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Abstract
Epidermal growth factor receptor (EGFR) has been an 
attractive target for treatment of epithelial cancers, 
including colorectal cancer (CRC). Evidence from clinical 
trials indicates that cetuximab and panitumumab (anti-
EGFR monoclonal antibodies) have clinical activity in 
patients with metastatic CRC. The discovery of intrinsic 
EGFR blockade resistance in Kirsten RAS (KRAS)-mutant 
patients led to the restriction of anti-EGFR antibodies to 
KRAS wild-type patients by Food and Drug Administration 
and European Medicine Agency. Studies have since 
focused on the evaluation of biomarkers to identify 
appropriate patient populations that may benefit from 
EGFR blockade. Accumulating evidence suggests that 
patients with mutations in EGFR downstream signaling 
pathways including KRAS, BRAF, PIK3CA and PTEN could 
be intrinsically resistant to EGFR blockade. Recent whole 
genome studies also suggest that dynamic alterations in 
signaling pathways downstream of EGFR leads to distinct 
oncogenic signatures and subclones which might have 
some impact on emerging resistance in KRAS wild-type 
patients. While anti-EGFR monoclonal antibodies have a 
clear potential in the management of a subset of patients 
with metastatic CRC, further studies are warranted to 
uncover exact mechanisms related to acquired resistance 
to EGFR blockade.

Key words: Epidermal growth factor receptor; Oncogenic 
signature; Kirsten RAS; BRAF; Cetuximab; Panitumumab; 
Epidermal growth factor receptor blockade resistance

© The Author(s) 2016. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Epidermal growth factor receptor (EGFR) block
ade treatment is a well-established targeted therapy in 
metastatic colorectal cancer (CRC) patients. However, a 
limited number of patients benefit from EGFR inhibition, 
with limited time duration of response. This review article 
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of the family such as ErbB2 (HER-2), ErbB3 (HER-3) and 
ErbB4 (HER-4)[5]. The ensuing phosphorylation of tyrosine 
kinase domain results in activation of oncogenic pathways 
including mitogen activated protein kinase (MAPK) and 
phosphotidylinositol-3-kinase (PI3KCA) pathways (Figure 
1). These signaling axes have been shown to function 
in many critical pro-survival cellular reactions in cancer 
cells including protein synthesis, cell growth, cell cycle 
progression, transformation and invasion. KRAS, a critical 
growth signal response in cancer cells, is an upstream 
activator of the MAPK pathway[6] (Figure 1). KRAS-
driven MAPK translocates into the cell nucleus, initiates 
a transcription cascade and promotes cell growth[7]. For 
example, KRAS activation leads to upregulation of c-myc 
which fuels proliferation of human colon cancer cells and 
provides a survival advantage[8]. Signal cascades of KRAS 
also induce cell cycle progression via activation of the 
transcription factor Elk-1, which ultimately increases the 
expression of cell cycle promoting proteins such Cyclin 
D1[9]. Moreover, as a part of the complex network of 
EGFR signaling, the KRAS driven MAPK pathway interacts 
with JNK signaling to modulate cellular stress responses 
which enhance cellular plasticity. This response helps 
malignant cells to adapt to dynamic microenvironmental 
changes[10]. In transformed cancer cells, KRAS mutations 
abolish regulation via the upstream EGFR loop; the MAPK 
and PI3KCA pathways, and other pro-survival cascades 
are continuously activated, leading to distinct cellular 
behavior[11,12]. 

Phosphatidylinositol 3-kinase (PIK3CA) is another 
well-studied signal transducer of the EGFR pathway. 
In normal homeostasis, activation of PIK3CA by EGFR 
leads to induction of Akt-mTOR pathway which has 
been shown to be crucial signal for protein synthesis 
and cell cycle progression[13]. Activation of PIK3CA also 
abrogates apoptosis and cellular senescence in cancer 
cells[14]. PIK3CA-driven mTOR activates Bcl-2 and 
ultimately inhibits apoptosis[15], indicating that PIK3CA 
signaling may have an important role in the immortality 
of transformed cells. PIK3CA activation has also been 
shown to be related to elevated expression of COX-2 
which enhances angiogenesis in CRC[16]. Consistent with 
evidence from preclinical observations, mutant PIK3CA is 
associated with development of various cancers including 
CRC[17]. Current thinking suggests that the changes 
in the gene expression profile caused by activating 
mutations of PIK3CA may culminate in changes in the 
proteome of cancer cells and that this transformation 
enhances cellular growth and invasion by creating distinct 
oncogenic signatures[18]. 

