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Abstract
Mesenchymal stem cells (MSCs) have been used to treat 
patients suffering from acute myocardial infarction (AMI) 
and subsequent heart failure. Although it was originally 
assumed that MSCs differentiated into heart cells such 
as cardiomyocytes, recent evidence suggests that the 
differentiation capacity of MSCs is minimal and that 
injected MSCs restore cardiac function via  the secretion 
of paracrine factors. MSCs secrete paracrine factors 
in not only naked forms but also membrane vesicles 
including exosomes containing bioactive substances such 
as proteins, messenger RNAs, and microRNAs. Although 
the details remain unclear, these bioactive molecules are 
selectively sorted in exosomes that are then released 
from donor cells in a regulated manner. Furthermore, 
exosomes are specifically internalized by recipient cells 
via  ligand-receptor interactions. Thus, exosomes are 
promising natural vehicles that stably and specifically 
transport bioactive molecules to recipient cells. Indeed, 
stem cell-derived exosomes have been successfully used 
to treat cardiovascular disease (CVD), such as AMI, 
stroke, and pulmonary hypertension, in animal models, 
and their efficacy has been demonstrated. Therefore, 
exosome administration may be a promising strategy 
for the treatment of CVD. Furthermore, modifications of 
exosomal contents may enhance their therapeutic effects. 
Future clinical studies are required to confirm the efficacy 
of exosome treatment for CVD. 
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Core tip: Exosomes are membrane vesicles that contain 
and transport specific bioactive molecules, such as 
proteins, messenger RNAs, and microRNAs, to recipient 
cells. In this review, we describe the mechanisms of 
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exosome biogenesis, selective sorting of bioactive mol
ecules into exosomes, and exosome secretion. We also 
discuss preclinical studies in which stem cell-derived 
exosomes were successfully used to treat cardiovascular 
disease (CVD). Finally, we discuss the future possibility of 
exosome-based clinical treatment of CVD.
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INTRODUCTION
Cardiovascular disease (CVD) is the leading cause of 
morbidity and mortality worldwide. Owing to recent 
advances in the treatment of acute myocardial infarction 
(AMI) using percutaneous coronary intervention or 
bypass surgery, the survival of patients with AMI has 
substantially improved. However, many of these survivors 
develop heart failure (HF) as a result of the death of 
cardiomyocytes and subsequent tissue remodeling. As 
the induction of the proliferation and differentiation of the 
remaining cardiac tissue to regenerate heart structure 
remains challenging, heart transplantation is still the only 
treatment option for fatal HF. The development of new 
therapies for AMI and HF is thus required to improve the 
outcome in these patients.

Recently, many attempts have been made to improve 
the outcome of AMI and ischemic HF (IHF) using stem 
cells in preclinical[1-4] and clinical[5-10] studies. Among of 
the various stem cells, mesenchymal stem cells (MSCs), 
particularly bone marrow-derived MSCs, have been 
used to treat patients with AMI and IHF in clinical trials, 
with their safety and efficacy demonstrated in some 
studies[5-10]. The earliest preclinical studies suggested 
that MSCs have the potential to differentiate into multiple 
cardiac cell types including cardiomyocytes, vascular 
endothelial cells, and vascular smooth muscle cells[1-3]. 
However, subsequent studies did not demonstrate this 
remarkable differentiation capacity of MSCs. Rather, 
it was reported that most intravenously injected cells 
are trapped in the lung rather than engrafted in the 
heart[11,12]. Even when MSCs are administered to the 
swine heart via the coronary artery following AMI 
induction, only 6% of the injected cells remained in the 
infarct zones 14 d after AMI induction[11]. Furthermore, 
the supernatant of MSC cultures reportedly improves 
cardiac function[13-15]. These results suggest that MSCs 
improve cardiac function via the secretion of paracrine 
factors rather than via the direct differentiation of MSCs 
into cardiac cell types. Furthermore, MSC transplantation 
has several problems such as low survival rate and stem 
cell tumorigenesis[16]. However, if MSC-secreted paracrine 
factors can efficiently repair and regenerate cardiac 
tissues, cell-free therapy is possibly a safer alternative in 

