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Abstract
Colonic inflammation is required to heal infections, 
wounds, and maintain tissue homeostasis. As the 
seventh hallmark of cancer, however, it may affect 
all phases of tumor development, including tumor 

initiation, promotion, invasion and metastatic disse
mination, and also evasion immune surveillance. 
Inflammation acts as a cellular stressor and may trigger 
DNA damage or genetic instability, and, further, chronic 
inflammation can provoke genetic mutations and 
epigenetic mechanisms that promote malignant cell 
transformation. Both sporadical and colitis-associated 
colorectal carcinogenesis are multi-step, complex 
processes arising from the uncontrolled proliferation 
and spreading of malignantly transformed cell clones 
with the obvious ability to evade the host’s protective 
immunity. In cells upon DNA damage several proto-
oncogenes, including c-MYC  are activated in parelell 
with the inactivation of tumor suppressor genes. 
The target genes of the c-MYC protein participate 
in different cellular functions, including cell cycle, 
survival, protein synthesis, cell adhesion, and micro-
RNA expression. The transcriptional program regulated 
by c-MYC is context dependent, therefore the final 
cellular response to elevated c-MYC levels may range 
from increased proliferation to augmented apoptosis. 
Considering physiological intestinal homeostasis, c-MYC 
displays a fundamental role in the regulation of cell 
proliferation and crypt cell number. However, c-MYC 
gene is frequently deregulated in inflammation, and 
overexpressed in both sporadic and colitis-associated 
colon adenocarcinomas. Recent results demonstrated 
that endogenous c-MYC  is essential for efficient 
induction of p53-dependent apoptosis following DNA 
damage, but c-MYC  function is also involved in and 
regulated by autophagy-related mechanisms, while its 
expression is affected by DNA-methylation, or histone 
acetylation. Molecules directly targeting c-MYC , or 
agents acting on other genes involved in the c-MYC 
pathway could be selected for combined regiments. 
However, due to its context-dependent cellular function, 
it is clinically essential to consider which cytotoxic drugs 
are used in combination with c-MYC targeted agents in 
various tissues. Increasing our knowledge about MYC-
dependent pathways might provide direction to novel 
anti-inflammatory and colorectal cancer therapies.
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expression of several target genes[7,8] (Figure 1A). 
The target genes of c-MYC participate in different 
cellular functions, including cell cycle, survival, protein 
synthesis, cell adhesion, and microRNA (miRNA) 
expression[7] (Figure 1B). The transcriptional program 
regulated by c-MYC is context dependent, therefore 
the final cellular response to elevated c-MYC levels 
may range from raised proliferation to augmented 
apoptosis[7]. In the absence of c-MYC cell cycle kinetics 
is strongly reduced[9]. 

As a result of synergistic or sequential damage 
of DNA in normal colonic epithelial cells, several 
proto-oncogenes, including c-MYC are activated in 
parallel with the inactivation of tumor suppressor 
genes, leading finally to the alteration of DNA repair 
systems and apoptosis regulation. Accumulation 
of the damaged DNA may ultimately cause cellular 
transformation. In this article we try to summarize 
the complex interactions of c-MYC-signaling within 
physiological intestinal epithelial homeostasis, 
inflammatory and cancerous colonic diseases, and the 
related therapeutic aspects.

Control and effects of MYC gene 
expression
During recent years, several basic cellular functions 
of MYC have been established[10]. MYC plays a master 
regulator role of cell growth and proliferation, and it 
also controls stemness by maintaining pluripotency 
and self-renewal. On the other hand, MYC can sensitize 
cells to apoptosis, regulate cellular senescence, and is 
involved in DNA damage responses[10]. 

As a central, dual-faced regulator gene, MYC is 
controlled by several different mechanisms. Growth 
factor-dependent signals have been identified to 
control MYC expression. Growth factors like Ets-1 or 
E2F1 enhance transcription from the MYC promoter[11]. 
The β-catenin/TCF site also mediates the induction 
of the MYC promoter in regards to the Wingless type 
(Wnt)-signaling pathway[12]. Additionally, growth 
factor-dependent pulse of phosphoinositol (PI)3-kinase 
protects c-MYC protein from proteosomal degra
dation[13]. In contrast, the Smad and E2F4 containing 
repressor complex which forms on the MYC promoter 
after transforming growth factor (TGF)-β stimulus 
suppresses MYC expression and enhances the anti-
proliferative effects of TGF-β[14,15]. 