BRAF, a member of the RAF kinase family, functions 
as a serine/threonine protein kinase, and gets activated 
by the upstream Ras oncogene (Figure 1)[19]. Activating 
mutations of the BRAF oncogene occur in the kinase 
domain and the V599E mutation accounts for the vast 
majority of point mutations (approximately 80%)[20]. 
Mutant BRAF propagates Raf-MAPK signaling in the 
absence of upstream stimulation and ultimately induces 
cell growth and proliferation in malignant clones[21]. 

discusses the most recent updates from the current-state-
of-the-science related to molecular pathways of EGFR 
signaling, the mechanism of action and efficacy of EGFR 
blockade treatment, and possible molecular pathways 
related to EGFR blockade resistance in CRC. We further 
discuss potential mechanisms contributing to targeted 
EGFR inhibition. Lastly, future perspectives are discussed 
to shed some light on efforts to overcome this potential 
challenge in the era of targeted treatment. 
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INTRODUCTION
Colorectal cancer (CRC) with an incidence of 1.2 million 
cases per year is now the third most common cancer 
in males and second in females[1]. Although there is a 
minor trend "towards" a decrease in the incidence of the 
disease, it is yet one of the major health care burden in 
United States[2]. Despite extensive research, a limited 
number of targeted agents have been shown to be 
active in CRC.

Cetuximab and Panitumumab are two new generation 
monoclonal antibodies targeting epidermal growth 
factor receptor (EGFR) recently approved by the Food 
and Drug Administration (FDA) for the management 
of metastatic CRC in the United States. Although their 
exact mechanism of action is unknown it is hypothesized 
that the direct interaction of these antibodies with EGFR 
results in apoptosis. Herein, we discuss the molecular 
signature of the EGFR pathway, the possible mechanism 
of action of anti-EGFR monoclonal antibodies, the cli
nical consequences of these cell-based interactions 
in treatment of metastatic CRC, along with emerging 
resistance to these agents during the treatment of CRC.

ONCOGENIC SIGNATURE OF EGFR 
PATHWAYS IN CRC
EGFR, also known as ErbB, is a member of the receptor 
tyrosine kinase family; it stimulates multiple intracellular 
proto-oncogenic signaling mediators including Kirsten RAS 
(KRAS)[3]. As a 170 kDa transmembrane glycoprotein 
expressed on cell surface, EGFR has physiological 
roles in many organs including the epithelium of the 
gastrointestinal system, bronchial tract and cutaneous 
tissue[4]. In normal homeostasis, EGFR is activated by 
binding with external ligands such as growth factors 
(EGF, epiregulin or amphiregulin). This interaction initiates 
homodimerization and heterodimerization processes via 
a diverse combination of identical and different members 
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Similar to PIK3CA mutations, BRAF mutations also 
transform the protein expression profiles of cancer cells 
and alter internal metabolism. For example, CRC cells 
with mutant BRAF were found to be more resistant to 
apoptosis compared to those carrying wild-type BRAF[22]. 
Moreover, BRAF may increase the expression of cell 
cycle promoting proteins which further enhance the 
expansion of selected clones[23]. BRAF mutations have 
also been shown to be associated with constitutively 
activated NF-κB[24], leading to tumor angiogenesis 
that optimizes the microenviroment for cancer cells[24]. 
All this evidence suggests that activation of the BRAF 
oncogene may add further distinct characteristics to the 
cancer cells’ genomic fingerprint. 