the future.
Recently, a variety of cell types, including stem cells, 

have been shown to secrete paracrine factors in not 
only naked forms but also membrane vesicles, such 
as exosomes, microvesicles, ectosomes, membrane 
particles, exosome-like vesicles, and apoptotic bodies[17].  
Exosomes are one of the secreted vesicles (also referred 
to as extracellular vesicles or EVs) that are 30-100 nm 
in diameter and contain a variety of biologically active 
molecules, such as proteins, messenger RNAs (mRNAs), 
and microRNAs (miRs)[18]. In this manuscript, we review 
the characteristics of exosomes and their possible 
applications in CVD treatment.

EXOSOME ISOLATION AND 
IDENTIFICATION
Several strategies have been used to isolate exosomes 
from tissues. These strategies utilize ultracentrifugation, 
size-based purification, precipitation using polymers, 
and immunoaffinity purification as reviewed in some 
reports[19-21]. Ultracentrifugation is the most established 
method of exosome isolation which employs sequential 
centrifugation combined with sucrose density gradient 
ultracentrifugation. Size-based purification includes 
ultrafiltration and gel filtration methods. Alternatively, 
polymers such as polyethylene glycol, widely used to 
precipitate proteins and viruses, can also be used to 
precipitate exosomes. As exosomes express specific 
proteins and lipids on their surface, antibodies recognizing 
these molecules (frequently conjugated with magnetic 
beads) are also used in their isolation.

Identification of exosomes is usually achieved by 
evaluating their morphology and size, their motion in 
a solution, and the specific molecules they express, 
as previously reviewed[22,23]. Electron microscopy is 
commonly employed to measure the size and assess 
the morphology of exosomes. The number of particles 
corresponding to exosome size can be counted by 
nanoparticle tracking analysis. This method utilizes the 
phenomenon of Brownian motion in a liquid suspension 
to measure particle size. Because exosomes are derived 
from endosomes and are finally released from cells as 
described in the following section, molecules involved in 
exosome formation, such as tetraspanins (CD81, CD9, 
and CD63), are expressed in exosomes. These markers 
can be used to identify exosomes.

EXOSOME BIOGENESIS, SECRETION, 
AND UPTAKE BY RECIPIENT CELLS
Exosomes are derived from endosomes that are formed 
by the inward budding of the plasma membrane (Figure 
1)[18]. The subsequent inward budding of the endosomal 
membrane results in the formation of intraluminal 
vesicles (ILVs) into which cytoplasmic molecules, such 
as proteins, mRNAs, and miRs are sorted[24,25]. These 
endosomes containing ILVs, or multivesicular bodies 
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(MVBs)[18], fuse with the plasma membrane and release 
ILVs into the extracellular environment by exocytosis. 
These secreted ILVs containing biologically active 
molecules are referred to as exosomes. 

The mechanisms of exosome formation and pro
cessing are just starting to be revealed. The formation of 
MVBs is reportedly mediated by the endosomal sorting 
complexes required for transport (ESCRT) system or 
by systems independent of the ESCRT machinery as 
summarized in some reviews[26-28]. The ESCRT machinery 
comprises four protein complexes, ESCRT-0, ESCRT-I, 
ESCRT-II, and ESCRT-III, together with accessory 
proteins. ESCRT-0 recognizes ubiquitinated proteins 
and is recruited to the endosomal membrane, where it 
initiates processes leading to the uptake of ubiquitinated 
proteins into ILVs. ESCRT-0 subsequently recruits 
ESCRT-I to the endosomal membrane, which in turn 
recruits ESCRT-II and ESCRT-III. ESCRT-III induces 
the inward budding of the endosomal membrane and 
formation of ILVs, while accessory proteins (particularly 
the vacuole protein sorting gene 4 ATPase or VPS4) 
are implicated in the dissociation and recycling of the 
ESCRT machinery. In addition, other molecular pathways 
mediate ESCRT-independent MVB formation including 
tetraspanins[29] such as CD81, CD9, and CD63, and 
proteolipid proteins such as ceramide[30]. 

