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Abstract
A growing body of epidemiologic research has demons
trated that metabolic derangement exists in patients 
with hepatitis B virus (HBV) infection, indicating 
that there are clinical associations between HBV 
infection and host metabolism. In order to understand 
the complex interplay between HBV and hepatic 
metabolism in greater depth, we systematically 
reviewed these alterations in different metabolic 
signaling pathways due to HBV infection. HBV infection 
interfered with most aspects of hepatic metabolic 
responses, including glucose, lipid, nucleic acid, bile acid 
and vitamin metabolism. Glucose and lipid metabolism 
is a particular focus due to the significant promotion of 
gluconeogenesis, glucose aerobic oxidation, the pentose 
phosphate pathway, fatty acid synthesis or oxidation, 
phospholipid and cholesterol biosynthesis affected by 
HBV. These altered metabolic pathways are involved 
in the pathological process of not only hepatitis B, but 
also metabolic disorders, increasing the occurrence 
of complications, such as hepatocellular carcinoma 
and liver steatosis. Thus, a clearer understanding of 
the hepatic metabolic pathways affected by HBV and 
its pathogenesis is necessary to develop more novel 
therapeutic strategies targeting viral eradication.
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Core tip: Currently, hepatitis B virus (HBV) infection 
still poses a serious threat to public health, and causes 
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approximately 1 million deaths annually due to HBV-
related liver diseases. Thus, investigation into the 
complex host cellular responses to HBV infection is a 
crucial area of research. Multiple epidemiologic data 
have proved that patients with HBV infection often 
have metabolic disorders. Therefore, we systematically 
reviewed the alterations in metabolic response to 
HBV infection with regard to molecular mechanisms. 
Deciphering the detailed interplay mechanisms would 
contribute to our understanding of HBV-induced 
pathological processes and may lead to nutritional 
therapies as new anti-HBV treatments.
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INTRODUCTION
Chronic hepatitis B (CHB) is a serious global health 
concern, which is estimated to affect approximately 
350 million people worldwide and carries a significantly 
increased risk of serious liver disorders including liver 
cirrhosis, hepatic decompensation or hepatocellular 
carcinoma (HCC). Approximately, one million deaths 
occur each year due to CHB and its complications[1,2]. 
However, the intrinsic mechanisms of hepatitis B 
virus (HBV)-induced diseases are unclear, and no 
complete cure is currently available for CHB. Thus, an 
investigation of the complex host responses to HBV 
infection is a crucial area of research, which in turn 
could provide a more thorough understanding of the 
pathogenesis and potential novel targets in antiviral 
drug discovery. 

The HBV genome (3.2 kb) is a partially double-
stranded, relaxed circular DNA, mainly controlled 
through the transcriptional activation of four promoters 
(core, X, pre-S1 and pre-S2/S) and two enhancers 
(EnhI and EnhII)[3-6]. The recruitment of cellular 
transcription factors to the binding sites of HBV genome 
could regulate virus transcription. Some of these 
transcription factors are ubiquitous nuclear receptors 
such as C-AMP-response element binding protein, 
specificity protein 1, prospero-related homeobox 
protein and nuclear respiratory factor 1; some are liver-
enriched nuclear receptors such as hepatocyte nuclear 
factor 4, alpha (HNF4a), CAAT enhancer-binding 
protein, peroxisome proliferator-activated receptors, 
alpha/retinoid X receptors, alpha (PPARa/RXRa) and 
farnesoid X receptor (FXR)[7,8].

Interestingly, the native role of most HBV-bound 
transcription factors is the coordination and control 
of hepatic metabolism[8]. For example, HNF4a plays a 
key role in glucose metabolism in the liver[9]. PPARa 

controls fatty acid β-oxidation and is a crucial regulator 
of genes involved in the cellular fasting response[10]. 
FXR, activated by bile acids, is a molecular link 
between lipid metabolism and bile acid[11]. Thus, it 
indicates that HBV has adopted a smart mode of 
regulation, which is similar to that of major hepatic 
metabolic genes, implying that there is an association 
between metabolism and HBV infection. Our previous 
work also suggested that activation of fatty acid 
oxidation-associated PPARα was required for fasting-
induced HBV transcription[12].

Accumulating epidemiologic evidence has shown that 
there is still debate regarding the clinical associations 
between HBV infection and host metabolism. For 
instance, patients with chronic HBV infection, com
pared with healthy adults, have lower triglyceride 
(TG) and high-density lipoprotein (HDL) levels, but a 
higher adiponectin level[13]. A review by Janicko et al[14] 
described strong correlations between CHB and the 
metabolic syndrome, non-alcoholic fatty liver disease 
or dyslipidemia, whereas an inconclusive association 
between diabetes mellitus and CHB has also been 
described. However, in metabolic signaling pathways, 
an increasing number of studies have shown that HBV 
modulates all aspects of host hepatic metabolism. 
In order to understand the unique interplay between 
HBV and hepatic metabolism in greater depth, we 
systematically reviewed these alterations in metabolic 
signaling pathways due to HBV infection.

