 
polycistronically transcribed from a duplicated locus in the 
human genome on chromosomes 18 and 20. MicroRNA-1 
and microRNA-133 expression is under control of SRF 
and promotes cardiac mesoderm formation from naive 
ESCs[101,106].

MicroRNA-1 is highly conserved among mammals 
and its expression in ESC shifts their gene expression 
profile toward that of cardiomyocytes[107,108]. The ind
uction of the cardiomyogenic phenotype is mediated 
through several cooperative actions of microRNA-1. 
Inhibition of Notch signaling by microRNA-1-mediated 
direct repression of Dll1[106] and its downstream effector 
Hes1[109], liberates the expression of the cardiac 
transcription factors GATA4, Nkx2.5 and Myogenin, 
whereas repression of the histone deacetylase HDAC4[104] 
liberates the cardiac transcription factor Mef2c (Figure 
2). Additionally, repression of Hand2[110] and the smooth 
muscle transcription factor Myocardin[111] by microRNA-1 
facilitate cardiomyocyte maturation through the repression 
of proliferation of mesenchymal progenitors and smooth 
muscle gene expression, respectively. Interestingly, the 
sole expression of microRNA-1 in cardiac fibroblasts is 
sufficient to induce cardiac reprogramming[112].

MicroRNA-133 aids in cardiomyogenesis, however, in 
contrast to microRNA-1, its sole expression is insufficient to 
differentiate ESC into spontaneously contracting cells[106]. 
MicroRNA-133 promotes the actions of microRNA-1 through 
the suppression of smooth muscle specific genes in the 
myogenic precursors, thereby facilitating cardiomyocyte 
maturation. The direct repression of SRF[104,105] and 
the mesenchymal transcription factor Snai1[113] during 
cardiac differentiation of ESC or reprogramming of cardiac 
fibroblasts into cardiomyocytes reduces smooth muscle 
and fibroblast associated genes, which allows for the 
maturation of cardiomyocytes (Figure 2).

The cardiac myosin genes, which facilitate cardiac 
contraction, house three additional cardiomiRs, namely 
microRNA-499 and the microRNAs-208a and b that are 
encoded by the Myh7b and Myh6/7, respectively[114]. 
MicroRNA-499 facilitates expression of the cardiogenic 
transcription factor Mef2c[103] through a Wnt/β-Catenin-
mediated mechanism (Figure 2)[115], which remains to 
be elucidated but appears to involve repression of the 
transcription factor Sox6 and the transcription inhibitor 
Regulator of differentiation (Rod)-1[116].

MicroRNA-208a and microRNA-208b are involved in 
cardiomyocyte maturation and orchestrate the expression 
of myosin fibers in the heart. In the adult heart, the 
abundance of myosin fibers are alpha fibers (or fast 
fibers) whereas in the developing heart the majority of 
myosin fibers are beta fibers (or slow fibers). The gene 
encoding alpha-MHC encodes a cardiac-specific microRNA 
(microRNA-208a) that targets the repressors of beta-
MHC Sox6, Purβ and SP3[114,117]. MicroRNA-208a-mediated 
repression of these inhibitors thus facilitates the expression 

MicroRNAs in cardiomyocytes reprogramming
The use of microRNAs in reprogramming strategies 
may overcome some of the limitations encountered in 
reprogramming fibroblasts into cardiomyocytes using 
viruses, since chemically synthesized microRNA mimics 
are easily transfected into cells and exhibit low toxicity 
in animal models[88]. MicroRNAs are endogenous small 
(about 21-23 nucleotides in length) non-coding RNAs 
that function as repressors of gene translation[89,90]. 
Endogenously, microRNAs are encoded in the genome 
either in extronic regions that form microRNA gene 
clusters or intronically in both protein-coding and non-
coding genes. Regardless of their genomic location, 
microRNA transcription is initiated by the RNA Polymerase 
Ⅱ, resulting in the generation of a pri-microRNA[91]. Pri-
microRNAs are processed into pre-microRNAs by the 
RNA-processing complex formed by Drosha and DGCR8 
and exported from the nucleus by Exportin 5[92-94]. In the 
cytosol, pre-microRNAs undergo a second processing 
step, performed by the cytoplasmic endonuclease Dicer, 
which forms of the mature microRNA duplex[95]. Next, 
one strand of the microRNA duplex is loaded in to the 
RNAi-induced silencing complex (RISC)[96] that utilizes 
the microRNA to identify and silence its target genes[97,98] 
(extensively reviewed in[90,99]). The effects of microRNAs 
on cardiomyogenesis might be powerful, as a single 
microRNA may target multiple signaling pathways 
simultaneously, a phenomenon known as multiplicity of 
microRNA targets[100]. Indeed, mice lacking the enzyme 
Dicer, which is essential to process microRNA precursors 
into their mature form[90], die at day E12.5 from cardiac 
failure[101].