The docking and fusion of MVBs to the plasma 
membrane appear to be mediated by soluble N-ethyl
maleimide-sensitive fusion protein attachment protein 
receptor (SNARE) proteins such as vesicle-associated 
membrane protein 7 (VAMP7)[31]. The release of ILVs 
(exosomes) from cells following the fusion of MVBs to the 
plasma membrane is mediated by several mechanisms. 
The small GTPases of the Rab family (Rab27a/b, Rab11, 
and Rab35) are the most studied molecules involved in 
exosome release[32-34]. Other pathways include WNT5A, 
glycosphingolipids, flotillins, and stress-induced stimuli 
such as the increase in intracellular calcium concentration, 
DNA damage, heat shock, and hypoxia[35-39]. In addition, 
an acidic environment has been shown to trigger the 
secretion of exosomes from cells[40].

Once released from cells, exosomes bind to target 
cells via ligand-receptor interactions. Molecules, such 
as integrins, intercellular adhesion molecules, and 
tetraspanins seem to be implicated in the binding of 
exosomes to recipient cells[41-43]. After binding, exosomal 
contents are reportedly internalized by recipient cells 
via two major mechanisms as summarized in some 
reviews[23,44]: (1) exosome fusion with the plasma mem
brane of recipient cells and direct release of contents into 
the cytoplasm; or (2) internalization by endocytosis into 
recipient cells. It has been demonstrated that bioactive 
molecules in exosomes are not only transferred to 
recipient cells but also exert functional effects[45-47].

Although the precise mechanism remains unknown, 
a specific set of proteins, mRNAs, and miRs are 
selectively accumulated within exosomes[48]. It has also 
been demonstrated that exosomes contain a distinct set 
of mRNAs compared to the donor cells[49]. Ubiquitination 
appears to be required for the uptake of some proteins 
into exosomes[50], although ubiquitination-independent 
accumulation of proteins has also been reported[51]. 
The accumulation of miRs into the exosomes of T 
cells appears to require the recognition of a GGAG se
quence located in miRs by the heterogeneous nuclear 
ribonucleoprotein hnRNPA2B1[49].

Taken together, accumulating evidence indicates 
that exosomes are a natural vehicle for the efficient 
and specific transport of biologically active cargo into 
recipient cells. These properties may be exploited for 
the delivery of bioactive molecule such as miRs and 
chemical compounds such as drugs. For instance, 
stem cell-derived exosomes may be useful for CVD 
treatment. We review the potential utility of stem cell-
derived exosomes for CVD treatment in the following 
section. 

THERAPEUTIC EFFECTS OF STEM CELL-
DERIVED EXOSOMES ON CVD
MSC-derived exosomes
Several preclinical studies have demonstrated the efficacy 
of MSC-derived exosomes for CVD treatment (Table 1). Lai 
et al[52] found that the supernatant of human embryonic 
stem cell (ESC)-derived MSCs contained small particles 
(50-100 nm in diameter) corresponding to exosomes. 
When administered to a mouse model of myocardial 
ischemia/reperfusion injury, these exosomes remarkably 
reduced infarct size. The same group also administered 
exosomes secreted from human ESC-derived MSCs to 
a mouse model of AMI and demonstrated improved 
cardiac function[53]. In addition, they found that the tissue 
levels of ATP and nicotinamide adenine dinucleotide were 
significantly increased, while those of reactive oxygen 
species were significantly decreased after exosome 
administration. Furthermore, they demonstrated that the 
phosphorylation of Akt and glycogen synthase kinase 3 
(that has anti-apoptotic effects) significantly increased 
and that of c-jun N-terminal kinase (that has proapoptotic 

