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Abstract
AIM
To investigate the potential benefit of combining the cMET 
inhibitor crizotinib and cisplatin we performed in vitro 
combination studies. 

METHODS
We tested three different treatment schemes in four 
non-small cell lung cancer (NSCLC) cell lines with a 
different cMET/epidermal growth factor receptor genetic 
background by means of the sulforhodamine B assay and 
performed analysis with Calcusyn.

RESULTS 
All treatment schemes showed an antagonistic effect in 
all cell lines, independent of the cMET status. Despite 
their different genetic backgrounds, all cell lines (EBC-1, 
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HCC827, H1975 and LUDLU-1) showed antagonistic 
combination indexes ranging from 1.3-2.7. These results 
were independent of the treatment schedule.

CONCLUSION 
These results discourage further efforts to combine 
cMET inhibition with cisplatin chemotherapy in NSCLC. 

Key words: Non-small cell lung cancer; Combination 
therapy; Cisplatin; Crizotinib; cMET

© The Author(s) 2016. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Targeted therapies are a valuable treatment 
option in non-small cell lung cancer. Several therapies 
have now been approved like erlotinib and gefitinib for 
epidermal growth factor receptor - mutant patients and 
crizotinib for Anaplastic Lymphoma Kinase-rearranged 
patients. However, resistance against these therapies 
eventually occurs. Combination therapy might be able to 
overcome or delay this resistance. Here we investigate the 
combination of the cMET inhibitor crizotinib with cisplatin 
in a panel of non-small cell lung cancer (NSCLC) cell lines 
with different histological and genetic backgrounds. We 
show that this leads to strong antagonism in all of the 
used cell lines. Furthermore we also link these results to 
the earlier in vitro and clinical results of the combination 
of erlotinib/gefitinib with cisplatin based chemotherapy in 
NSCLC.
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INTRODUCTION
During the last decade, targeted therapies have revolu­
tionized the treatment for non-small cell lung cancer 
(NSCLC). Several epidermal growth factor receptor-
tyrosine kinase inhibitors (EGFR-TKIs) have been approved 
for patients with sensitizing mutations in EGFR[1-3]. 
Furthermore, several cMET inhibitors are currently under 
development with promising clinical benefit[4,5]. However, 
only a small percentage of NSCLC patients are eligible 
for these treatments. Thus, for the majority of NSCLC 
patients, cisplatin based therapy remains the standard of 
care treatment in first or later lines, usually in combination 
with pemetrexed, gemcitabine or a taxane[6-9]. 

cMET, with its ligand hepatocyte growth factor (HGF), 
is known to be activated in many tumor types, including 
NSCLC[10], with cMET amplification recognized as a 

resistance mechanism during EGFR tyrosine kinase 
inhibition[11]. The cMET and EGFR signaling pathways 
are heavily intertwined[12,13], with EGFR activation being 
sufficient for downstream cMET phosphorylation. The 
mitogen activated protein kinase (MAPK) dependent 
activation of cMET by EGFR takes place at different 
regulatory levels, with cMET transcriptional upregulation, 
the elongation of cMET half-life and a decrease in cMET-
ubiquitylation[12]. Upon binding of HGF, the cMET receptor 
dimerizes and cross-phosphorylation takes place. This 
ultimately leads to phosphorylation of the docking sites 
recruiting proteins involved in the signaling of MAPK 
cascades, phosphoinositide 3 kinase (PI3K), signal 
transducer and activator of transcription 3 (STAT3) 
and nuclear factor-κB (NF-κB). Thus activating many 
oncogenic processes such as migration, invasion, and 
angiogenesis[14]. Two main cMET aberrations have been 
described, which can be used to predict sensitivity to 
cMET therapies: Amplification of the cMET gene[4] and 
cMET exon 14 skipping[5,15].

Several small molecule inhibitors and monoclonal 
antibodies inhibiting cMET signaling are currently being 
investigated in several clinical trials[16]. One of these small 
molecule inhibitors is crizotinib, which was originally 
developed as a cMET inhibitor[17] but has been approved 
for treatment of anaplastic lymphoma kinase (ALK)-
translocated NSCLC patients[18]. Currently, crizotinib is 
being investigated in several clinical trials (METROS trial 
and the NCT02499614) for the treatment of patients 
with cMET-dependent NSCLC and in other cancer types 
where patients carry a cMET amplification[16,19].