Src and STAT, two other critical oncogenes, have 
been demonstrated to be involved in the development 
and progression of epithelial tumors along with cancer 
angiogenesis, and both mediators operate in the 
signaling cascade of the EGFR pathway[25]. A study 
showed that EGFR overexpressing cancer cells bear a 
10-fold increase in Src activity compared to low EGFR 
expressing cancer cells[26], and that increased Src 
activity has been associated with highly aggressive 
tumor behavior and metastatic potential in CRC cells[27]. 
Oncogenic Src, as a non-receptor tyrosine kinase (nRTK), 
turns on many downstream survival pathways such Ras-
MAPK pathway. It further activates receptor tyrosine 
kinases which create continuous growth signals for 
cancer cells[28]. Activating mutations of Src are related to 
adverse outcomes in CRC[29,30]. STATs are also activated 
by EGFR[25] and function as transcriptional factors in 
downstream pathways of receptor tyrosine kinases and 

cytokine receptors[31]. Induction of STATs through EGFR 
signaling[32] may also fuel angiogenesis in the tumor 
microenvironment[33]. Although activation of STATs has 
shown to be related to enhanced proliferation in CRC 
cancer cells[34], the exact role of STATs in development 
and progression of CRC remains to be elucidated. 

Altogether, current evidence indicates intricate 
EGFR signaling. Variant alterations in the downstream 
signal transducers of EGFR are likely responsible for the 
change in expression profiles and molecular behavior of 
cancer cells. 

EMERGENCE OF MONOCLONAL 
CHIMERIC ANTIBODIES TO EGFR
Considering the diverse oncogenic pathways activated 
by EGFR, it has become a promising target for therapy 
in various epithelial tumors[35,36]. The aforementioned 
studies led to research targeting EGFR signaling via 
different approaches, including small molecule inhibitors 
of receptor tyrosine kinases such as erlotinib and mo
noclonal antibodies to neutralize the receptor via an 
internalization and degradation process. 

The initial investigations in this field were conducted 
using murine anti-EGFR antibodies. In these studies, 
both agonist and antagonist antibodies were tested[37], 
and antagonist antibodies inhibited the proliferation of 
the malignant clones with high affinity binding[38]. Since 
murine antibodies are recognized as foreign antigens 
in humans, human-mouse chimeric antibodies were 
generated to further study this effect and they were 
shown to have superior biological efficacy compared to 
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Figure 1  Epidermal growth factor receptor signaling along with co-activated other receptor tyrosine kinases. EGFR: Epidermal growth factor receptor; 
PIK3CA: Phosphatidylinositol 3-kinase; mTOR: Mechanistic target of rapamycin.
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murine antibodies in human tumor xenograft models[39]. 
Cetuximab, a chimeric antibody against EGFR, was 
demonstrated to have 10 times higher affinity to EGFR 
compared the murine antibodies (M225)[40], and limited 
toxicity was observed in phase Ⅰ clinical studies[41]. 

The mechanism of action of anti-EGFR antibodies 
was at first attributed to internalization of receptors 
bound by the anti-EGFR antibodies[42]. Further studies 
demonstrated that the EGFR blockading agents not only 
catalyze the removal of the receptors but also inhibit 
receptor tyrosine kinase activity, and induce apoptosis via 
cell cycle arrest in colonic adenocarcinoma cell lines[43]. 
Besides its-single agent activity, an enhanced anti-cancer 
effect of cetuximab was observed in combination with 
the topoisomerase inhibitor (irinotecan) in human CRC 
xenograft models[44]. These discoveries led to further 
studies to elucidate the role of EGFR blockade in modern 
cancer treatment, and clinical trials were opened for 
enrollment in different clinical settings.

CLINICAL TRIALS TO ASSESS THE 
ROLE OF EGFR BLOCKADE IN CRC 
TREATMENT
To further investigate the promising results observed 
in preclinical studies, early phase and clinical efficacy 
trials were designed (Table 1). A phase Ⅰ safety trial 
was conducted to determine the optimal biological 
dose, and the doses achieved at maximal systemic 
clearance were well tolerated in both monotherapy 
and combined treatment models[45]. In a phase Ⅱ 
clinical trial of 120 irinotecan-resistant CRC patients 
with positive EGFR expression, cetuximab reversed the 
resistance to irinotecan with a 22.5% major objective 
response rate and 17% radiologic response rate in 
a combination treatment model[46]. The promising 
radiological response rate had already resulted in FDA 
approval for the cetuximab treatment for metastatic 
CRC patients. In order to solidify the response observed 
in the original study, cetuximab was investigated as a 
single agent treatment in patients with advanced stage 
refractory CRC[47]. In this study, 9% partial response 
rate along with a median survival of 6.4 mo was 
reported after cetuximab monotherapy in CRC patients 
expressing EGFR. To further investigate these findings 
and to test the superiority of combination treatment 
to monotherapy, a randomized phase Ⅱ clinical trial 
was conducted[48]. Patients were randomized to receive 
cetuximab and irinotecan combination vs cetuximab 
alone. Patients in the combination arm demonstrated 
a 22.9% partial response compared to 10.8% in the 
cetuximab monotherapy arm (P = 0.007). While 
progression free survival (PFS) was significantly improved 
in patients receiving combination therapy there was no 
overall survival (OS) difference between the groups. A 
subsequent study demonstrated limited survival benefit 
in patients treated with cetuximab compared to best 
supportive care (6.1 mo vs 4.6 mo respectively)[49]. 