Advances on iPSC and embryonic stem cell (ESC) 
differentiation into cardiomyocytes (described in sections 
“Induced pluripotent stem cells and cardiomyogenesis” 
and “Direct reprogramming of cardiac fibroblasts into 
cardiomyocytes”) allowed Fu et al[102] and Wilson et al[103] 
to identify microRNAs essential to cardiomyogenesis. 
ESCs were differentiated using exogenous growth factors 
into beating cardiomyocytes and their “microRNA-
ome” were analyzed on array platforms. Next, these 
microRNA signatures were compared to genuine fetal 
and adult cardiomyocytes and adult cardiac fibroblasts. 
MicroRNAs that are differentially expressed in ESC-
derived cardiomyocytes and native ESC and that are 
not expressed by cardiac fibroblasts were identified as 
cardiomyogenic microRNAs or “cardiomiRs”. Although 
the two “cardiomiR” screens show limited overlap (46%) 
when considering all differentially expressed microRNAs 
between native ESC and ESC-derived cardiomyocytes, 
the overlap is greatly increased when only microRNAs 
with increased abundance are compared (85%). This 
comparison allowed the identification of 7 “cardiomiRs” 
whose expression is increased during cardiomyogenesis 
(Table 1)[102,103]. 

MicroRNA-1 and microRNA-133 are pivotal regulators 
of muscle differentiation[104] and loss of microRNA-1 
or microRNA-133 results in embryonic lethality due 
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genitor cells by the Smarca5-mediated repression of TGFβ 
signaling[121]. Additionally, let-7 induces the expression 
of cardiogenic transcription factors GATA4, Mef2c, 
Nkx2.5 and Tbx5 by the repression of EZH2, a histone 
methyltransferase that epigenetically silences these genes in 
mesenchymal precursors[121]. The microRNA-17/92 cluster 
subsequently facilitates ventricular myocyte generation from 
the first heart field. The microRNA-17/92 cluster targets 
Tbx1 and ISL1, the master transcription factors for second 
heart field development, thereby favoring differentiation of 
the first heart field (Figure 2)[122]. 

Notably, Jayawardena et al[112] used the most abun
dantly expressed cardiomiRs, i.e., microRNA-1, 133, 208 
and 499, to reprogram cardiac fibroblasts directly into 
cardiomyocytes. Transient expression of these four micro
RNAs in vitro generated mature cardiomyocytes that 
spontaneous beat, albeit at low efficiency (1.5%-7.7% 
of all fibroblasts). The reprogramming efficiency could be 
increased to about 28% by the addition of a Janus Kinase 
inhibitor. Moreover, the four microRNAs reprogram cardiac 
fibroblasts in vivo in an mouse model of MI, providing 
therapeutic proof-of-concept for the microRNA-mediated 
reprogramming of fibroblasts to ameliorate damage 
following MI[112].

Thus, advances in iPSC biology and cardiac repro
gramming have identified exogenous growth factors 
and endogenous transcription factors that drive cardio

of beta-MHC by the developing cardiomyocyte. Moreover, 
the beta-MHC gene (encoded by Myh7) contains the 
related microRNA-208b. Expression of beta-MHC, induced 
by microRNA-208a, thus induces the expression of 
microRNA-208b that provides a feed forward mechanism 
that maintains the expression of beta-MHC[114,117]. Add
itionally, microRNA-208 targets myostatin[118], a known 
inhibitor of cardiac progenitor cell proliferation, which 
reduces the inhibitory effect of myostatin on cardiac 
progenitor cell propagation.  

The other cardiomiRs, microRNA-30a-e, microRNA-
181a and microRNA-195, are less well characterized. 
Overexpression of microRNA181a in ESC increased 
proliferation of differentiated cardiomyocytes through 
unidentified mechanisms[103], whereas the expression 
of microRNA-195 decreases cardiomyocyte proliferation 
through the inhibition of cell cycle regulator cyclin 
D1[119]. MicroRNA-30a-e regulate cardiomyogenesis by 
targeting Snai2 and Smarcd2[120], two known inducers 
of mesenchymal gene expression. Their inhibition by 
microRNA-30a-e thus favors maturation of the cardiac 
phenotype over the maintenance of the mesenchymal 
phenotype (Figure 2).

