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Abstract
Portal hypertension (PHT) is defined as a pathological 
increase in portal venous pressure and frequently ac-
companies cirrhosis. Portal pressure can be increased 
by a rise in portal blood flow, an increase in vascular 
resistance, or the combination. In cirrhosis, the primary 
factor leading to PHT is an increase in intra-hepatic re-
sistance to blood flow. Although much of this increase 
is a mechanical consequence of architectural distur-
bances, there is a dynamic and reversible component 
that represents up to a third of the increased vascular 
resistance in cirrhosis. Many vasoactive substances 
contribute to the development of PHT. Among these, 
nitric oxide (NO) is the key mediator that paradoxically 
regulates the sinusoidal (intra-hepatic) and systemic/
splanchnic circulations. NO deficiency in the liver leads 
to increased intra-hepatic resistance while increased 
NO in the circulation contributes to the hyperdynamic 
systemic/splanchnic circulation. NO mediated-angio-
genesis also plays a role in splanchnic vasodilation and 
collateral circulation formation. NO donors reduce PHT 
in animals models but the key clinical challenge is the 
development of an NO donor or drug delivery system 
that selectively targets the liver. 
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INTRODUCTION
Portal hypertension (PHT) is a common clinical consequ­
ence of  chronic liver disease that is associated with signifi­
cant morbidity and mortality. PHT is classified as either 
pre-hepatic, intra-hepatic or post-hepatic, with intra-he­
patic PHT being the form most often caused by cirrhosis, 
irrespective of  etiology[1]. The extent of  PHT is quantified 
in clinical practice by measuring the hepatic portal vein 
pressure gradient (HPVG)[2], representing the difference 
between the wedged hepatic vein pressure (a measure of  
pressure at the level of  the hepatic sinusoid), and the free 
hepatic vein pressure. Thus, HPVG is often used to assess 
the effects of  pharmacological therapy in reducing portal 
pressure[3]. 

Based on hydromechanics, fluid pressure in a hollow 
tube is determined by fluid resistance and flow. In PHT, 
therefore, the intra-hepatic vascular resistance (IHVR) 
and splanchnic blood flow are the two main contributors 
to portal pressure[4]. Under normal circumstances, post­
prandial increases in splanchnic blood flow is always as­
sociated with an autonomous down-regulation of  IHVR, 
leading to no alteration in portal pressure. In contrast, 
IHVR is significantly up-regulated by mechanical and 
hemodynamic factors in the setting of  cirrhosis, which 
is further aggravated by splanchnic vasodilation[5]. Clini­
cally, this increase in portal pressure is the antecedent to 
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variceal bleeding with its associated morbidity and high 
mortality[6,7]. 

IHVR is influenced by both hepatic fibrotic archi­
tectural distortion in cirrhosis leading to obstruction to 
blood flow, as well as by dynamic hepatic stellate cell 
(HSC) contraction around sinusoidal blood vessels. An­
giogenesis, or the formation of  new blood vessels, is 
also an important component of  the pathophysiology 
of  PHT. The resulting alterations in vascular contractil­
ity and angiogenesis contribute to PHT in both the intra-
hepatic and splanchnic circulation. 

Endothelin 1 (ET-1), angiotensin II, norepinephrine, 
prostaglandin F2, thromboxane A2, and thrombin can 
trigger liver sinusoidal contraction. In contrast, substanc­
es such as acetylcholine, vasointestinal peptides, nitric 
oxide (NO), carbon monoxide, prostaglandin E2, and ad­
renomedullin relax the sinusoidal vasculature[8,9]. Among 
these agents, ET-1 and NO are the most important regu­
lators of  the sinusoidal microcirculation[8,9]. In PHT, an 
insufficient release of  vasodilators particularly NO from 
endothelial cells is critical to the genesis of  the dynamic 
and modifiable component of  increased vascular resis­
tance[8,9]. Consistent with this, improvements in intra-
hepatic NO availability is beneficial for the treatment of  
PHT in animals and patients[10-14]. Hence, this review will 
focus on an update on the mechanisms whereby NO me­
diates PHT and on the potential to modulate this system 
to reduce portal pressure. 