HBV AND GLUCOSE METABOLISM
Glucose homeostasis is regulated by balancing the 
output and the storage of glucose[15]. Glucose meta
bolism in hepatocytes can be divided broadly into 
two categories: anabolism and catabolism, including 
gluconeogenesis, glycolysis, aerobic oxidation and the 
pentose phosphate pathway.

Previous studies indicated that HBV infection 
could affect either gluconeogenesis or glucose aerobic 
oxidation. According to the study by Park[16], hepatitis 
B virus X protein (HBx) functions as an important 
positive regulator of gluconeogenesis. In HBx-
overexpressing (HBxTg) mice and inducible nitric oxide 
synthase (iNOS)-knocked out HBxTg mice, increased 
HBx expression significantly up-regulated the gene 
expression of hepatic key gluconeogenic enzymes 
(PEPCK, G6Pase) and the production of hepatic 
glucose, leading to hyperglycemia and impaired 
glucose tolerance. These effects are considered to be 
mediated through the nitric oxide (NO)/JNK pathway. 
However, other studies have demonstrated that HBV 
can promote glucose aerobic oxidation. By combining 
proteomics, metabolomics and molecular biological 
assays in HepG2.2.15 and HepG2 cell models, Li et 
al[17] provided a holistic view of the interplay between 
host metabolism and HBV. They pointed out that 
enzymes which regulate the glycolysis pathway, such 
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as fructose-bisphosphate aldolase, alpha enolase, 
triosephosphate isomerase, phosphoglycerate 
kinase 1 and glucose-6-phosphate isomerase, and 
enzymes involved in the tricarboxylic acid (TCA) cycle, 
including malate dehydrogenase, citrate synthase 
and succinate dehydrogenase, are all significantly up-
regulated in HepG2.2.15 cells, subsequently leading to 
elevated levels of corresponding intermediates, such 
as lactate in glycolysis and fumarate, succinate and 
2-oxoglutarate in the TCA cycle. These data suggested 
that glycolysis and the TCA cycle are stimulated in 
host cells due to HBV infection. In addition, another 
study revealed that a HBV pre-S2 mutant could induce 
aerobic oxidation via activation of MTOR signaling, 
which may contribute to HBV tumorigenesis[18].

Furthermore, HBV infection could promote the 
pentose phosphate pathway (PPP). Overexpression of 
HBx caused the nuclear translocation and activation 
of NF-E2-related factor 2, resulting in up-regulation 
of glucose-6-phosphate dehydrogenase, which 
is the first and rate-limiting enzyme of the PPP 
converting glucose-6-phosphate into 6-phosphog
luconolactone[19]. Enhancement of the PPP by HBx-
mediated elevation of G6PD provided host cells with 
more ribose for nucleotide biosynthesis to support 
their proliferation, which might contribute to HBV-
associated hepatocarcinogenesis. The change in 
G6PD was also supported by a systems biology 
model[17]. It was reported that G6PD participating in 
the PPP was markedly increased, accompanied by 
elevated nucleotide levels, such as AMP, ADP, uridine 
59-diphosphate and inosine-59-monophosphate.

HBV AND LIPID METABOLISM
The liver, the main organ for the synthesis and 
circulation of lipids (e.g., fatty acids, fats, phospholipids 
and cholesterol), oxidation of fatty acids and the 
production of ketone bodies, plays an important role in 
lipid metabolism[20].

A significant amount of basic research has indi
cated that HBV infection has an effect on fatty acid 
metabolism. Many, but not all, studies have shown 
that HBV can promote the synthesis of fatty acids. 
Based on HPLC/MS analysis and two-dimensional 
electrophoresis (2-DE), fatty acid binding 5 and Acyl-
CoA binding protein implicated in fatty acid metabolism 
and synthesis, which can bind Acyl-CoA and fatty 
acids with high affinity, are markedly increased in 
hepatitis B virus transgenic mice (HBV-Tg mice)[21]. 
HBV-influenced genes in lipid biosynthetic pathways 
in HBV-Tg mice were identified by cDNA microarray 
analysis, in which retinol binding protein 1 (RBP1), 
sterol regulatory element binding protein 2 (SREBP2), 
ATP citrate lyase and fatty acid synthase (FAS) were 
all strongly upregulated[22]. However, in contrast to the 
above studies, Wang et al[23] recently proposed that 
up-regulation of HBx could facilitate fatty acid oxidation 
(FAO) and subsequently maintain intracellular NADPH 

and ATP levels under glucose deprivation, which is of 
great importance for HCC cell survival under conditions 
of metabolic stress.