The combination of a cMET inhibitor and cisplatin 
has not been investigated in NSCLC patients to date. 
However, in vitro studies show contradictory results 
where the outcome is dependent on tumor type and 
origin. For example, addition of the cMET ligand HGF 
enhanced cisplatin resistance in seven different NSCLC 
cell lines. This was explained by the fact that HGF binding 
induces cMET signaling which led to activation of focal 
adhesion kinase (FAK). FAK, in turn, suppressed the 
apoptosis inducing factor (AIF), resulting in a decreased 
sensitivity to cisplatin[20]. Therefore, theoretically, inhi­
bition of cMET could possibly result in sensitization 
towards cisplatin. However, another study in SW620 
cells, a KRAS mutated colon cancer cell line, showed 
that conditioned knock-down of cMET did not influence 
cisplatin sensitivity[21]. In contrast, ovarian cancer cell 
lines were sensitized towards cisplatin with the addition 
of HGF[22], this was established to be linked to the p38-
MAPK signaling of cMET[23]. HGF pretreatment of these 
cells decreased the transcription of protein phosphatase 
2A, thus increasing the effect of cisplatin[24]. 

Given the contradictory results in previous studies, 
more studies were warranted. Therefore, we investigated 
whether a combination of these compounds could result 
in a synergistic treatment effect in NSCLC cell lines with 
different cMET and EGFR genetic backgrounds. 
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MATERIALS AND METHODS
Cell lines and reagents
Four NSCLC cell lines were included in this study. The 
HCC827 and H1975 cell lines were purchased from the 
American Type Culture Collection (ATCC), the EBC-1 cell 
line from the Japanese Collection of Research Bioresources 
(JCRB, Japan) and the LUDLU-1 cell line from the Euro­
pean Collection of Authenticated Cell Cultures (ECACC) 
(Figure 1 and Table 1). The EBC-1 cell line was cultured 
in DMEM (Invitrogen, Merelbeke, Belgium) supplemented 
with 10% FBS, 1% penicillin/streptomycin, L-glutamine 
(2 mmol/L) and sodium pyruvate (1 mmol/L). The HCC 
827, H1975 and LUDLU-1 cell lines were cultured in 
RPMI1640 (Invitrogen) supplemented with 10% FBS, 
1% penicillin/streptomycin, L-glutamine (2 mmol/L) and 
sodium pyruvate (1 mmol/L). Cultures were incubated 
at 37 ℃ under an atmosphere of 5% CO2. The HCC827 
cell line harbors an exon 19 deletion in the ErbB1 gene[25], 
while the H1975 cell line has L858R and T790M mutations 
in the ErbB1 gene[26]. The EBC-1 cell line harbors a cMET 
amplification[27], while the LUDLU-1 is wild-type for both 
EGFR and cMET (Table 1). All cell lines were wild-type 
for ALK, free from mycoplasma contamination and STR 
profiles were checked.

Cisplatin and crizotinib were purchased from Selleck­

chem (Huissen, The Netherlands). Cisplatin was dissolved 
in a sterile 0.9% NaCl solution (Fisher Scientific, Aalst, 
Belgium), while crizotinib was dissolved in dimethyl­
sulfoxide (DMSO). Both were diluted in phosphate buf­
fered saline (PBS) to the desired concentrations. 

Cell proliferation assay: Sulforhodamine B assay
Cells were harvested from exponential phase cultures 
by trypsinization (Trypsin-EDTA 0.05% with phenol 
red, Invitrogen, Merelbeke, Belgium), counted, seeded 
in sterile 96-well plates and allowed to attach before 
treatment. Optimal seeding densities for each cell line 
were determined to ensure exponential growth during 
a 5-d or 7-d assay. For the 5-d assay the EBC-1 and 
HCC827 were seeded at 4500 cell/well, H1975 at 3500 
cell/well and the LUDLU-1 at 8000 cell/well. For the 7-d 
assay the EBC-1 and HCC827 were seeded at 1500 
cell/well, the H1975 at 850 cell/well and the LUDLU-1 at 
4000 cell/well. Cells were incubated with cisplatin alone 
(0-10 µmol/L for 72 h), crizotinib alone (0-5 µmol/L for 
72 h) or with a combination of both. The combination 
used crizotinib at a fixed concentration (IC20 or IC40), 
while a concentration range of cisplatin (0-10 µmol/L) 
was added. Cells treated with 0.1% diluted DMSO in 
the case of crizotinib or pure PBS in the case of cisplatin 
were used as controls. Three combination schedules 
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Figure 1  Sensitivity of several non-small cell lung cancer cell lines to cisplatin (A) and crizotinib (B) monotherapy. Cells were exposed to the drugs for 72 h. 
Cisplatin and crizotinib concentrations are depicted in µmol/L. Values are means of at least 3 separate experiments. The maximal SEM was ± 9%.

