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Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative 
disorder presenting as progressive cognitive decline with 
dementia that does not, to this day, benefit from any 
disease-modifying drug. Multiple etiologic pathways have 
been explored and demonstrate promising solutions. 
For example, iron ion chelators, such as deferoxamine, 
are a potential therapeutic solution around which future 
studies are being directed. Another promising domain 
is related to thrombin inhibitors. In this minireview, a 
common pathophysiological pathway is suggested for the 
pathogenesis of AD to prove that all these mechanisms 
converge onto the same cascade of neuroinflammatory 
events. This common pathway is initiated by the pre
sence of vascular risk factors that induce brain tissue 
hypoxia, which leads to endothelial cell activation. 
However, the ensuing hypoxia stimulates the production 
and release of reactive oxygen species and pro-inflam
matory proteins. Furthermore, the endothelial activation 
may become excessive and dysfunctional in predisposed 
individuals, leading to thrombin activation and iron 
ion decompartmentalization. The oxidative stress that 
results from these modifications in the neurovascular 
unit will eventually lead to neuronal and glial cell death, 
ultimately leading to the development of AD. Hence, 
future research in this field should focus on conducting 
trials with combinations of potentially efficient treat
ments, such as the combination of intranasal deferoxa
mine and direct thrombin inhibitors.
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Core tip: Patients with Alzheimer’s disease (AD) 
have not benefited from any disease-modifying drug 
until now. Multiple etiologic pathways have been 
explored and suggest promising solutions in the 
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future. The iron chelator deferoxamine is one potential 
therapeutic solution around which future studies are 
being directed. Another potential therapeutic solution 
is related to thrombin inhibitors. In this minireview, 
a common pathophysiological pathway is suggested 
for the pathogenesis of AD that is initiated by the 
presence of vascular risk factors inducing brain tissue 
hypoxia and endothelial cell activation. In predisposed 
individuals, this can lead to thrombin activation and iron 
decompartmentalization. The resulting oxidative stress 
will eventually lead to neuronal and glial cell death.
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208-214  Available from: URL: http://www.wjgnet.com/2220-3206/
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INTRODUCTION
Alzheimer’s disease (AD) is a chronic neurodegenerative 
disorder presenting as progressive cognitive decline with 
dementia[1-3]. In spite of considerable research, proven 
disease-modifying drugs are still lacking[1-3]. Currently, 
all phase 3 drug trials have failed to produce the desired 
results[1-3]. An increasing amount of literature now 
supports the vascular-neuronal axis hypothesis in the 
pathogenesis of AD owing to common risk factors for 
both AD and cardiovascular conditions[4]. However, it 
has also become widely established that disturbance 
in cerebral iron homeostasis also participates to the 
genesis of AD[5]. In this review, we will attempt to link 
these multiple physiopathological pathways to prove 
that these mechanisms converge onto the same 
cascade of neuroinflammatory events.

VASCULAR RISK FACTORS AND AD
Diagnostic criteria categorize dementias into vascular 
dementias or AD dementias even though mixed forms 
are frequently encountered[6]. In fact, as presented 
in a recent review by Hooijmans et al[7], there is 
an increasing amount of literature supporting the 
fact that cardiovascular risk factors (i.e., diabetes, 
hypertension, dyslipidemias) are predisposing factors 
for vascular and AD dementias, and because the 
clinical manifestations and pathological findings are 
also common, the two conditions should not be seen 
as separate. Accordingly, there seems to be a direct 
increase in the risk for dementia, including AD, in 
the presence of these cardiovascular risk factors[8-13]. 

Hypertension and atherosclerotic disease both bring 
about vascular changes, causing alterations in the blood 
brain barrier and cerebral ischemia. Ultimately, this will 
initiate the pathological process of AD[7]. Indeed, there 
is in vitro and pathology evidence concerning chronic 
localized brain ischemia as playing a crucial role in the 

genesis and progression of AD. The ensuing hypoxia 
stimulates the production and release of reactive 
oxygen species and pro-inflammatory proteins[14]. 
There also appears to be data concerning vascular risk 
factors and cardiovascular diseases as potentially being 
able to quicken Aβ 40-42 production, aggregation, and 
precipitation[6]. On another level, there is also evidence 
that endothelial dysfunction, due to cerebrovascular 
risk factors that include diabetes and hypoxia, precedes 
cognitive decline in AD and might contribute to its 
pathogenesis through the activation of thrombin[15].