SYNTHESIS AND FUNCTION OF NO
NO is synthesized by nitric oxide synthase (NOS) throu­
gh a series of  redox reactions involving L-arginine (the 
main substrate), oxygen and nicotinamide adenine dinu­
cleotide phosphate. There are 4 major isoforms of  NOS: 
endothelial nitric oxide synthase (eNOS), inducible nitric 
oxide synthase (iNOS), neuronal nitric oxide synthase 
(nNOS) and mitochondrial nitric oxide synthase[15]. Fol­
lowing synthesis by NOS, the half-life of  endogenously 
generated NO is extremely short, about 1 s. Thus, endog­
enous NO production is intimately regulated by the activ­
ity of  NOS. 

The generated NO molecule has a large diffusion coef­
ficient and can therefore freely penetrate cellular mem­
branes in an autocrine or paracrine manner. Within the 
cell, NO stimulates the conversion of  guanosine 5’-tri­
phosphate (GTP) to cyclic guanosine 3’-5’-monophos­
phate (cGMP), thereby regulating calcium balance through 
the cGMP-dependent protein kinase pathway (Figure 1). 
This leads to vasodilatation[16]. The end products of  NO 
metabolism in vivo are nitrate (NO3

-) and nitrite (NO2
-) 

that are an indirect measure of  the total NO concentra­
tion[17]. 

NO is also highly reactive with other molecules includ­
ing superoxide anion (O2

-), oxygen (O2) and hemopro­
teins such as hemoglobin and myoglobin. The interme­
diate products of  these reactions are known as reactive 
nitrogen species, which promotes many pathophysiologi­

cally damaging reactions including lipid peroxidation, 
DNA strand breaks, and the generation of  nitrosamines, 
nitrotyrosine and nitro guanosine.

MOLECULAR MECHANISMS 
REGULATING NOS
eNOS serves a key role in maintaining circulatory ho­
meostasis and is expressed mainly in endothelial cells and 
to a lesser extent in cardiac myocytes and platelets[15]. The 
enzyme localizes to small invaginations of  the plasma 
membrane named caveolae in quiescent cells. eNOS pro­
tein is constitutively expressed in the cell and activation 
mostly comprises post-translational regulation and modi­
fications in its subcellular localization[18]. 

Within cells, eNOS closely associates with several 
proteins that impact on its function, including caveolin. 
Caveolin negatively regulates eNOS by directly abrogat­
ing the enzyme’s activation and blocking the binding site 
for calmodulin[19]. In contrast, calmodulin acts as an in­
dispensable protein competing with caveolin for binding 
with, and activating eNOS[20,21]. Other relevant proteins in 
relation to NO production include heat shock protein 90 
and tetrahydrobiopterin (BH4) that are positive regula­
tors of  eNOS[22-24]. Finally, eNOS interacting protein and 
eNOS trafficking inducer protein participate in the sub-
cellular trafficking of  eNOS when eNOS translocates 
from caveolae into the cytoplasm[25-27].