Table 1  Cell line properties and drug sensitivity

HCC827 H1975 EBC-1 LUDLU

Properties
Histology Adeno Adeno Squamous Squamous
EGFR-status Exon 19 deletion L858R + T790M Wild-type Wild-type
cMET-status Wild-type Wild-type Amplification Wild-type
Drug sensitivity (µmol/L, IC50 ± SEM)
Cisplatin 8.39 ± 0.36 6.10 ± 0.07 16.52 ± 0.89 3.37 ± 0.19
Crizotinib 6.05 ± 0.11 4.00 ± 0.06   0.054 ± 0.002 8.12 ± 0.28

Cells were treated with cisplatin or crizotinib during 72 h. Drug sensitivity is given in µmol/L and given as IC50 ± SEM of 3 separate experiments. EGFR: 
Epidermal growth factor receptor.
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were investigated: (1) simultaneous exposure to cisplatin 
and crizotinib for 72 h; (2) cisplatin for 72 h, followed by 
washing and crizotinib for 72 h; or (3) 72 h of crizotinib 
followed by washing and cisplatin for 72 h (Table 2). 
When crizotinib was used as first drug, the concentration 
was reduced in three out of the four cell lines, due to the 
toxic after-effect of this drug.

After treatment, growth inhibition was determined 
by the sulforhodamine B (SRB) assay, as previously 
described[28]. In short, the medium was discarded and 
the cells were fixed with ice cold 10% Trichloric acid 
(Fisher Scientific, Aalst, Belgium) solution for 1 h at 4 ℃. 
Next, the plates were washed 5 times with demineralized 
water. The cells were stained with 100 µL 0.1% SRB 
(Acros organics, Geel, Belgium) dissolved in 1% glacial 
acetic acid (Fisher Scientific, Aalst, Belgium) for at least 
15 min and subsequently washed five times with 1% 
acetic acid to remove unbound stain. The plates were left 
to dry at room temperature and bound protein stain was 
solubilized with 100 µL 10 mmol/L unbuffered Tris base 
[tris (hydroxymethyl) aminomethane] (Fisher Scientific, 
Aalst, Belgium) and read at an optical density (OD) of 
540 nm (IMark microplate absorbance reader, Biorad, 
Nazareth, Belgium)[29]. 

Statistical analysis
Each test was performed at least three times, unless 
otherwise stated. Results are presented as mean ± 
SEM.

To assess the IC50 value of cisplatin and crizotinib, 
WinNonlin software was used (Pharsight Corporation, 
Mountain View, CA, United States). To determine pos­
sible synergism between cisplatin and crizotinib, the 
combination index (CI) was calculated with the Calcusyn 
software of Biosoft. This program is based on the method 
of Chou et al[30,31] to assess whether a combination of 
two drugs results in an antagonistic effect (CI > 1.2), 
an additive effect (0.8 < CI < 1.2) or a synergistic effect 
(CI < 0.8). This method takes into account the fraction 
of affected cells of both monotherapies and compares 
this with the fraction of affected cells of the combination 
therapies. 

RESULTS
The effects of cisplatin and crizotinib monotherapy were 
investigated in four NSCLC cell lines (Figure 1). LUDLU-1 
cells were most sensitive to cisplatin, followed by the 
EGFR-mutated H1975 and HCC827 cell lines. As for the 
cMET amplified EBC-1 cell line, concentrations up to 10 
µM cisplatin induced only 30% growth inhibition and the 
IC50 value was determined by extrapolation (Figure 1). 

EBC-1 cells were 74-150 fold more sensitive to 
crizotinib than the other 3 cell lines, due to the presence 
of a cMET amplification in these cells. The IC50 values of 
the HCC827 and LUDLU-1 cell line were determined by 
extrapolation, with the LUDLU-1 being the most resistant 
to crizotinib (Figure 1 and Table 1). Based on these 
results, we decided to use the IC20 and IC40 values of 
crizotinib during combination treatment (Table 2).

Despite their different genetic backgrounds for cMET 
and EGFR, all cell lines showed strong antagonism (CI 
ranging from 1.3 to 2.7) when crizotinib and cisplatin 
were combined, which was independent of the used 
treatment schedule (Table 2). This antagonistic effect 
was visible for all growth inhibition rates of the cells (Figure 
2). However, for one treatment condition, i.e., crizotinib 
followed by cisplatin treatment in the H1975 cell line, an 
additive effect (CI = 1.0) could be detected. However, 
this combination only led to 40% growth inhibition at 
most and needs to be interpreted with caution. 