The non-cardiac restricted microRNAs let-7, micro
RNA-99, and the microRNA-17/92 cluster also facilitate 
cardiomyogenesis[121,122]. MicroRNA-99 facilitates the 
transition from mesenchymal precursor to cardiac pro

Table 1  MicroRNAs involved in cardiomyocytes differentiation

microRNA Targets Effect on cardiomyogenesis (mechanism) Used in reprogramming Ref.

Increased during cardiomyogenesis
  1 Dll1 (Notch) ↑ CM Differentiation (↑ Nkx2.5 and Myogenin) + [102-104,106,109-111]

Hes1 (Notch) ↑ CM Differentiation (↑ Nkx2.5 and GATA4)
Hand2 ↓ CM Proliferation

HDAC4 ↑ CM Differentiation (↑ Mef2c)
Myocardin ↑ CM Maturation (↓ SMC phenotype)

  30a-e Snai2 ↑ CM Differentiation (↓ mesenchymal genes) - [102,103,120]
Smarcd2 ↑ CM Differentiation (↓ mesenchymal genes) 
Tnrc6a ↑ CM Maturation (↓ miR-206: ↓ SMC Phenotype)

  133a-b Snai1 ↑ CM Differentiation (↓ mesenchymal genes) + [102-105,113]
SRF ↓ CM Proliferation

Cyclin D2 ↓ CM Proliferation
  181a-d ? ↑ CM Proliferation - [103,175]
  195 Cyclin D1 ↓ CM Proliferation - [102,103,119,176]

HMGA ↓ CM Differentiation (↓ Nkx2.5)
  208b Myostatin ↑ CM Proliferation + [103,114,117,118]

Sox6, Purβ ↑ CM Maturation (↑ beta-Myosin Heavy Chain) 
THRAP1 ↑ CM Maturation (↑ beta-Myosin Heavy Chain) 

  499-5p ? (↑ Wnt) ↑ CM Differentiation (↑ Nkx2.5, Mef2c and GATA4) + [102,103,115]
Decreased during cardiomyogenesis
  31 ? ? - [103]
  34c-3p ? ? - [103]
  151-3p ATP2a2 ↓ CM Maturation (↓ beta-Myosin Heavy Chain) - [103,177]
  221 ? ? - [103]
  222 ? ? - [103]

ATP2a2: Sarcoplasmic reticulum Ca2+ ATPase 2; CM: Cardiomyocyte; Dll1: Delta-like 1; GATA4: GATA Binding Protein 4; Hand2: Heart and neural 
crest derivatives expressed 2; HDAC4: Histone deacetylase 4; Mef: Myocyte enhancer factor; miR: MicroRNA; Nkx2.5: NK2 homeobox 5; Purβ: Purine-
rich element binding protein beta; Smarcd2: SWI/SNF related matrix associated actin dependent regulator of chromatin subfamily d member 2; SMC: 
Smooth muscle cell; Snai: Snail family zinc finger; Sox6: Sex determining region Y-box 6; SRF: Serum response factor; THRAP1: Thyroid hormone receptor 
associated protein 1; Tnrc6a: Trinucleotide repeat-containing gene 6A; Wnt: Wingless-type MMTV integration site family.
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for targeted delivery of drugs[123] including microRNAs in a 
variety of disease models outside the cardiac field and with 
varying degrees of success. Current advances in targeted 
drug delivery from these fields provide a solid basis for the 
burgeoning field of cardiac drug delivery.

In general, the prime reasons for targeted drug 
delivery is the modulation of the drug’s pharmacokinetics, 
the avoidance of toxicity of the drug in non-diseased 
tissue or cells and to alter the apparent physicochemical 
characteristics of a drug by making use of a carrier. 
An ideal drug delivery vehicle needs to be non-toxic, 
biocompatible, non-immunogenic and biodegradable[123]. 
Particle sizes of the drug delivery system have a preferred 
size between 10 and 200 nm. The lower limit is deter
mined by the glomerular permselectivity in the kidney 
that captures particles below 10 nm and rapidly clears 
them through renal filtration[124], whereas the upper limit 
is set by clearance through the reticuloendothelial system 
and uptake by the spleen and liver[125]. Additionally, 
surface charge and chemistry are key parameters in 
the design of drug delivery systems. Systems with a 
positive surface charge may electrostatically interact with 
the cell membrane or its associated negatively-charged 
proteoglycans and subsequently internalized through 
endocytosis[126,127]. Negatively charged systems are 
preferentially recognized by monocytes/macrophages 
and internalized via the calveolar or clathrin endocytic 