Although EGFR expression was considered as a predictor 
of EGFR blockade response in early clinical trials, this 
concept has since changed and EGFR expression is no 
longer considered a biomarker  in CRC patients[50]. 

The observed improvement in response rate in the 
treatment of irinotecan-refractory cases led to further 
studies in treatment-naïve patients. The CRYSTAL study 
showed significantly improved PFS in metastatic CRC 
patients who received a cetuximab plus FOLFIRI (bolus 
5-fluoruracil/leucovorin chemotherapy plus irinotecan) 
regimen compared to patients who underwent FOLFIRI 
treatment alone (Table 1). However, there was no 
significant difference in OS between the two groups[51]. 
Subsequent analysis of the study demonstrated im
proved OS (approximately 3.5 mo) in patients with 
wild-type KRAS who underwent cetuximab treatment. 
No significant response was observed in KRAS-mutant 
patients[52]. This study led to the FDA approval of 
cetuximab as a first line treatment in combination with 
FOLFIRI in patients with metastatic CRC. In the OPUS 
study, cetuximab was combined with FOLFOX-4 and an 
improved PFS [hazard ratio (HR) 0.567, P = 0.0064] was 
observed in KRAS wild-type metastatic CRC patients who 
received combination therapy[53]. In order to assess the 
role of cetuximab in earlier stages of the disease, N0137 
trial was conducted: Stage Ⅲ CRC patients were enrolled 
to receive cetuximab plus FOLFOX-6 combinations vs 
FOLFOX-6 in adjuvant settings after initial resection[54]. 
After a of median 28 mo follow-up in both wild-type 
and mutant KRAS groups, results of this trial showed no 
benefit of cetuximab when added to FOLFOX-6 regimen 
in the setting of locally advance disease. In order to 
compare the efficacy of cetuximab in combinations with 
FOLFOX-6 and FOLFIRI regimens as a neoadjuvant 
treatment in unresectable metastatic CRC patients, a 
phase Ⅱ clinical trial (CELIM trial) was conducted[55]. 
Although there was no significant survival difference 
between the two groups, addition of cetuximab resulted 
in higher response rates compared to historical controls 
(FOLFOX and FOLFIRI). A total 36 of 116 patients were 
able to receive R0 resection. The result of this study 
was also consistent with previous studies demonstrating 
improved outcomes limited to patients with wild type 
KRAS.

Panitumumab, another monoclonal antibody for EGFR 
blockade, has also been investigated in CRC patients. 
This agent received FDA approval after prolonged PFS 
was demonstrated in an open-label phase Ⅲ clinical trial 
in which patients were enrolled to receive single-agent  
panitumumab vs best supportive care (median PFS, 8 
wk vs 7.3 wk; HR, 0.54; 95%CI: 0.44-0.66)[56]. Follow-
up analysis of this study showed that the survival benefit 
was again, limited to wild-type KRAS CRC patients[57]. 
A retrospective study suggested potential resistance in 
patients with BRAF V600E mutation and requirement of 
wild-type BRAF for clinical benefit, along with wild-type 
KRAS[58]. Currently this drug is also approved as a first 
line agent in combination with FOLFOX4 in metastatic 
CRC patients with wild-type KRAS due to observed 
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improvement in PFS in a randomized phase Ⅲ clinical 
trial (PRIME trial; median PFS, 9.6 mo vs 8.0 mo; P = 
0.02)[59]. A small phase Ⅱ trial evaluated Panitumumab 
in 33 wild-type KRAS metastatic CRC patients whom 
were deemed ineligible for chemotherapy. The study 
demonstrated a PFS rate of 36.4%, objective response 
rate of 9.1% and stable disease in 54.5% of patients. The 
median PFS was 4.3 mo and OS was 7.1 mo, indicating a 
role for Panitumumab monotherapy in patients who are 
not eligible for chemotherapy[60]. 