Phosphorylation at key serine residues is the major 
post-translational modification that is required for eNOS 
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Figure 1  Nitric oxide formation and function. Nitric oxide synthase (NOS) 
catalyzes the biosynthesis of nitric oxide (NO) from L-arginine, nicotinamide 
adenine dinucleotide phosphate (NADPH) and O2•NO freely diffuses into 
cells where it mediates vascular relaxation by stimulating the cyclic guano-
sine 3’-5’-monophosphate (cGMP)/cGMP-dependent protein kinase G (PKG) 
pathway. It also forms reactive nitrogen species (RNS) which leads to many 
damaging reactions including lipid peroxidation and DNA strand breaks. GTP: 
Guanosine 5’-triphosphate; sGC: Soluble guanylyl cyclase.
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function. Phosphorylation of  Ser 1177, Ser 635 and Ser 
617 activates eNOS whereas phosphorylation of  Thr 
495 and Ser 116 inhibits eNOS activity[28]. Phosphoryla­
tion at Ser 1177 can be initiated by activation of  several 
intracellular pathways including phosphatidylinositol-
3-kinase (PI3K/AKT), cAMP-dependent protein kinase 
A (PKA), adenosine monophosphate-activated protein 
kinase, cGMP-dependent protein kinase G (PKG) and 
Calmodulin Kinase II-dependent pathway (CaM kinase 
II)[29-32], while Ser 635 and Ser 116 is activated via a PKA-
dependent pathway[33,34]. Additionally, shear stress, vascu­
lar endothelial growth factor (VEGF) and high-density 
fatty acids can phosphorylate and activate eNOS (Figure 
2)[35]. In contrast, phosphatases like protein phosphatase 
2 dephosphorylates and inactivates eNOS[36]. S-Nitrosyl­
ation inhibits eNOS activity by modifying its steric con­
figuration, whereas de-nitrosylation is associated with an 
increase in eNOS activity[37,38]. 

Unlike eNOS, iNOS is more widely expressed, in­
cluding in macrophages, vascular smooth muscle cells, 
HSCs and Kupffer cells after stimulated by lipopolysac­
charide (LPS) or inflammatory cytokines. iNOS produces 
a relatively high level of  NO compared to eNOS[39]. In 
contrast to eNOS, iNOS expression is principally modu­
lated by transcriptional mechanisms. Many transcription 
factors regulate the expression of  iNOS including nuclear 
factor-κB (NF-κB), activator protein, signal transduc­
tion and activation of  transcription 1a, specificity protein 
1, CCAAT/enhancer-binding protein (C/EBP), cAMP 

response element-binding, GATA binding transcription 
factor, hypoxia-inducible factor, interferon regulatory 
transcription factor, nuclear factor of  activated T-cells, 
nuclear factor-interleukin 6, octamer-1 transcription 
factor, poly [ADP-ribose] polymerase 1, polyomavirus 
enhancer activator 3, tumor protein 53 and serum re­
sponse factor[40]. Among these, NF-κB is considered 
the primary mediator for iNOS induction. In turn, NF-
κB can be activated by a range of  stimuli including LPS, 
interleukin-1β, tumor necrosis factor (TNF)-α and oxida­
tive stress[41,42]. iNOS can also be post-transcriptionally 
regulated through mRNA stabilisation by RNA-binding 
proteins such as A+U rich RNA binding factor, human 
antigen R, K-homology splicing regulator protein, poly­
pyrimidine tract-binding protein and tristetraprolin[40]. 

nNOS is principally expressed in neurons localized 
to the nervous system including the brain, the autonomic 
nervous system and neurons around interlobular arteries. 
The portal vein endothelial cells also expresses nNOS[43]. 
Like eNOS, nNOS is regulated by post-translational 
mechanisms and both Hsp90 and calmodulin are involved 
in the process of  nNOS activation[44-46]. 

MOLECULAR REGULATION OF NOS IN 
LIVER CIRRHOSIS AND PHT
Regulation of intra-hepatic eNOS
In cirrhosis and PHT, there is reduced NO production 
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Figure 2  The molecular regulation of endothelial nitric oxide synthase activity. Endothelial nitric oxide synthase (eNOS) phosphorylation can be triggered by 
shear stress, vascular endothelial growth factor (VEGF), endothelin 1 (ET-1) and other factors though adenosine monophosphate-activated protein kinase (AMPK), 
protein kinase B (AKT) and protein kinase A (PKA) pathways, whereas protein phosphatase 2 (PP2A) de-phosphorylates eNOS. In addition, S -nitrosylation (SNOs) 
by eNOS-derived nitric oxide (NO) inhibits eNOS activity. Endothelial nitric oxide synthase interacting protein (NOSIP) and endothelial nitric oxide synthase trafficking 
inducer protein (NOSTRIN) regulate the sub-cellular location of eNOS protein between the caveolae and cytoplasm. The principal location of eNOS is in caveolae 
where its function is inhibited by binding to caveolin (Cav). HSP90, calmodulin (Calm) and tetrahydrobiopterin (BH4) are indispensable proteins and cofactors for cata-
lyzing NO production. PI3K: Phosphatidylinositol-3-kinase; GPCR: G protein-coupled receptor. 
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Rho-kinase activity and increased eNOS phosphoryla­
tion compared with controls[67]. Fasudil also reduced the 
binding of  the serine/threonine AKT to Rho-kinase and 
increased the binding of  AKT to eNOS[67]. 