The hypoxia inducible factor 1 (HIF-1) is a sensor 
for hypoxia, and its levels are increased in the cerebral 
circulation in both mouse and human models of AD[14]. 
However, an increasing amount of literature is in favor 
of an elevation in pro-inflammatory substances in the 
endothelium of the cerebral microcirculation in oxygen-
deficient conditions[14]. Together, those results suggest 
a relationship between hypoxia and inflammation in the 
brain. Another phenomenon that occurs in response 
to hypoxia is the secretion of a strong inducer of angio
genesis known as vascular endothelial growth factor 
(VEGF). In AD, however, the vascular response to VEGF 
is deficient, resulting in an increased production of pro-
inflammatory and neurotoxic substances[14].

In conclusion, recent studies are in favor of targe
ting vascular risk factors via lifestyle adjustments 
(physical exercise, dietary modification and abstinence 
of smoking) and medications (namely, cholesterol-
lowering drugs) to preserve cognitive functions in the 
aging population and to reduce the progression toward 
AD. This seems to occur through the reduction of 
chronic focal ischemia and hypoxia in the brain, which 
are both harbingers of cerebral inflammation and 
oxidative stress[7,16].

THE EFFECT OF THROMBIN ACTIVATION 
IN AD
Thrombin has been demonstrated to be a key regulator 
of the pro-inflammatory reaction of cerebral endothelial 
cells in response to ischemic changes[13]. Moreover, 
prothrombin and thrombin are widely expressed in 
neurons and particularly in neurofibrillary tangles and 
senile plaques. This hypothesizes that thrombin could 
have a role in tau degradation and that a deficiency in 
this process could cause tau protein accumulation[17,18]. 
In an animal model on rats, direct intra-cerebral 
injection of thrombin caused in neuronal death and 
subsequent cognitive impairment[19]. Likewise, it was 
shown that thrombin can directly exert neurotoxic 
effects[20]. Thus, introduction of heparin, an indirect 
thrombin inhibitor, in the arsenal of AD medications 
hoped it could enhance the brain’s micro-vasculature 
via its antithrombotic properties[21]. Accordingly, rats 
of advanced age displayed a partial but significant 
improvement of behavioral problems after heparin 
injection[22]. Moreover, an animal experiment demons
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trate protective actions of heparin after injection of 
amyloid peptide into the amygdala[23]. Furthermore, 
due to the potential side effects of long-term treatment 
with heparin, it has been suggested that a more specific 
treatment that directly inhibits thrombin would be more 
appropriate in terms of safety and efficacy. Indeed, 
direct thrombin inhibitors, such as dabigatran, would 
be a better choice because of their high selectivity 
in the inhibition of thrombin activity, thus ensuring a 
better side effect profile than an indirect inhibitor, such 
as heparin[15,24]. Dabigatran is a competitive reversible 
non-peptide antagonist of thrombin. Thrombin has 
many functions: Fibrinogen transformation into fibrin, 
fibrin strengthening and cross-linking, stimulation of 
additional thrombin production, platelet activation, and 
stimulation of protein C, which increases pro-thrombotic 
activity. Dabigatran inhibits most of these steps[25].

THE EFFECT OF VASCULAR RISK 
FACTORS ON ERYTHROCYTE LYSIS AND 
IRON DEPOSITION
Iron is crucial for the metabolic demands and functions 
of numerous cells, but when dysregulated, iron can 
become potentially harmful for these same cells. Iron 
circulates with the action of its transporter transferrin, 
which binds iron released in the blood from two 
sources: Enterocytes (following absorption) and the 
reticulo-endoplasmic cells. The iron-transferrin complex 
binds to the transferrin-receptor-1 so that it can be 
internalized within cells. Iron then enters mitochondria, 
where it takes part in heme synthesis. Superfluous iron 
is stowed and detoxified in ferritin[26]. 