DISCUSSION
Although both cisplatin and crizotinib are active drugs 
used in monotherapy for the treatment of various forms 
of NSCLC, the combination of both compounds was 
found to be antagonistic, independent of the genetic 
background of the investigated cell lines. 

As described in literature, the high sensitivity of the 
EBC-1 cell line for crizotinib monotherapy can be explained 
by its cMET amplification, which is known to confer 
sensitivity to crizotinib and other cMET small molecule 
inhibitors[19]. In contrast, the EBC-1 cells were not sensitive 
to cisplatin, with an IC50 value around 16 µmol/L. Although 

Table 2  Combination indexes for the different non-small cell lung cancer cell lines for the 3 treatment schemes

Drug scheme HCC827 H1975 EBC-1 LUDLU-1

Criz CI ± SEM Criz CI ± SEM Criz CI ± SEM Criz CI ± SEM

Cisplatin + 
Crizotinib

3 µmol/L 1.58 ± 0.10 3 µmol/L 1.94 ± 0.27 0.025 µmol/L 2.08 ± 0.49 3 µmol/L 2.65 ± 0.30
5 µmol/L 1.54 ± 0.15 5 µmol/L 1.93 ± 0.19 0.05 µmol/L 1.42 ± 0.06 4 µmol/L 2.71 ± 0.14

Cisplatin → 
Crizotinib

3 µmol/L 1.74 ± 0.17 3 µmol/L 1.75 ± 0.30 0.025 µmol/L 2.29 ± 0.53 3 µmol/L 1.27 ± 0.13
5 µmol/L 2.06 ± 0.30 5 µmol/L 1.96 ± 0.14 0.05 µmol/L 2.38 ± 0.56 4 µmol/L 1.34 ± 0.15

Crizotinib → 
Cisplatin

1 µmol/L 2.70 ± 0.37 1 µmol/L 1.58 ± 0.24 0.025 µmol/L 2.08 ± 0.49 2 µmol/L 1.74 ± 0.14
2 µmol/L 2.42 ± 0.21 2 µmol/L 0.95 ± 0.03 0.05 µmol/L 1.42 ± 0.06 3 µmol/L 1.89 ± 0.17

Cells were treated with the indicated fixed concentration of crizotinib (IC20 and IC40) either simultaneously for 72 h (indicated by “+”), or sequential with 72 
h cisplatin preceding 72 h crizotinib or crizotinib preceding cisplatin (indicated by “→”). The simultaneous treatment of LUDLU-1 was performed 2 times, 
all other conditions were tested at least 3 times. Criz: Crizotinib; CI: Combination index; SEM: Standard error of mean.

Van Der Steen N et al . Cisplatin and crizotinib in NSCLC



429 December 10, 2016|Volume 7|Issue 6|WJCO|www.wjgnet.com

we did not investigate common resistance mechanisms 
for cisplatin (such as transporters or DNA repair[32-34]) 
the cMET amplification might also explain the observed 
results, since cMET activation can induce cisplatin 
resistance in cell lines[20]. In contrast to the EBC-1 cells, 
the LUDLU-1 cells (WT EGFR, WT cMET) where the most 
sensitive to cisplatin but resistant to crizotinib.

When both therapies were combined, an antagonistic 
effect was observed in all cell lines, even in the cMET 
amplified EBC-1 cell line with high basal levels of cMET, 
independent of the treatment schedule. Previous studies 
suggested that the addition of HGF induced cisplatin 
resistance in NSCLC cell lines[20], since the activation of 
cMET would lead to decreased AIF levels. However, a 
cMET inhibitor combined with cisplatin had never been 
investigated previously. 

Other TKIs have been known in vitro to synergize with 
chemotherapy, such as EGFR-inhibitors with platinum 
doublet chemotherapy[35-38], whereas clinical trials 
showed no substantial benefit when combining both 
drugs. Combinations of cisplatin with EGFR-TKIs, have 
been investigated extensively, both in vitro and in vivo. 
In wild-type EGFR (WT-EGFR) NSCLC cell lines, cisplatin 
may upregulate phosphorylated EGFR, thus sensitizing 
these cells to erlotinib; However, in NSCLC cell lines with 
sensitizing EGFR mutations, combining cisplatin with 
erlotinib treatment was found to be antagonistic[36]. Other 
studies showed that platinum analogs in combination 
with erlotinib led to synergistic cell death in EGFR-
mutant NSCLC cell lines and xenografts[37,38]. Possible 
mechanisms for this synergy are a decrease in hypoxia-
inducible factor 1α (HIF1α), a decrease in c-Myc or cell 
cycle effects[37], while also platinum-adduct formation 
by cisplatin was increased[38]. However, several clinical 
trials[8,9,39-41] combining cisplatin with EGFR-TKIs show 
no benefit in EGFR-WT or in EGFR-mutant patients. 
Furthermore, triple combinations of cisplatin, pemetrexed 
and gefitinib[39]; cisplatin, gemcitabine and erlotinib[40] or 
cisplatin, pemetrexed followed by gefitinib maintenance 