Recently, accumulating evidence from experimental 
investigations has suggested that HBV infection is 
a potential trigger of liver steatosis. HBx can induce 
hepatic steatosis at all aspects, such as increasing 
fatty acid binding, promoting lipid synthesis and in
hibiting secretion of apolipoprotein (Figure 1). Fatty 
acid binding protein 1 (FABP1), responsible for the 
uptake, metabolism and transport of long-chain fatty 
acids (LFA)[24], plays a key role in intracellular fatty 
acid utilization and transport[25]. Forced expression of 
HBx induced liver steatosis through up-regulation of 
FABP1, whereas gene silencing of FABP1 blocked lipid 
accumulation in both in vivo and in vitro models[26]. LXR, 
SREBP1 and PPARγ are master regulators in hepatic 
lipogenesis: LXR directly induces expression of SREBP1, 
which up-regulates lipogenic genes[27]; activation of 
LXR also stimulates adipocyte differentiation through 
induction of PPARγ expression[28]. Both are suggested 
to be of vital importance in hepatic lipid accumula
tion. Several studies have demonstrated that HBx 
increased the gene expression and transcriptional 
activity of LXR-mediated SREBP1 and PPARγ, thereby 
inducing the expression of hepatic lipogenic genes 
(fatty acid synthase, stearoyl-CoA desaturase, acetyl-
CoA carboxylase) and adipogenic genes (adipsin, 
adiponectin, aP2/adipose fatty acid–binding protein), 
finally accompanied by the accumulation of lipid 
droplets[29-32]. Apolipoprotein B (apoB), required for the 
secretion and assembly of low-density lipoproteins (LDL) 
and very low-density lipoproteins (VLDL), is assembled 
into a secretion-competent particle with lipids[33-35]. 
It has been reported that HBx mediated aberrantly 
glycosylated apoB by elevating the expression of 
N-Acetylglucosaminyltransferase Ⅲ (GnT-Ⅲ) resulted 
in inhibition of apoB secretion as well as intracellular 
accumulation of cholesterol and triglyceride[36].

In addition, phospholipid and cholesterol meta
bolism are also altered by the presence of HBV. 
Phosphatidylcholine (PC) is a major component of the 
biological membrane[37], and acts as a precursor for the 
synthesis of lipid signaling molecules[38]. In comparison 
with HepG2, the key enzymes participating in PC 
synthesis, such as choline-phosphate cytidylyltransferase 
A, choline kinase a, choline phosphotransferase 1 and 
choline/ethanolamine phosphotransferase 1 are all 
up-regulated in HepG2.2.15 cells, consistent with the 
elevated levels of phosphocholine and reduced levels 
of choline[17]. These results strongly indicate that 
HBV infection can promote the biosynthesis of PC. 
Cholesterol, a type of lipid different from triglyceride 
and phospholipid, has two essential metabolic fates: 
conversion into bile acids or steroid hormones[39]. HBV-
infected humanized mice displayed a significant increase 
in human genes related to the uptake, biosynthesis, 
and transcriptional regulation of cholesterol, such 
as low-density lipoprotein receptor (LDLR), hydroxy
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and NHEJ1) and intermediates of nucleic acid metabo
lism (guanosine, inosine and uridine), which in turn 
blocked DNA repair and probably contributed to the 
development of HCC. 

HBV AND BILE ACID METABOLISM
Bile acid, mainly synthesized in the liver from cho
lesterol, plays a key role in the digestion and absorption 
of lipids[45]. Human NTCP (SLC10A1), located in the 
basolateral membrane of hepatocytes, functions as a 
main transporter to mediate entry of bile salts from 
portal blood into hepatocytes[46].

Recently, the detection of NTCP, acting as a func
tional entry receptor for HBV, clearly represents a 
typical milestone in our knowledge of HBV infection[47]. 
HBV exploits NTCP for species-specific entry into 
hepatocytes[48]. Hence, emerging evidence demonstrated 
the probable association between HBV infection and 
bile acid. Yan et al[49] showed that the HBV pre-S1 
lipopeptide efficiently blocked the uptake of bile salts 

methylglutaryl-coenzyme A reductase (HMGCR) and 
SREBP2[40]. Another study provided evidence that HBV 
exacerbated hepatic cholesterol accumulation via up-
regulation of LDLR and HMGCR in HepG2 cells[41].