Endosome

MVB

ILV

Released ILV = Exosome

Figure 1  Schematic diagram showing exosome biogenesis and release. 
ILV: Intraluminal vesicle; MVB: Multivesicular body.
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effects) significantly decreased in cardiac tissue following 
exosome administration. Bian et al[54] demonstrated 
the proliferation and migration of human umbilical vein 
endothelial cells in response to EVs (100 nm in diameter) 
collected from human MSCs. They also administered MSC-
derived EVs to a rat model of AMI and showed that MSC-
derived EV administration significantly reduced infarct size, 
restored cardiac function, and stimulated angiogenesis 
in the ischemic zone. Feng et al[55] demonstrated that 
exosomes secreted from mouse MSCs following ischemic 
preconditioning contained a large amount of miR-22. 
When administered to mice with AMI, these miR-22-
enriched exosomes exerted an anti-apoptotic effect on 
cardiomyocytes via the downregulation of methyl-CpG-
binding protein 2. Yu et al[56] used MSCs overexpressing 
the transcription factor GATA-4 (MSC_GATA-4) and 
demonstrated that the administration of MSC_GATA-4-
derived exosomes restored cardiac function and reduced 
infarct size in a rat model of AMI. The authors also 

showed that MSC_GATA-4-derived exosomes expressed 
a greater amount of miRs, particularly miR-19a, than 
control MSCs and that miR-19a appeared to be involved 
in the cardioprotective effect of MSC_GATA-4-derived 
exosomes via the downregulation of phosphatase and 
tensin homolog (PTEN) and subsequent activation of anti-
apoptotic Akt and extracellular signal-regulated kinase.

Preclinical studies have also reported favorable 
effects of exosome administration on neurological 
recovery following stroke induction. Xin et al[57] found 
that the systemic administration of rat MSC-derived 
exosomes following the induction of stroke by the ligation 
of the middle cerebral artery significantly accelerated 
neurological recovery and stimulated neurogenesis and 
angiogenesis at the border zone between normal and 
ischemic tissues. The same group also demonstrated 
that the administration of MSCs overexpressing miR-
133b (MSCs_miR-133b+) enhanced the recovery of 
neurological function in a rat stroke model whereas MSCs 

Table 1  Effects of exosome administration on cardiovascular disease models

Origin of exosomes Experimental model Findings Ref.

Human ESC-derived MSCs AMI Reduction in infarct size
Recovery of cardiac function 
Decreased oxidative stress 
Activation of Akt and GSK3 
Inhibition of c-JNK

Lai et al[52,53]

Human MSCs AMI Reduction in infarct size
Recovery of cardiac function
Increased angiogenesis

Bian et al[54]

Mouse MSCs AMI Exosomes were enriched in miR-22
miR22 was implicated in the anti-apoptotic effect of exosomes

Feng et al[55]

Rat MSCs overexpressing
GATA-4

AMI Reduction in infarct size
Recovery of cardiac function
Exosomes were enriched in miR-19a 

Yu et al[56]

Rat MSCs Stroke Recovery of neurological function
Stimulation of neurogenesis and angiogenesis

Xin et al[57]

Rat MSCs overexpressing
miR-133b and those whose 
expression of miR-133b was 
knocked down

Stroke Recovery of neurological function was mediated by miR-133b 
expressed in exosomes

Xin et al[58] 

Mouse MSCs Pulmonary hypertension Reduction in the progression of pulmonary hypertension and right 
ventricular hypertrophy

Lee et al[59]

Mouse CPCs AMI Suppression of apoptosis Chen et al[60]

Human CPCs AMI Recovery of cardiac function
Suppression of apoptosis
Stimulation of angiogenesis

Barile et al[61]

Human CPCs AMI Recovery of cardiac function
Suppression of apoptosis
Stimulation of angiogenesis
miR-146a was enriched in exosomes and partially mediated their 
function