In the central nervous system, iron, a key com
ponent for many proteins essential for brain meta
bolism, is predominantly concentrated in the motor 
system, and more specific, within glial cells[27,28]. 
Evidence supports the fact that iron deposition might 
exert a neurotoxic effect. For example, intracerebral 
hemorrhage causes extraversion of red blood cells 
(RBCs) into the parenchyma followed by hemolysis and 
decompartmentalization of iron, which later promotes 
long-term neurological deficits and brain atrophy[29-31]. In 
humans, iron deposition in the endothelium and vascular 
media is strongly associated with the progression of 
atherosclerotic lesions[32]. Indeed, atherosclerotic plaques 
with subsequent neovascularization and intra-plaque 
hemorrhage may constitute an important source of iron 
deposition in blood vessels and the brain parenchyma, 
but in a more localized fashion than what is observed 
after an intracerebral hemorrhage. Furthermore, in 
atherosclerotic plaques, cholesterol crystals coincide 
with glycophorin A (distinctive protein of red cell 
membranes), implying cholesterol from erythrocyte 
membranes could participate in the deposition of lipids 
and expansion of the lipid core following intra-plaque 
bleeding[33]. Moreover, some data support the fact that 

hypercholesterolemia might enhance the crossing of 
iron into the brain parenchyma via an augmentation of 
endothelial permeability to iron[34]. Hence, the potential 
efficacy of cholesterol-lowering agents (i.e., statins) in 
slowing the progression towards AD might be related to 
their indirect neuroprotective actions of preventing iron-
induced neurotoxicity[34-36].

During an intra-plaque hemorrhage, red cells 
penetrate the oxidative environment of atherosclerotic 
lesions containing cytotoxic products of lipid peroxidation 
that can trigger the lysis of RBCs[37]. Hemoglobin 
released outside RBCs is oxidized and will release high-
valence iron compounds with potent oxidative and 
inflammatory activities[38]. These activities can increase 
vascular endothelial activation and subsequent thrombin 
release. However, the known in vitro effect of iron ions 
on thrombin activity is in favor of the inhibition of its 
clot-forming effect[39]. 

EFFECT OF IRON DEPOSITION ON AD 
In 1991, the first study evaluating the effect of defero
xamine (DFO) in patients suffering from AD was 
published[40]. DFO was evaluated because of its alumi
num chelating properties and because of the evidence 
linking this metal ion to AD[40]. The study concluded that 
DFO may slow the progression of AD[40]. However, since 
then, additional evidence has linked the other metal 
ion chelated by DFO, iron, with the pathogenesis of AD. 
In patients with AD, iron accumulation in the cerebral 
cortex and hippocampus co-localizes with neurofibrillary 
tangles and senile plaques[41]. In their review, Peters 
et al[42] hypothesized that amyloid production is 
actually amplified to compensate for excessive iron 
levels and “patch” the subsequent vascular damage. 
High neuronal levels of iron stimulate amyloid protein 
precursor translation, and along with concomitant 
abnormal secretase activity, increase extracellular 
Aβ-42 deposition and tau protein phosphorylation. 
Peters et al[42] concluded the finding that increased iron 
deposition increases amyloid production emphasizes the 
importance of iron management in the treatment of AD.

The ability of iron to interact with oxygen is crucial 
for cell functioning, but it is also a source of free radicals 
according to Fenton’s reaction: Fe+n + H2O → Fe +(n-1) + 
OH- (hydroxyl radicals).

Reactive oxygen species that are formed through 
this reaction subsequently damage intracellular 
structures via lipid peroxidation, or induction of DNA 
mutations[43]. In a 2015 review on vascular dysfunction 
in AD, Di Marco et al[14] fact found that high levels of 
lipid peroxidation and DNA oxidation were a frequent 
observation in AD. Furthermore, they posited that 
the blood-brain barrier is a central player in oxidative-
stress-related tissue injury, in that it is both a source 
and a target of reactive oxygen species and pro-
inflammatory substances. This hypothesis was based 
on the observation that Aβ plaques contain redox-active 

210 June 22, 2016|Volume 6|Issue 2|WJP|www.wjgnet.com

Bou Khalil R et al . AD pathogenesis



precursor) might be prevented in transgenic mice via 
administration of intranasal DFO[49]. 