HBV AND NUCLEIC ACID METABOLISM
It is well known that the main function of the nucleotide 
is the biosynthesis of nucleic acids. Many studies have 
reported that DNA damage can cause abnormalities in 
nucleic acid metabolism[42]. HBV infection also influences 
this process via HBx-induced DNA damage, which may 
result in the onset of hepatocarcinogenesis[43]. Thus, 
identifying the distinguishing nucleic acid metabolites 
under HBx induction may help to understand the 
occurrence of HCC. A new study[44] using a systematic 
approach combining metabonomics and mRNA micro
array analysis indicated that HBx could initially induce 
DNA damage and then disrupt nucleic acid metabolism, 
resulting in a significant decrease in DNA damage-
related genes (BRCA1, TP53, RPA1, DDB1, TCEA1 

Figure 1  The molecular mechanisms contributing to liver steatosis following hepatitis B virus infection. Hepatitis B virus (HBV) infection can induce the 
accumulation of lipids via three different regulatory mechanisms, including elevated expression of FABP1, up-regulation of LXR, SREBP1 and PPARγ and increased 
expression of GnT-Ⅲ. On the one hand, up-regulation of FABP1 would increase fatty acid binding and transport. On the other hand, induction of LXR-mediated 
SREBP1 and PPARγ would result in increased transcriptional activity of hepatic lipogenic genes (FAS, SCD, ACC) and adipogenic genes (adipoQ, adipsin, AP2). 
In addition, elevation of GnT-Ⅲ would cause glycosylation and dysfunction of apoB, finally leading to reduced secretion of VLDL (containing apoB, CHO and TG). 
LFA: Long-chain fatty acids; FABP1: Fatty acid binding protein 1; FAS: Fatty acid synthase; SCD: Stearoyl-CoA desaturase; ACC: Acetyl-CoA carboxylase; adipoQ: 
Adiponectin; AP2: aP2/adipose fatty acid–binding protein; apoB: Apolipoprotein B; GnT-Ⅲ: N-Acetylglucosaminyltransferase Ⅲ; CHO: Cholesterol; TG: Triglyceride; 
VLDL: Very low density lipoproteins.
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by NTCP, suggesting that HBV infection may limit the 
physiological function of NTCP. Reduced bile salts could 
promote compensatory bile acid synthesis to maintain 
its homeostasis[50,51]. This compensation was confirmed 
by the strong induction of hCYP7A1 (the rate-limiting 
enzyme converting cholesterol to bile acid), decreased 
FXR (the positive transcription factor of SHP) nuclear 
translocation and significant reduction of SHP (the 
corepressor of hCYP7A1 transcription) in human liver-
chimeric uPA/SCID mice infected with HBV[40]. 

HBV AND VITAMIN METABOLISM
Vitamin A, including retinol, retinal and retinoic 
acid, plays a critical role in visual function as well 
as cell growth and differentiation[52]. Previous data 
provided evidence that retinoic acid could enhance 
HBV transcription and replication through activation 
of RXRa[53,54]. Most interestingly, another study 
demonstrated that HBV infection could promote 
retinol metabolism-related proteins RBP, CRBP1 and 
ALDH1 as shown by 2-DE and MS/MS analysis[55]. 
It is reasonable that more retinol would be pumped 
into cells and converted into retinoic acid during HBV 
infection. HBV infection may up-regulate retinoic 
acid by promoting retinol metabolism and thereby 
facilitating self- replication through activation of RXRa, 
leading to an increased risk of liver damage, which 
was considered a positive feedback[56].

Vitamin D, including its bioactive vitamin D 
metabolite [1,25(OH)2D3] and stable, easy-to-quantify 
metabolite (25(OH)D3), plays an emerging role in 
metabolic and inflammatory liver diseases[57]. A study 
has demonstrated a significant association between 
low levels of serum 25(OH)D3 and high HBV DNA 
levels in CHB patients[57]. However, the molecular 
mechanism underlying inverse seasonal fluctuations of 
HBV DNA and 25(OH)D3 serum levels still remains to 
be elucidated.

CONCLUSION
In conclusion, we have systematically outlined the 
hepatic metabolic responses to HBV infection in 
this review. According to the above observations, 
multiple studies combining systematic approaches 
and molecular biological assays found that, from the 
molecular mechanism perspective, HBV infection 
interfered with the hepatic metabolic signaling pathway 
(Figure 2), including glucose, lipid, nucleic acid, bile 
acid and vitamin metabolism, ultimately resulting in 
metabolic derangement. Furthermore, these altered 
metabolic pathways may also contribute to the patho
logical processes of other HBV-induced diseases, 
such as hepatocellular carcinoma. Therefore, in this 
review, deciphering the molecular mechanisms of the 
metabolic pathways during HBV infection has shed 
new light on the pathological processes, and provides a 
new, revolutionary, potential means of directly fighting 
against this virus.
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