Ibrahim et al[62]

Mouse ESCs AMI Recovery of cardiac function
Stimulation of angiogenesis and cardiomyocyte survival
Stimulation of the survival and proliferation of CPCs
miR-294 was enriched in exosomes and miR-294 promoted the 
survival and proliferation of CPCs

Khan et al[63]

Human CD34+ cells Matrigel plug assay
Corneal angiogenesis assay

Promotion of angiogenesis Sahoo et al[64]

Human CD34+ cells
expressing SHH

AMI Recovery of cardiac function
SHH was enriched in exosomes and transferred to recipient cells

Mackie et al[66]

ESC: Embryonic stem cell; MSCs: Mesenchymal stem cells; CPCs: Cardiac progenitor cells; SHH: Sonic hedgehog; AMI: Acute myocardial infarction; GSK3: 
Glycogen synthase kinase 3; c-JNK: c-jun N-terminal kinase.
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with miR-133b knockdown (MSCs_miR-133b-) did not[58]. 
Furthermore, they showed that the level of miR-133b in 
exosomes isolated from cerebrospinal fluid was higher 
in the group that received MSCs_miR-133b+. They also 
demonstrated that MSC-derived exosomes could be 
transferred to neighboring cells. Finally, they showed 
that the expression of connective tissue growth factor 
(CTGF), a target for miR-133b, was significantly reduced 
in the ischemic boundary zone following MSCs_miR-
133b+ administration, while CTGF expression remained 
unchanged after MSCs_miR-133b- administration. They 
concluded that miR-133b derived from exosomes was 
implicated in MSC-mediated recovery of neurological 
function in this model.

The beneficial effects of MSC-derived exosome 
administration have also been reported in a mouse 
model of hypoxic pulmonary hypertension. Lee et al[59] 
demonstrated that the administration of MSC-derived 
exosomes significantly ameliorated the progression of 
pulmonary hypertension and right ventricular hyper
trophy, possibly via the suppression of signal transducer 
and activator of transcription 3 (STAT3).

Cardiac progenitor cell-derived exosomes
Chen et al[60] demonstrated that the injection of 
exosomes isolated from murine cardiac progenitor 
cells (CPCs) into the murine heart following ischemia/
reperfusion injury significantly suppressed apoptosis. 
Barile et al[61] demonstrated that the administration of 
EVs (most of which were exosomes) isolated from human 
CPCs significantly suppressed apoptosis, stimulated 
angiogenesis, and improved cardiac function in a rat 
model of AMI. They also showed that specific miRs, such 
as miR-210, miR-132, and miR-146a-3p, were enriched 
in CPC-derived exosomes. Ibrahim et al[62] reported that 
the administration of human CPC-derived exosomes in a 
mouse model of AMI significantly suppressed apoptosis, 
stimulated angiogenesis, and restored cardiac function. 
They also demonstrated that miR-146a was enriched in 
CPC-derived exosomes and that miR-146a administration 
partially mimicked the beneficial effects of CPC-derived 
exosomes on cardiac function.

ESC-derived exosomes
Khan et al[63] reported that ESC-derived exosomes 
from mouse stimulated neovascularization, enhanced 
cardiomyocyte survival, and restored cardiac function 
in a mouse model of AMI. Furthermore, ESC-derived 
exosomes augmented the survival and proliferation of 
CPCs. miR-294 was enriched in ESC-derived exosomes 
and the treatment of CPCs with miR-294 promoted the 
progression of the cell cycle to the S phase, suggesting 
that ESC-derived exosomes transferred miRs, such as 
miR-294, to CPCs, which promoted the proliferation and 
survival of CPCs.