EMERGING RESISTANCE TO EGFR 
BLOCKADE
The promising results observed with monoclonal antibodies 

either as monotherapy or in combination treatments in 
metastatic CRC patients were encouraging. However the 
relatively small magnitude of improvement in PFS was an 
early sign of emerging resistance to cetuximab therapy. 
Therefore, further clinical and translational studies were 
conducted to elucidate possible underlying mechanisms 
related to EGFR blockade resistance.

EGFR mutations were considered as a possible 
mechanism for EGFR blockade resistance in CRC 
patients. However, in a clinical study, only one out of the 
293 CRC patients was found to be harboring an EGFR 
mutation[61]. Considering the rarity of EGFR mutations, 
they are unlikely to be a common cause of resistance to 
EGFR blockade in CRC patients. 

As mentioned above, a retrospective study first 
revealed that the KRAS-mutant CRC patients did not 

Table 1  Clinical trials investigating the impact of epidermal growth factor receptor blockades in colorectal cancer patients

Ref. Year Sample size Mutation status Treatment groups Special 
considerations

Summarized findings

Saltz et al[46] 2001 120 EGFR + Cetuximab plus Irinotecan 22.5% major objective response rate
17% radiologic response rate

Saltz et al[47] 2004 57 EGFR + Cetuximab 9% (CI: 3% to 19%) partial response
Median survival of 6.4 mo. P value ??

Cunningham 
et al[48]

2004 329 EGFR + Cetuximab plus irinotecan 
vs cetuximab alone

22.9% partial response in combination arm, 10.8% 
partial response in the cetuximab monotherapy 
arm
No difference in OS

Jonker et al[49] 2007 572 EGFR + Cetuximab compared to 
best supportive care

6.1 mo OS in treatment arm vs 4.6 mo with 
supportive care. P = 0.005
Quality of life was better preserved in the 
cetuximab group (P < 0.05)

Van Cutsem et 
al[56]

2007 463 EGFR+ Panitumumab vs best 
supportive care

Median PFS 8 wk in treatment arm compared to 
7.3 wk in patients receiving supportive care (HR 
0.54; P < 0.0001)

Amado et al[57] 2008 427 EGFR+ 
Wild type KRAS  
vs mutant KRAS

Panitumumab vs best 
supportive care

Reanalysis of 
Van Cutsem 
2007

In patients with wild type KRAS median PFS 
was 12.3 wk for panitumumab vs 7.3 wk for 
supportive care
Response rates to panitumumab was 17% for 
patients with wild type KRAS compared to 0% in 
patients with mutant KRAS

Van Cutsem et 
al[51] 
CRYSTAL 
Trial

2009 1198 EGFR + Cetuximab plus FOLFIRI 
vs FOLFIRI alone

HR for PFS in combination therapy 0.85 (P = 
0.048) when compared to FOLFIRI alone 
There was no difference in OS (HR 0.93; P = 0.31)
Although not significant PFS was improved with 
cetuximab in patients with wild-type-KRAS (HR 
0.68; P = 0.07)

Folprecht et 
al[55]

CELIM trial

2010 113 Wild type KRAS vs 
mutant KRAS 

Cetuximab plus FOLFOX 
vs Cetuximab plus 
FOLFIRI vs historical 
controls

Neoadjuvant 
setting

No survival difference between the two groups
Higher response rates compared to historical 
controls (FOLFOX and FOLFIRI)
Total 36 of 116 patients were able to receive R0 
resection
Improved outcomes limited to patients with wild 
type KRAS

Van Cutsem et 
al[52]