myogenesis, and have provided novel therapeutic appro
aches for the amelioration of damage from MI by the 
therapeutic expression of cardiac transcription factors. 
Moreover, these recent advances have provided a plat
form to study cardiogenesis in more detail. MicroRNAs 
can similarly induce fibroblast reprogramming into cardio
myocytes and can be delivered to the cardiac tissue 
without the use of randomly integrating viruses, and 
may thus improve safety of reprogramming in a clinical 
context. The question that remains is how to deliver these 
microRNAs safely and efficiently to the site of damage and 
cell type of choice to perform their function. This question 
is addressed in the next section.

Targeting microRNAs for Cardiac 
regeneration
MicroRNA-mediated reprogramming of cardiac fibroblasts 
in vivo requires advanced delivery strategies. In the 
section below, we will describe general and targeted drug 
delivery strategies and discuss possibilities to specifically 
target microRNAs to cardiac fibroblasts.  

A range of chemical modifications to enhance cellular 
uptake of microRNAs have been developed recently. 
Additionally, particulate drug delivery systems, including 
liposomes, polymeric micelles, polymeric vesicles, polymeric 
nanoparticles (NPs), and dendrimers have been investigated 

Figure 2  The complex web of transcription factors in cardiac specification and their regulation by microRNAs. A: Crosstalk between transcription factors 
involved in the formation of the first and second heart field (light grey box). MESP1, GATA4, Mef2c, HAND2 and Nkx2.5 are central transcription factors in the first 
and second heart field (yellow). TBX5 is only expressed in the first heart field (green). ISL1 and TBX1 are expressed in the second heart field (blue); B: MicroRNA-
mediated regulation of cardiac transcription factors during cardiomyocyte differentiation (dark grey box).
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precipitation techniques which form solid structures typically 
10-100 nm in size[139,151]. Changing the composition of the 
block co-polymers that build up the nanoparticle allows 
tuning drug delivery rates[128], as drug delivery occurs 
through diffusion of the drug through the solid nanoparticle 
or via biodegradation of the particle[139,150,151]. The solid 
nature of nanoparticles confers great stability advantages 
in vivo and provides slow-release properties. Therefore, 
nanoparticles are more efficient in delivering proteinaceous 
and small molecule drugs than microRNAs, as cellular 
uptake and degradation properties are inferior to the 
delivery efficiency of liposomes and polymeric micelles.

Dendrimeres (Table 2), represent the last class of drug 
delivery systems are highly branched macromolecules 
with a controlled repeated branching around a central 
core that forms a small (1-10 nm), spherical and highly 
dense nanocarrier that holds many cavities that may 
contain drugs[152-155]. Targeting efficacy and extravasation of 
dendrimeres can be controlled by their size, molecular weight 
and the functional groups present on their surface[153,156].

Passive drug targeting
Targeting of drug delivery systems can be achieved via 
two general concepts, namely passive or active targeting. 
Passive targeting is based on the so-called enhanced 
permeability and retention effect (EPR)[157]. At sites of 
inflammation, the integrity of the endothelial lining is 
often compromised, resulting in a defective or leaky 
vasculature. Circulating drug delivery systems are able to 
pass these leaky vessels and can thus enter the inflamed 
tissue. Hence, colloidal drug delivery systems passively 
accumulate at sites of inflammation, such as the infarcted 
heart[158,159]. An important prerequisite for passive targ
eting is a relatively long (hours-days) circulation time 
of the drug delivery system since extravasation occurs 
only by chance. Additionally, if passive drug delivery is 
to be used to target cardiac fibroblasts, detection by 
monocytes/macrophages needs to be avoided in order 
to reduce rapid clearance of the drug carriers from the 
cardiac tissue by these phagocytic cells.

Active drug targeting
Active targeting drug delivery systems are equipped with 
specific targeting devices that recognize or have affinity for 
certain cells. Although the recent identification of biomarkers 
that are differentially expressed in the diseased cardiac 
tissue has advanced the development of experimental 
therapies that can be employed for the targeted delivery of 
microRNAs, there is a huge challenge for active-targeting 
strategies to find specific target molecules for a certain 
disease process and to test its effectiveness in drug delivery 
therapies.