CD34+ stem cell-derived exosomes
Sahoo et al[64] isolated exosomes from human CD34+ 

stem cells (which include endothelial progenitor cells[65]) 
and examined their proangiogenic activity. CD34+ stem 
cell-derived exosomes stimulated tube formation from 
cultured endothelial cells in Matrigel (in vitro assay), 
and promoted angiogenesis in vivo, as assessed by the 
Matrigel plug assay and the corneal angiogenesis assay. 
Mackie et al[66] demonstrated that CD34+ stem cells 
expressing the pro-angiogenic factor sonic hedgehog 
(SHH) restored cardiac function in a mouse model 
of AMI. They also showed that SHH was enriched in 
exosomes secreted from stem cells and that it was 
transferred to and expressed functionally in recipient 
cells, suggesting that exosome-mediated transfer of 
SHH to recipient cells accounts for the beneficial effects 
of stem cell administration in this model of AMI. 

Collectively, these studies provide compelling 
evidence that exosomes derived from a variety of stem 
cells exert beneficial effects on animal models of CVD.  

  
FUTURE DIRECTIONS
Clinical trials
Although clinical trials using exosomes for CVD treat
ment have not yet started, exosome administration 
in humans has been tested, particularly for cancer 
immunotherapy[67-69]. Phase I and phase II studies have 
been performed and the safety of the treatment has 
been confirmed. Future clinical studies will be required 
to test the safety and efficacy of exosome treatment for 
CVD.

Modification of exosomes
Given the low toxicity, high stability in the circulation, and 
high efficiency of transport to donor cells demonstrated 
by exosomes, several studies have attempted to augment 
the therapeutic efficacy by modifying exosomal content. 
For instance, small RNAs such as small interfering RNAs 
and miRs have been loaded into exosomes during 
exosome formation using lipofection or following exosome 
formation using electroporation[70-74]. These modified 
exosomes reportedly exerted biological effects in recipient 
cells[70-74]. Exosomes have also been used as vehicles to 
transport exogenous chemical compounds to recipient 
cells stably and efficiently, because some drugs are 
condensed in the exosomes of donor cells and transferred 
to recipient cells. Exosomes enriched in curcumin, an anti-
inflammatory agent, or chemotherapeutic agents, such as 
paclitaxel and doxorubicin, have been used to transport 
these compounds to recipient cells, with their beneficial 
biological effects confirmed[75-78]. Another strategy that has 
been examined is the modification of exosomal membrane 
proteins to improve the efficiency of uptake by recipient 
cells. Alvarez-Erviti et al[70] prepared dendritic cells that 
expressed Lamp2b, an exosomal membrane protein, 
fused to a peptide fragment of neuron-specific rabies viral 
glycoprotein so that exosomes would be accumulated 
specifically in the brain. The authors demonstrated that 
these modified exosomes were specifically taken up by 
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brain tissues when intravenously administered. Therefore, 
the modification of exosome structure will enhance the 
specificity and efficiency of transport and the modification 
of exosome content (for example, by inclusion of specific 
miRs) will enhance the therapeutic effect in the future.

Exosome-induced tumorigenesis
It has been reported that MSC-derived exosomes 
promote tumor growth in vivo via the stimulation of 
vascular endothelial growth factor expression in tumor 
cells[79]. In most cases, the stimulation of angiogenesis 
appears to be favorable for the regeneration of cardio
myocytes after AMI. However, angiogenesis may sti
mulate tumor growth in other tissues. Therefore, it is 
desirable to explore a strategy to specifically deliver 
exosomes to target tissues.

CONCLUSION
Exosomes are one of the secreted vesicles that contain 
bioactive molecules, such as proteins, mRNAs, and 
miRs. Exosomes transfer these bioactive molecules to 
recipient cells, thus exerting biological effects. Preclinical 
studies have suggested that exosomes can be used for 
the treatment of CVD such as AMI and stroke. Future 
clinical studies are warranted to confirm the efficacy of 
exosome administration for CVD treatment. Furthermore, 
modifications of exosomal structure and content will 
enhance the efficacy of exosome administration for such 
treatments in the future.
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