Regulation of extra-hepatic vascular eNOS, iNOS and 
nNOS in cirrhosis
In contrast to the hypoactive SECs in the intrahepatic mi­
crocirculation, hyperactive endothelial cells with increased 
NO production play a critical role in modulating the 
vascular changes observed in the splanchnic and systemic 
circulation. For example, increased activity of  peripheral 
vascular AKT signaling is noted, while constitutive AKT 
inhibition by an inactive mutant decreases aortic eNOS 
and improves systemic hemodynamics, splanchnic perfu­
sion pressure and renal excretory function without affect­
ing portal pressure[68]. Other studies reported that VEGF 
induces NO production by activation of  eNOS protein 
expression and activity[69,70]. Likewise, in portal hyperten­
sive rats, NO production is increased in response to shear 
stress[71]. LPS detoxification is limited in liver with PHT 
thereby increasing plasma LPS. Resident macrophages 
in the splanchnic circulation respond to this circulating 
LPS with the production of  proinflammatory cytokines, 
such as TNF-α[72] that then induces iNOS in extrahepatic 
vasculature[73-75]. Bacteria-derived TNF-α also triggers 
the expression and activity of  the key enzyme involved 
in the regulation of  BH4, GTP-cyclohydrolase I, thereby 
increasing eNOS-derived NO in the mesenteric vascu­
lature[76,77]. Finally, nNOS expression is augmented in 
mesenteric nerves in portal hypertensive rats (portal vein 
ligation), an effect mediated by HSP-90[46,78,79]. 

THE ROLE OF NO/NOS IN THE 
REGULATION OF IHVR
An increase in IHVR can be induced by reversible he­
modynamic modifications to vascular tone which may 
represent 28%-40% of  the increase in portal pressure 
in cirrhosis[80-82]. Anatomic structures leading to this 
change include vascular smooth muscle cells surround­
ing branches of  the portal vein, and HSCs located in the 
space of  Disse. Both cells types have contractile proper­
ties and thus modulate IHVR[82-84]. 

The role of  NO in the modulation of  IHVR has 
been well documented[85-87]. eNOS dysfunction in sinu­
soidal endothelial cells and consequent reduction in NO 
production (or bioavailability) plays an essential role[51]. 
This results in reduced vasodilation and a decreased ca­
pacity for antagonizing contractile factors such as ET-1, 
angiotensin II, norepinephrine, prostaglandin F2, and 
thromboxane A2[83,88].

Recently, gene delivery techniques have been used 
to increase NOS (eNOS or nNOS) delivery to the liver 
of  CCl4 treated mice. In one study, a plasmid eukary­
otic expression vector (liposome-pcDNA3/eNOS) or 
control vector was injected into rat portal vein, leading 
to increased eNOS mRNA and protein in liver. Hepatic 

by hepatic endothelial cells that is attributed to dysfunc­
tion of  the eNOS system[47-50]. Many factors contribute to 
intra-hepatic eNOS dysfunction/reduced eNOS activity. 
These include increases in oxidative stress, caveolin-1, 
RhoA, thromboxane A2 (TXA2), G-protein-coupled re­
ceptor kinase-2 (GRK2) and asymmetric dimethylarginine 
(ADMA) as well as decreased AKT and BH4 activity. 