therapy[41] showed no or only a minor beneficial effect[42]. 
In contrast, studies investigating the dual combination of 
erlotinib and pemetrexed, showed synergism in NSCLC 
cell lines with different genetic backgrounds[35]. Several 
molecular mechanisms contributed to this synergism. 
Firstly, pemetrexed increased phosphorylated-EGFR, 
thus enhancing the effect of EGFR-blocking by erlotinib. 
Secondly, the combination of both drugs enhanced the 
reduction of Akt-phosphorylation, leading to increased 
apoptosis. Finally, the combination of both drugs also 
decreased the Thymidylate Synthase (TS) in situ activity[35], 
which has been correlated with increased pemetrexed 
sensitivity[43,44].

For many combination therapies no appropriate 
preclinical investigations were performed before starting 
clinical trials to determine whether synergism could 
be expected and what would be the most optimal 
treatment schedule. This also precludes proper patient 
selection. Possibly, the combination of both EGFR/cMET 
inhibitors with cisplatin and pemetrexed chemotherapy 
activates survival mechanisms that abrogate the benefit 
of inhibiting these receptor tyrosine kinases, although 
these mechanisms remain to be further investigated.

Given the intertwining of the EGFR and cMET signaling, 
we opted to test the same combination in EGFR mutant cell 
lines. These cell lines reflect the NSCLC patient populations 
with exon 19 deletion, L858R and T790M mutations 
in EGFR, cMET amplification, and different histological 
subtypes (adenocarcinoma and squamous cell carcinoma). 
Despite mimicking several clinical combinations in vitro, 
the results showed strong antagonism in all the tested 
treatment schemes. 

In conclusion, we show that the combination of the 
cMET inhibitor crizotinib with cisplatin is moderately 
to strongly antagonistic in four NSCLC cell lines. This 
effect was independent of the cMET/EGFR genetic 
background, the histological subtype of the cells and the 
used treatment schedule. Our in vitro results suggest 
an antagonistic effect of combining cMET inhibition with 
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cisplatin in NSCLC, discouraging further development of 
this combination in an in vivo and/or clinical setting.

COMMENTS
Background
During the last decade, several targeted therapies have been developed for the 
treatment of lung cancer, inhibiting specific receptors in cancer patients. Given 
the small number of patients eligible for these therapies, cisplatin based therapy 
still remains the standard of care treatment for most non-small cell lung cancer 
(NSCLC) patients. The potential benefit of combining cisplatin with targeted 
therapies, predominantly against the epidermal growth factor receptor (EGFR), 
has proved to be disappointing. To investigate the potential benefit of combining 
cisplatin with crizotinib, the authors have performed in vitro studies on a panel 
of NSCLC lines with different genetic backgrounds.

Research frontiers
The combination of a cMET inhibitor and cisplatin has not been investigated in 
NSCLC patients to date. However, in vitro studies show contradictory results 
where the outcome is dependent on tumor type and origin. For example, 
addition of the cMET ligand hepatocyte growth factor (HGF) enhanced cisplatin 
resistance in seven different NSCLC cell lines.
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In vitro studies show contradictory results where the outcome is dependent 
on tumor type and origin. For example, addition of the cMET ligand HGF 
enhanced cisplatin resistance in seven different NSCLC cell lines. However, 
another study in SW620 cells, a KRAS mutated colon cancer cell line, showed 
that conditioned knock-down of cMET did not influence cisplatin sensitivity. In 
contrast, ovarian cancer cell lines were sensitized towards cisplatin with the 
addition of HGF. HGF pretreatment of these cells decreased the transcription 
of protein phosphatase 2A, thus increasing the effect of cisplatin. Here the 
authors show that the combination of the cMET inhibitor crizotinib with cisplatin 
is moderately to strongly antagonistic in four NSCLC cell lines. This effect was 
independent of the cMET/EGFR genetic background, the histological subtype 
of the cells and the used treatment schedule. 

Applications
The in vitro results suggest an antagonistic effect of combining cMET inhibition 
with cisplatin in NSCLC, discouraging further development of this combination 
in an in vivo and/or clinical setting.

Terminology
NSCLC: Non-small cell lung cancer; EGFR: Epidermal growth factor receptor, 
one of the known drivers of NSCLC.
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