Active drug targeting of microRNAs to cardiac fibroblasts 
may be achieved in two distinct manners, depending on the 
interaction of the targeting device and the cell. Either the 
drug delivery system can be internalized by the cell where 
it releases the microRNAs subsequently (epitope targeted 
drug delivery, Figure 3), or the drug delivery system can 

pathways[128-130].

Classes of drug targeting systems 
Cardiac microRNA delivery poses huge challenges as 
unmodified microRNAs are rapidly degraded by syst
emic nucleases, secreted through renal filtration and 
phagocytosed by monocytes/macrophages, limiting 
their ability to reach their target cell[131,132]. A range of 
chemical modifications to enhance microRNA stability and 
cell permeability, including 2’-O-methyl modifications, 
locked nucleic acid chemistry, the conjunction of small 
molecules or cell penetrating peptides (Figure 3)[133] and 
peptide nucleic acids have been developed that increase 
therapeutic efficacy of microRNA therapies (reviewed 
in[131,132,134]), albeit they do not add cell or organ specificity. 
Hence, the development of targeted delivery systems for 
myocardial microRNA delivery is of the upmost importance.

As described above, various particulate drug delivery 
systems have been developed for cell and organ specific 
targeted delivery of drugs (Table 2). Liposomes[135], the 
related polymerosomes[136] and polymeric micelles[137] 
are a system of lipids or polymers that self-assemble into 
spherical structures with an aqueous core that can hold 
the microRNA payload[123,138,139]. Single or multiple types 
of lipids and polymers can be combined to generate 
liposomes, polymerosomes and polymeric micelles, which 
allows for additional flexibility in designing the physical 
and chemical properties of the drug delivery vehicle[140]. 
Liposomes and polymerosomes are internalized via en
docytosis and destined for lysosomal degradation[141]. 
Endosomal escape from the liposomal content occurs 
through pH-sensitive fusion of the liposome and the 
endosomal membrane, resulting in drug release in the 
cytoplasm[142]. Although liposomes have a long history 
in drug delivery in basic and clinical medicine with 
FDA approval, some concerns regarding their clinical 
applicability are reported, such as the immunogenicity 
and toxicity of certain cationic lipid particles[143,144]. 
Regardless, liposomes and polymerosomes are highly 
promising for future clinical microRNA delivery.

Microbubbles (Table 2) are a second class of drug 
delivery systems that can be used for microRNA delivery 
in vivo and represent a specialized form of liposome that is 
sensitive to external clues, such as high powered ultrasound 
(described below). Microbubbles are gas-filled lipid spheres 
of various diameters (10-1000 nm)[145,146]. Cationic mi
crobubbles can form complexes with anionic drugs, 
such as microRNAs, by electrostatic interaction[147,148]. 
The sensitivity of microbubbles to ultrasound, which 
destroys the microbubble, delivers the payload directly 
to its environment[145,147]. Hence, for efficient targeting 
of microRNAs into the tissue, additional modifications to 
the microRNA (described above) may be necessary to 
increase cellular uptake by the target cells[131,132].

Nanoparticles and nanospheres (Table 2) are a third 
class of drug delivery vehicles that consist of lipids or 
block co-polymers, respectively[149,150]. Nanoparticles and 
nanospheres are commonly produced using emulsion or 
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heat[163], light[164], pH[165] or ultrasound[145], that will release 
their payload by the indicated external trigger if present 
at the disease site. Ultrasound-sensitive microbubbles 
(described in section “Classes of drug targeting syst
ems”) have been used for cardiac microRNA delivery 
with high efficiency, although reports on targeting of 
cardiac fibroblast remain scarce. Gill et al[166] used 
liposomal ultrasound-sensitive microbubbles to deliver 
microRNA-133 into HL1 cardiomyocytes in vitro. Both 
encapsulated (inside the microbubble) and complexed (on 
the outer shell of the microbubble) microRNA formulations 
efficiently delivered the microRNA-133 mimic, without 
affecting cardiomyocyte viability, indicating that, although 
encapsulation increases the microRNA-carrying capacity 
of microRNAs, complexation strategies do not affect the 
ability of microbubbles to deliver microRNAs[166]. Using 
a similar approach, Liu et al[167] delivered microRNA-21 
mimics into the hearts of swine without inflicting cardiac 
damage. Myocardial microRNA-21 expression levels 
were efficiently elevated in hearts treated with the 
microRNA-microbubble complex that received ultrasound 
activation compared to control conditions. Interestingly, 
the transfection efficiency of microRNA-microbubble 
complexes that were administered by intracoronary 

bind to the cell and act as a drug release depot that can 
be activated at the diseased site (inducible targeted drug 
delivery). Although targeted drug delivery approaches have 
been pursued cardiovascular disease, data on the delivery 
of microRNA to fibroblasts are scarce[160].