Reduced AKT activity and increased binding abil­
ity of  caveolin-1 to eNOS in cirrhosis attenuates eNOS 
expression[51,52]. Liu et al[51], reported that ET-1 activates 
G-protein-coupled receptor kinase-2 (GRK2) which di­
rectly interacts with and inhibits AKT phosphorylation. 
They also noted that the IHVR was significantly reduced 
in bile duct ligation (BDL) mice genetically deficient in 
GRK2[52]. In another study of  eNOS expression during 
BDL, Morvarid et al[53], noted that total eNOS protein 
was unchanged, but that functional, phosphorylated 
eNOS protein was decreased. Similarly, AKT expression 
was down-regulated in a time dependent manner. In con­
trast, caveolin-1 was increased[53]. 

Intrahepatic oxidative stress is a key mediator of  
sinusoidal endothelial dysfunction and impairment of  
eNOS/NO expression[54-57]. For example, Gracia et al[58], 
noted that increased intrahepatic oxidative stress (in­
creased ROS and O2

-) was associated with reduced NO 
production and NO bioavailability. The authors went on 
to demonstrate that cyclooxygenase (COX) attenuated 
eNOS activation by stimulating TXA2 which inhibits 
AKT phosphorylation in endothelial cells[59]. A superox­
ide dismutase mimetic, Tempol significantly decreased 
superoxide, and increased NO in cultured hepatic en­
dothelial cells. As expected, Tempol administration also 
resulted in a decline of  portal pressure[60].

ADMA, an endogenous inhibitor of  NOS, causes un­
coupling of  NOS leading to generation of  RNS, such as 
peroxynitrite. In BDL rats, a higher serum ADMA level 
was observed[61]. Further, impaired endothelial cell-medi­
ated relaxation in perfused livers of  BDL rats was exacer­
bated by ADMA and was associated with a decreased rate 
of  ADMA removal[61,62].

BH4, a cofactor of  eNOS, has been reported to be 
associated with dysfunction of  the NO system. BH4 ex­
pression is down-regulated in liver cirrhosis and can fur­
ther be oxidized and inactivated by O2

-. In the absence of  
BH4, eNOS cannot generate NO but instead produces 
O2

-, thereby leading to further decreases in NO produc­
tion[24,63]. In an in vivo study, Matei et al, observed that in 
rats rendered cirrhotic after the administration of  carbon 
tetrachloride (CCl4), exogenous BH4 resulted in hepatic 
NOS and cGMP activation and a reduction in portal 
pressure[64].

Rho-associated protein kinase (ROCK) is a kinase 
belonging to the AGC (PKA/PKG/PKC) family of  
serine-threonine kinases. It is mainly involved in regulat­
ing the shape and movement of  cells by acting on the 
cytoskeleton. Rho-kinase is substantially involved in the 
contraction of  activated HSCs[65,66]. In BDL rats, fasudil (a 
potent Rho-kinase inhibitor) significantly suppressed liver 
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NO production was enhanced and IHVR and portal vein 
pressure (PVP) reduced[89]. In another study, recombinant 
adenovirus carrying the nNOS gene (Ad.nNOS) or con­
trol vector was administered via the femoral vein to rats. 
Again, Ad.nNOS reduced IHVR and portal pressure[90]. 
These data indicate that NO deficiency in cirrhotic liver 
contributes to the elevation in IHVR and conversely that 
NO delivery may play a therapeutic role[89-92].

Activation and contraction of  HSCs also contributes 
significantly to the dynamic and reversible component 
of  IHVR. Indeed, activated HSCs are more susceptible 
to vasoconstrictor substances than quiescent cells[83,92,93]. 
Under physiological conditions, NO produced by he­
patic endothelial cells inhibits the growth, migration and 
contraction of  HSCs through paracrine pathways[94,95]. 
However, reduced NO production and/or impaired NO 
bioavailability in cirrhosis promotes HSCs activation and 
contraction, leading to sinusoidal remodeling and eleva­
tion of  the IHVR. 

iNOS has also been suggested to contribute to the 
hyperdynamic status seen in PHT. However, its role in 
mediating IHVR is unclear. In one study, liver iNOS was 
increased in BDL rats and reduction of  portal pressure 
by ursodeoxycholic acid was associated with iNOS down-
regulation[96,97]. 