2011 1198 EGFR+
Wild type KRAS vs 
mutant KRAS

Cetuximab plus FOLFIRI 
vs FOLFIRI alone
Wild type KRAS vs mutant 
KRAS

Reanalysis 
of data from 
CRYSTAL trial

Patients with wild type KRAS had improvements 
in OS from 20 to 23.5 mo PFS from 8.4 to 9.9 mo 
and response rates 39.7% to 57.3% with addition 
of Cetuximab to FOLFIRI

Bokemeyer et 
al[53]

OPUS study

2011 315 Wild type KRAS/
BRAF vs mutant 
KRAS/BRAF

Cetuximab plus FOLFOX Improved PFS (HR 0.567) and response (OR 2.55) 
in patients with KRAS wild-type tumors

Alberts et al[54]

N0137 trial
2012 2686 Wild type KRAS  

vs mutant KRAS
Cetuximab plus FOLFOX 
vs FOLFOX alone 

Locally 
advanced 
disease

No additional benefit of Cetuximab when added 
to FOLFOX-6 regimen in the setting of locally 
advance disease

EGFR: Epidermal growth factor receptor; PFS: Progression free survival; OS: Overall survival.
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benefit from cetuximab therapy[52]. In a study by De 
Roock et al[62], KRAS 13D mutation was reported to 
be associated with cetuximab response unlike other 
KRAS mutations. However another retrospective study 
did not confirm this favorable outcome[63]. Whether 
KRAS 13D-mutant CRC tumors have a distinct clinical 
behavior from other KRAS mutations warrants further 
study. Similar to KRAS, a clinical study found NRAS 
to be a biomarker of anti-EGFR antibody resistance in 
CRC patients[64]. This association of NRAS mutations 
with EGFR blockade resistance needs to be validated in 
future studies.

Since disruptions downstream of EGFR cause auto
nomous activation of the signaling pathway and potential 
intrinsic resistance to EGFR blockade, clinical studies also 
investigated the utility of BRAF mutations as a biomarker 
in CRC patients (Figure 2). In two clinical trials, patients 
with CRC harboring BRAF mutations were reported to 
have a poor response to cetuximab; indicating BRAF 
mutations could also limit the efficacy of anti-EGFR 
treatment[58,65]. A large retrospective multicenter study 
looking at survival in patients with metastatic CRC and 
their mutation status; also reported similar findings[64]. 
Although current evidence strongly suggests that BRAF 
mutations might be a negative biomarker for monoclonal 
anti-EGFR treatment, guidelines do not currently preclude 
such patients from this targeted treatment approach.  

A study of 23 PIK3CA-mutant metastatic CRC pa
tients reported no resistance to anti-EGFR treatment[66]. 
However, in another cohort of 15 PIK3CA-mutant CRC 
patients, no objective response to panitumumab and 
cetuximab treatment was observed[67]. A recent study of 
patients with metastatic CRC harboring wild-type KRAS 
showed a trend towards improved PFS in patients with 
wild-type PIK3CA compared to PI3KCA-mutant patients 
who received cetuximab either as a monotherapy or in 
combination with chemotherapy (P = 0.06)[68]. Further
more, a meta-analysis of 576 CRC patients reported a 
significantly lower PFS in patients harboring a PIK3CA 
mutation compared to patients with wild-type PIK3CA 
when treated with EGFR blockade[69]. Although a majority 
of the aforementioned studies suggest resistance to EGFR 
blockade in PIK3CA-mutant metastatic CRC patients with 
wild-type KRAS, the absence of a consensus precludes 
making a clear conclusion in this specific patient group. 
A recent study investigated the role of PTEN expression 
in anti-EGFR blockade therapy and reported potential 
resistance to cetuximab treatment in metastatic CRC 
patients with low PTEN expression[70]. Another study also 
demonstrated a significantly diminished response and 
worse PFS in patients with loss of PTEN function (32 wk vs 
14 wk, P < 0.0001)[71]. Loss of PTEN expression was also 
studied in patients with KRAS wild-type CRC which again 
suggested a lack of benefit from EGFR blockade[68]. While 
accumulating evidence supports the hypothesis that PTEN 
loss may result in potential intrinsic resistance to EGFR 
blockade in CRC patients, further studies are needed to 
understand exact role of dysregulation of this gene.