DISCUSSION
AD has been considered to be caused by a multitude 
of neuropathogenic pathways that all eventually lead 
to neuronal death and cognitive impairment. However, 
in this review, we have demonstrated in a theoretical 
manner that these multiple pathophysiological pathways 
(namely the endothelial vascular activation through 
thrombin activation and the neurotoxic effect of redox 
species through iron ion decompartmentalization) are 
actually interlinked (for a schematic representation of 
these pathophysiological pathways see Figure 1). As 

metals and that Aβ deposits preferentially locate in 
perivascular spaces[14].

β-amyloid in itself is a substrate for hydroxyl 
radicals[44]. Studies utilizing magnetic resonance imaging 
have found a positive correlation between aging and 
iron deposition in the brain that renders the brain 
more vulnerable to iron-mediated oxidative stress[45,46]. 
Accordingly, iron can attach to phosphorylated tau-
proteins and lead to its aggregation, which causes the 
creation of neurofibrillary tangles[47]. Furthermore, 
it has been found that intranasal DFO inhibits tau 
phosphorylation in the brain of transgenic mice with 
AD[48]. It has also been demonstrated that the potential 
progression of senile plaques through the affinity of iron 
ions to β-amyloid and its precursor (i.e., amyloid protein 
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a matter of fact, AD might be considered a disease 
of the neurovascular unit that seems to be triggered 
by vascular risk factors that affect the endothelium of 
small vessels and capillaries inside the brain. Vascular 
risk factors may induce atherosclerotic changes at the 
bifurcation of vessels, which would lead to tissue hypoxia 
in the brain parenchyma irrigated by the corresponding 
vessel. The endothelial cells lining the arterioles and 
capillaries in the hypoxic brain region are normally highly 
sensitive to hypoxic changes in the surrounding brain 
parenchyma and usually secrete substances that include 
VEGF and HIF-1 to promote neovascularization. When 
resources for neutralizing the oxidative stress provoked 
by hypoxia, such as in the elderly brain, are out-weighted 
by the amount and duration of oxidation, these normal 
responses become deleterious. A deficient vascular 
response to tissue hypoxia may promote intra-plaque 
hemorrhages. Deficient neovascularization and intra-
plaque hemorrhages may be the cause of erythrocyte 
lysis, iron ion deposition in the brain parenchyma due 
to increased endothelial permeability and thrombin 
secretion and activation. Erythrocyte lysis liberates 
more iron ions that will further increase the oxidative 
stress. Moreover, thrombin activation may increase 
tissue hypoxia through increased clot formation and 
vasoconstriction that will also lead to increased oxidative 
stress. After exposure to oxidative stress compounds, 
many neuronal and glial cell modifications will ensue, 
such as lipid peroxidation, DNA mutations, cytoskeleton 
breakdown, etc. In addition, iron ions may also be 
responsible for the deposition of β-amyloid plaques 
and neurofibrillary tangles because it is implicated in 
enhancing amyloid protein metabolism and tau protein 
phosphorylation and aggregation. Accordingly, current 
research in AD therapeutics is focusing on one of the 
multiple branches of these interlinked pathophysiological 
pathways. However, a lack of a more global perspective 
may explain why no disease-modifying treatment has 
been discovered until now. For example, treatment 
with DFO may be an interesting solution for iron ion 
decompartmentalization but this treatment does 
not take into consideration the positive role that iron 
may play in the hypoxic tissue by reducing thrombin 
activation and subsequent clot formation, thus avoiding 
further hypoxia. Moreover, it becomes more obvious 
when looking at these interlinked pathways that no one 
molecule with a single mechanism of action can easily 
attenuate all the deleterious effects initiated by hypoxia 
secondary to vascular risk factors. Accordingly, we 
suggest that future research in this field should focus on 
testing combinations of potentially efficient treatments, 
such as the combination of intranasal DFO and direct 
thrombin inhibitors.

CONCLUSION
In this minireview, a common physiopathological path
way has been suggested for the pathogenesis of AD. 

This pathway is initiated by the presence of vascular 
risk factors that induce brain tissue hypoxia and 
subsequent endothelial cell activation. The endothelial 
activation may become dysfunctional in predisposed 
individuals, leading to thrombin activation and iron 
ion decompartmentalization. The oxidative stress that 
results from these modifications in the neurovascular 
unit will eventually lead to neuronal and glial cell death. 
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