ROLE OF NO/NOS IN THE 
REGULATION OF SPLANCHNIC BLOOD 
FLOW 
A hyperdynamic splanchnic circulatory state is a major 
accompaniment of  PHT. The increase in splanchnic 
blood flow and the subsequent increase in portal venous 
inflow aggravates and perpetuates PHT. The mechanisms 
underlying this phenomenon are not fully understood, 
but overproduction of  endogenous vasodilators and de­
creased vascular reactivity to vasoconstrictors has been 
suggested[98]. 

Overproduction of  NO in the splanchnic and sys­
temic circulation contributes to this phenomenon as 
NOS inhibition effectively ameliorates splanchnic hyper­
emia[99,100]. eNOS up-regulation and increased NO release 
by the superior mesenteric arteries endothelium occur 
before the development of  the hyperdynamic splanchnic 
circulation[101]. Juan et al[70], noted increased eNOS expres­
sion in portal-hypertensive rats with even mild increases 
in portal pressure. In another study, phosphorylated 
eNOS protein was increased, whereas caveolin-1 was de­
creased in the aorta of  BDL rats[52]. In contrast, in eNOS 
knockout mice injected with CCL4, attenuated splanchnic 
blood flow was observed. However, this was associated 
with an increase in IHVR, presumably due to the reduced 
NO within the liver[102]. Taken together, these results sug­
gest up-regulated eNOS expression during splanchnic 
hyperemia, contrasts with the relative eNOS deficiency in 
liver. 

There are also several studies demonstrating the im­

portance of  iNOS in the hyperdynamic circulation of  
cirrhosis[64,72,73,103,104]. In cirrhosis, endotoxins, cytokines 
and bacterial infection promote iNOS formation and 
overproduction of  NO[64,105-107]. The increased splanchnic 
iNOS appears to reside in resident macrophages of  the 
superior mesenteric artery[73,108]. Supporting this concept, 
Ferguson et al[64], observed that a selective iNOS inhibi­
tor, N-[3-(aminomethyl) benzyl]acetamidine, caused pe­
ripheral vasoconstriction in patients with cirrhosis. It is 
interesting to note that there also exists an interaction be­
tween eNOS and iNOS in the vasculature. For example, 
in cirrhosis, increased and dominant expression of  eNOS 
in large arteries results in systemic hypotension and in­
creased blood flow. These effects could be abrogated by 
activated iNOS in the small vessels of  the splanchnic cir­
culation as iNOS activation inhibited eNOS expression in 
the small vessels[109]. nNOS may likewise promote vasodi­
lation of  the splanchnic circulation, though its contribu­
tion is overall less significant[110,111]. 

NO AND ANGIOGENESIS IN PHT 
It is now established that angiogenesis is associated with 
the progression of  PHT[112,113]. Angiogenic factors stimu­
late collateral vessel formation both in the liver and in 
extrahepatic locations, manifesting as the reopening of  
pre-existing shunts[114,115]. This pathological angiogenesis 
may directly participate in the development of  liver fibro­
sis[56,116,117]. 

Again, NO is an important mediator of  intrahepatic 
microcirculatory remodeling[114,115]. Thus, NO inhibition 
prevents angiogenesis and diminishes mesenteric vascular 
proliferation in animals with PHT[118,119]. Shaki et al[120], 
found that NO-mediated angiogenesis was mediated by 
endothelial VEGF and VEGF receptor-1. Most recently, 
Huang et al[121], reported that through mesenteric eNOS 
and COX1 down-regulation, the cannabinoid receptor 2 
agonist JWH 015, could alleviate mesenteric and intrahe­
patic angiogenesis, PHT, the severity of  portosystemic 
collaterals and the extent of  fibrosis in BDL cirrhotic 
rats. 