The MET proto-oncogene, a receptor tyrosine kinase 

that belongs to the hepatocyte growth factor receptor, 
is also related to EGFR blockade resistance in CRC 
patients[72]. A mechanistic study suggested that, resistance 
essentially arises in cancer stem cells via increased 
rebound activity of the MET oncogene upon inhibition 
of EGFR signaling by monoclonal antibodies[73]. Another 
study identified increased Met activity driven by oncogenic 
Src and this upregulation was found to be related to 
cetuximab resistance[74]. Increased TGF-α expression 
mediated by the Met oncogene could be also another 
oncogenic pathway related to cetuximab resistance[75]. 
A mechanistic study reported that inhibition of both the 
Met and EGFR pathways by a bispecific monoclonal 
antibody may abrogate EGFR blockade resistance[76]. 
Although these studies suggest that upregulation of this 
tyrosine kinase pathway may be related to EGFR blockade 
resistance, the exact mechanism of resistance with Met 
activity is yet to be elucidated. 

POSSIBLE MECHANISMS OF 
RESISTANCE IN WILD TYPE KRAS 
PATIENTS
The response to EGFR blockade even in metastatic CRC 
patients with wild-type KRAS is unfortunately limited: 
Following an initial honeymoon period, a majority of 
patients develop disease progression within months of 
initiation[77]. Researchers investigated pathways possibly 
related to resistance in wild-type KRAS patients. An 
animal model study demonstrated that human epidermal 
growth factor receptor 2 (HER-2) amplification was 
associated with cetuximab resistance in a subset of 
metastatic CRC patients with wild-type KRAS, NRAS, 
BRAF and PIK3CA[78]. The authors also reported pro
longed responses with concurrent inhibition of HER-2 
and EGFR in their model. Another mechanistic cell line 
study corroborated the association of aberrant ERBB2 
(HER-2) signaling with EGFR blockade resistance[79]. 
In a retrospective cohort study, HER-3 overexpression 
was also suggested to be a predictor of EGFR blockade 
resistance in metastatic CRC patients who underwent 
cetuximab and irinotecan treatment[80]. Similar to the 
aforementioned studies, all patients included in this 
study were also harboring wild-type KRAS. A recent 
translational study examined the emergence of resi
stance in CRC cells sensitive to EGFR blockade[81]. The 
authors examined the ultimate effect of continuous 
cetuximab treatment on the development of cetuximab-
resistant clones. One of the cell lines developed a rescue 
mechanism by KRAS amplification and the other acquired 
a KRAS mutation. In the same study, the authors studied 
human samples and reported acquisition of KRAS 
mutation in 6 of 10 cases and KRAS amplification in 
another patient who developed resistance to cetuximab 
after an initial response. In another recent translational 
study, authors tested their theory with mathematical 
modeling; they hypothesized that KRAS-mutant CRC 
subclones might exist prior to initiation of anti-EGFR 
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treatment[82]. According to this model, anti-EGFR 
monoclonal therapy results in the selective proliferation of 
resistant subclones. The time required for these subclones 
to become radiologically detectable corresponds to the 
time of disease progression and development of EGFR 
blockade resistance. This hypothesis is also supported 
by tumor heterogeneity, a consequence of variant clones 
arising from a single parental clone due to continuous 
diverse genetic alterations throughout carcinogenesis 
and metastasis. These diverse genetic signatures 
have also been demonstrated to cause mixed clinical 
responses to cytotoxic chemotherapy. Moreover, a rec
ent whole-exome sequencing study of 129 wild-type 
KRAS CRC tumor samples identified potential resistance 
mechanisms resulting from mutations in other growth 
factor pathways such as FGFR, and PDGFRA[83]. This 
data suggests activation of potential bypass pathways 
related to other receptor tyrosine kinases abrogating the 
inhibitory effect of EGFR blockade. 

Another possible resistance mechanism to anti-EGFR 
treatment could be attributed to ineffective structural 
interaction between the drug and its receptor[84]. Mut
ations in the extracellular domain of EGFR hindering the 
binding of cetuximab to EGFR were demonstrated in 2 
of 10 study participants with resistance to cetuximab. 
Moreover, one of those two cases responded to pani
tumumab. Since the number of the patients in the study 
was limited, this specific mutation should be further 
studied in larger populations. 