Epitope targeting of drug delivery systems is a rapidly 
evolving field in cardiac drug delivery and was shown by 
Dasa et al[161], who used in vivo phage display methods to 
identify peptide sequences specific for cardiac endothelial 
cells, cardiomyocytes and myofibroblasts[161]. These 
peptide sequences were conjugated to 1,2-distearoyl-
sn-glycero-3-phosphoethanolamine (DSPE) liposomes 
using polyethylene glycol (PEG). The obtained peptide-
PEG-DSPE was loaded with the small molecule inhibitor 
of PARP-1 activation AZ7379. Although the publication 
only shows proof-of-concept data in efficiently (> 90%) 
reducing PARP-1 activation in cardiomyocytes[161], it is 
tempting to assume that the targeted delivery of small 
molecule inhibitors or microRNAs to cardiac fibroblasts 
would be equally efficient as antibody-functionalized 
liposomes are highly efficient in delivering non-coding 
RNAs to vascular cells[162]. 

Inducible targeted drug delivery uses drug delivery 
systems that are sensitive to their environment, e.g., 

Figure 3  Schematic of passive and active targeted drug delivery systems for microRNA delivery. A: Passive targeting by cell-penetrating peptide-coated 
nanoparticles are internalized by receptor-mediated endocytosis; B: Active targeting by PDGFRb-targeted liposomes. Liposomes interact with cell surface receptors 
(PDGFRb) and internalized via receptor-mediated endocytosis. The endocytotic vesicles fuse to form early endosomes which ultimately become part of the lysosomes, 
where proteins and nucleic acids are degraded by acid hydrolases. To achieve target gene silencing, microRNAs need to be released from the liposome and escape 
from the endosomes into the cytoplasm, where the microRNA directs the cleavage of target mRNAs.
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from treating cardiac disease to curing cardiac disease. 
Additionally, advances in drug delivery have yielded a 
plethora of drug delivery systems that can selectively 
deliver therapeutic agents to relevant cell populations at 
the site of damage. However, many challenges remain to 
be addressed before clinical translation can commence.

During a MI, billions of cardiomyocytes are lost and 
although current reprogramming strategies using exogenous 
transcription factors or microRNAs have emerged as 
potential therapeutic strategies, they are vastly inefficient. 
Thus, to enhance cardiac regeneration it will be pivotal to 
develop procedures that increase the yield and efficiency 
of generating de novo cardiomyocytes. Advancing 
our mechanistic understanding of the reprogramming 
process, including the directed differentiation of subtypes 
of cardiomyocyte (i.e., ventricular, atrial or nodal), is 
key to the success of this promising therapy, however 
when subtype specification occurs during development 
and how these processes are regulated remain elusive. 
Moreover, in vivo efficacy and safety in large animals 
needs to be addressed before clinical translation can 
commence.

Additionally, it has been reported that the delivery of 
immature or heterogeneous populations of cardiomyocyte 
derived from progenitor cells or iPSC can lead to arrh
ythmias[171,172]. Currently, reprogrammed cardiomyocytes 
are immature and phenotypical heterogeneous, which 
could contribute to arrhythmogenesis. Hence, it is crucial 
to promote maturation and integration of reprogrammed 
cardiomyocytes. Yet, our current understanding of these 
processes is limited and further research into these processes 
is highly warranted.

While an intense research focus has been on the 

injection was higher compared to systemic administration. 
These results indicate that the application site may affect 
therapeutic outcome and should be considered in clinical 
translation[167]. Kwekkeboom et al[168] delivered microRNA 
mimics and antimiRs to the cardiac endothelium using a 
combination of microbubbles and ultrasound activation. 
Notably, delivery of antagomiRs (cholesterol-conjugates 
antimiRs[169]) had a higher transfection efficacy compared 
to control antimiRs implying that cellular uptake of de
livered microRNAs is still highly dependent on their 
physicochemical properties[168].