NO-BASED PHARMACOTHERAPY 
As discussed, NO is paradoxically regulated in PHT. 
There is excessive production of  NO in the splanchnic 
circulation (thereby leading to vasodilation), while in the 
intra-hepatic microcirculation, a deficit of  NO produc­
tion is associated with increased IHVR. These paradoxi­
cal roles of  NO initially raised concerns about the use of  
NO inhibitors or donors as therapy for PHT. However, 
inhibition of  NO release has been shown in animals and 
humans to attenuate the hyperdynamic circulation of  cir­
rhosis[122-125]. No significant reduction in portal pressure 
was achieved[122-125]. This is likely a consequence of  reduc­
tions in portal venous inflow induced by the NO inhibi­
tors being offset by an increase in intra-hepatic resistance. 

In recent years, many animal and clinical studies have 
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demonstrated that NO donors result in a substantial re­
duction in portal pressure[10-14]. These agents could theo­
retically aggravate the cirrhotic vasodilatory syndrome 
leading to harmful effects such as systemic hypotension 
and renal dysfunction[126,127]. For these reasons, the ideal 
NO drug for the treatment of  PHT should act to de­
crease IHVR without worsening splanchnic/systemic 
vasodilatation[128]. 

NCX-1000 is a drug synthesized by adding an NO-
releasing moiety to ursodeoxycholic acid. The compound 
is selectively metabolized by hepatocytes to release NO in 
the liver[129,130]. Animal studies demonstrate that this drug 
alleviates IHVR and portal pressure without changes in 
systemic hemodynamics[129-131]. However, human clinic 
trials were disappointing as NCX-1000 failed to decrease 
HVPG, there were postprandial increases in portal pres­
sure and systolic blood pressure was reduced in a dose-
dependent manner[132]. 

O2-vinyl1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate (V-
PYRRO/NO) was designed as a liver-selective NO-pro­
ducing pro-drug activated by hepatic P450s[133]. The drug 
has a short half-life and may additionally alleviate liver 
injury by NO-mediated protection of  hepatocytes[134-136]. 
Continuous administration of  V-PYRRO/NO to BDL 
rats was shown to improve liver fibrosis and splanch­
nic hemodynamics without adverse systemic effects[137]. 
However, in another study in mice using the CCl4 model, 
V-PYRRO/NO significantly lowered mean arterial pres­
sure making it less suitable for use in humans[138]. 

AVE-9488(4-fluoro-N -indan-2-yl-benzamide) is 
a novel agent that up-regulates eNOS expression[139]. 
Biecker et al[139], reported that oral application of  AVE 
9488 ameliorated portal pressure by 24% in BDL rats, 
without any impact on the mean arterial pressure. Ad­
ditional experiments confirmed that AVE 9488 increased 
hepatic eNOS protein synthesis, but not in the aortic and 
superior mesenteric artery[139]. However, following 3-d 
use, AVE 9488 increased blood flow in the collateral cir­
culation[139]. 

Recently, an inorganic gold and silica nanoparticle 
mediated drug delivery system using SNAP (S-nitroso-N-
acetyl-DL-penicillamine), an NO donor was reported[140]

. 
This system inhibited HSC proliferation and HSC tube 
formation, though the relevance of  the latter to the 
situation in vivo is unclear. The methodology described 
however, does provide a novel approach to deliver NO 
into specific liver cell types. Whether this drug modulates 
PHT in vivo is unclear. Taken together, the data presented 
indicates that there are no liver-selective NO donors/
drugs with demonstrated efficacy for the treatment of  
PHT. 

CONCLUSION
NO plays a pivotal role in the pathogenesis of  PHT. NO 
levels are differentially altered in cirrhosis, with reduced 
production in the intrahepatic circulation and increased 
NO production in the splanchnic bed. Ideally, a NO do­

nor or drug delivery system that selectively targets liver 
cells (HSCs or SECs) without actions on the systemic 
circulation is required to reduce PHT without adverse 
systemic effects. 
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