Some recent studies indicate that certain signaling 
mediators which inhibit apoptosis could potentially rescue 
malignant cells during initiation of anti-EGFR monoclonal 

treatments[85,86]. A recent study investigated acquired 
EGFR blockade resistance by analyzing circulating cancer 
cells and reported progressive genomic alterations 
throughout the acquisition of resistance suggesting 
that genomic instability in cancer cells may execute an 
important role in EGFR blockade resistance[87]. Activation 
of other oncogenic tyrosine kinases by the local 
microenvironment with closed loop feedback might be 
another key mechanism of resistance in wild type KRAS 
patients[73]. Further studies are required to elucidate the 
impact of tumor stroma on EGFR blockade resistance.

FUTURE PERSPECTIVES
Given the limited duration of responses to EGFR blockade 
and the inevitable development of resistance in both 
KRAS mutant and KRAS wild-type patients, studies were 
enrolled to optimize treatment outcomes. Based on 
potential mechanisms of resistance to EGFR blockade 
identified in preclinical studies, clinical trials have been 
designed to combat resistance. Considering the role 
of PIK3CA mutations, a phase Ⅱ trial investigated 
the combination of cetuximab with PX-866, an irrever
siblepan-isoform inhibitor of PI3KCA, in 86 patients with 
KRAS wild type metastatic CRC. The authors reported no 
improvement in PFS, objective response rate, or OS with 
the addition PX-866[88]. Combinations of cetuximab with 
HER-2 and HER-3 targeting agents are currently being 
studied in clinical trials. The combination of cetuximab 
with pertuzumab (a monoclonal antibody that disrupts 
the dimerization of HER-2) showed clinical activity, but 
produced intolerable side effects and toxicity[89]. Studies 
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combining cetuximab with HER-3 antagonists have 
demonstrated promising preliminary data, although final 
results are yet to be reported[90]. 

A xenograft study investigated a new agent to over
come EGFR mutation-related resistance. Sym004, a 
novel mixture of two nonoverlapping anti-EGFR mono
clonal antibodies, has demonstrated binding and ligand-
dependent activation in patients with EGFR mutations 
conferring resistance to conventional anti-EGFR antibodies 
in functional studies[91]. Phase Ⅰ trials of Sym004 in 
metastatic CRC patients with wild type KRAS mutation 
and previous EGFR blockade response showed tumor 
radiologic regression in 17 of 39 patients (44%) and partial 
response in 5 patients (13%)[92]. Phase Ⅱ clinical trials of 
Sym004 and early phase studies of other targeting agents 
of the EGFR pathways are currently being investigated 
which may enlighten the utility of concurrent/simultaneous  
inhibition of prosurvival pathways to abrogate EGFR block
ade resistance.

CONCLUSION
Current state-of-the-science endorses clinical activity of 
the EGFR blockade in selected subsets of patients with 
treatment naïve and refractory metastatic CRC. However, 
growing evidence has advanced our understanding of the 
limitations of anti-EGFR treatment.

Although cetuximab and other monoclonal anti-EGFR 
antibodies effectively inhibit EGFR signaling; their clinical 
activity is limited to a short period of time. Disease 
heterogeneity, created by continuous and dynamic genetic 
alterations, distinct mutational signatures in the EGFR 
downstream signaling pathways, and rebound activation 
of other growth signals appears to be the primary 
driving force rescuing cancer cells from apoptosis. New 
subclones with new oncogenic fingerprints arising as a 
consequence of genomic instability, appear to be one 
of the most challenging factors in the era of targeted 
treatment. Frequently, this dynamic process and the 
associated genetic plasticity overcome the inhibitory 
effect of targeted agents and ultimately, disease pro
gression occurs despite optimal treatment. Moreover, 
the addiction of cancer cells to a single oncogenic path
way appears to be limited, and the co-activation of 
rebound survival pathways further limits the impact 
of a single targeted agent. The lack of durability of the 
clinical responses to EGFR blockade observed in the 
aforementioned studies also represents the phenotypic 
characteristics of dynamic changes in genotype. Whether 
combinations of targeted agents along with alternate 
treatment cycles can overcome this acquired resistance 
requires further clinical studies. Studies are warranted to 
better understand the underpinnings of dynamic genomic 
alterations and its role in acquired resistance to targeting 
agents including EGFR blockades. 
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