The concept of cardiac fibroblast reprogramming 
into cardiomyocytes holds great therapeutic value for 
the treatment of MI and its associated cardiac failure. 
However, fibroblast reprogramming is a recent concept 
and although current studies have provided proof-of-
concept, focus on its clinical translation is limited. A range 
of drug delivery systems are reported for the delivery of 
microRNAs outside the cardiac field (reviewed in[149,170]) 
that can easily be transposed onto the reprogramming 
paradigm. As this field evolves, clinically relevant delivery 
approaches and suitable targeting epitopes for fibroblast-
specific drug delivery will be explored as will their clinical 
effectiveness.

Summary and Future perspectives
Deciphering the signaling pathways that underlie cardiac 
development has led to new therapeutic strategies that 
trigger cardiac regeneration. Vast progress is made in 
promoting cardiomyocyte proliferation and in direct 
reprogramming of cardiac fibroblasts into cardiomyocytes, 
which offer new perspectives on the possibility to advance 

Table 2  Characteristics of particulate drug delivery systems

Carrier Size range (nm) Preparation method Advantages for drug delivery Disadvantages for drug delivery Ref.

Liposomes and 
polymerosomes

10-2000 Self-assembly in 
aqueous solutions

High drug-carrying capacity
Good for hydrophobic and 

hydrophilic drugs
Surface functionalization 

possible
Simple preparation

Batch-to-batch variability
Difficulties in sterilization

[123,135,138,141,143,150,161,
178]

Microbubbles 10-1000 Various depending on 
type

Surface functionalization 
possible

Not good for hydrophobic 
drugs 

Low drug-carrying capacity

[145-148,166,168,179]

Polymeric 
micelles

10-100 Direct organization 
or controlled 

aggregation in solvent

Long blood circulation time
Surface functionalization 

possible
Simple preparation

Not good for hydrophobic 
drugs

Low drug-carrying capacity

[123,136,137,155,158]

Nanoparticles 
and 
nanospheres

10-100 Nanoparticles:
Polymerization 
of monomers by 

emulsion
Nanospheres: 

Interfacial 
polymerization and 

phase inversion with 
polymeric emulsions

Shape, size and mechanical 
properties tunable

Possibility for controlled 
release

Toxicity of residual chemicals 
from preparation process

Limited cellular uptake and 
degradation

[123,126,128,139,150,151,155,
180]

Dendrimeres 1-10 Convergent or 
divergent synthesis

High functionalized surface Difficult preparation process
Toxicity

[123,154,156]
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development of new drug delivery systems, efforts to 
identify epitopes that are differentially expressed in 
diseased cardiac tissue has received little attention, as 
the field of cardiac drug delivery is still in its infancy. 
The identification of target epitopes that discriminate 
between fibroblasts in the affected vs the healthy tissue 
is pivotal to clinical translation of targeted delivery 
of microRNAs using liposomes, polymeric micelles or 
microbubbles. In addition, the heart contains a large 
population of fibroblasts that are necessary for its normal 
function[173,174]. Therefore, it may be detrimental to the 
cardiac function to target all fibroblasts for reprogramming. 
Drug delivery systems may need to be comprised of 
multiple targeting mechanisms, e.g., ultrasound sen
sitive and fibroblast targeted, if a sufficiently selective 
molecular targeting epitope cannot be identified that 
distinguishes fibroblasts in the scar tissue from those 
elsewhere in the heart.

In summary, MI results in a massive loss of cardio
myocytes that are replaced by scar tissue. Endogenous 
repair mechanisms are insufficient to efficiently regenerate 
the lost myocardial tissue and therapeutic approaches 
to induce cardiomyocyte proliferation using growth 
factors are relatively ineffective. Advances in our basic 
understanding of cardiomyogenesis obtained from 
embryology and iPSC biology has led to the identification 
of factors that drive cardiomyogenesis, and have provided 
a novel therapeutic approach for the amelioration of 
damage from MI through the therapeutic delivery of 
microRNAs that reprogram cardiac fibroblasts into cardio
myocytes. These microRNAs can be delivered to the 
cardiac fibroblasts using advanced drug delivery systems. 
Although there are many challenges ahead in advancing 
this emerging technology, the opportunities and potential 
clinical benefits are substantial and we are confident that 
the field will continue to push this technology further in the 
years to come.
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