Elevated levels of c-MYC protein strongly sensitize 
epithelial cells toward proapoptotic stimuli like DNA 
damage[16]. As a result, downregulation of c-MYC is 
necessary for cell cycle arrest, and survival of cells in 
response to DNA damage[17]. Since in the presence of 
strong mitogenic signals the downregulation of MYC-
expression is required for proto-oncogene-induced 
cellular senescence[18], c-MYC may be involved in 
tumor-suppressive mechanisms as well. In case of 
epithelial and mesenchymal stem cells, however, MYC-
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Core tip: The c-MYC  gene is frequently deregulated 
in colonic inflammation, and overexpressed in both 
sporadic and colitis-associated colon adenocarcinomas. 
Endogenous c-MYC  is essential for efficient induction 
of p53-dependent apoptosis following DNA damage, 
moreover its function is also involved in and regulated 
by autophagy-related mechanisms, and its expression 
is affected by DNA-methylation, or histone acetylation. 
Increasing our knowledge about MYC-dependent 
pathways might provide direction to novel colonic anti-
inflammatory and anti-cancer strategies.
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INTRODUCTION
Chronic, non-infectious inflammatory and cancerous 
colonic diseases currently represent a major threat 
to human health worldwide. Inflammation is 
required to fight microbial infections, heal wounds, 
and maintain tissue homeostasis, however, it could 
lead to cancer. As the seventh hallmark of cancer 
it may affect all phases of tumor development, 
including tumor initiation, promotion, invasion and 
metastatic dissemination, and also evasion immune 
surveillance[1]. Inflammation acts as a cellular stressor 
and may trigger DNA damage or genetic instability, 
and, further, chronic inflammation can provoke genetic 
mutations and epigenetic mechanisms that promote 
malignant cell transformation[1,2]. Both sporadical and 
colitis-associated colorectal carcinogenesis are multi-
step, complex processes arising from the uncontrolled 
proliferation and spreading of malignantly transformed 
cell clones with the obvious ability to evade the host’
s protective immunity[3,4]. Therefore to develop more 
effective therapeutic strategies for colorectal cancer 
(CRC) it is quite challenging due to its heterogeneity 
and phenotypic diversity. 

The MYC-family of cellular proto-oncogenes 
encodes three highly related nuclear phosphoproteins, 
namely c-MYC, N-MYC, and L-MYC[5]. c-MYC is a basic-
helix-loop-helix-leucine zipper protein with a proto-
oncogene function, being involved in cell proliferation, 
transformation, and death[6]. Data from chromatin 
immunoprecipitation studies demonstrate that c-MYC 
protein occupies regulatory regions of up to 15% 
of all genes, and can both activate or repress the 



expression can be restricted even in the presence 
of several growth factors and cytokines[19]. These 
observations indicate that MYC-expression plays a 
dual-faced role regarding cellular survival and tissue 
homeostasis.

In physiological circumstances, negative feedback 
regulatory loops also play an important role in 
decreasing cellular c-MYC levels[20]. Negative feedback 
regulation is frequently disturbed in the course of 
tumorigenic transformation, permitting transformed 
cells to overexpress MYC[20]. Epigenetic factors, such as 
miRNAs, are also involved in downregulation of MYC in 
response to DNA damaging agents[17].

Regarding the colon, the protein kinase MK5 have 
been also identified as a negative regulator of MYC 
expression[15]. Expression of MK5 itself is regulated 
by MYC, since MYC binds to the promoter of the 
MK5 gene, therefore activates its expression. As a 
result, MYC and MK5 form a negative feedback loop, 
in which FoxO proteins have been identified as key 
mediators[15].

c-MYC in physiological intestinal 
homeostasis
Considering intestinal homeostasis, c-MYC expressed 

in the entire intestinal tract displays a fundamental 
role[21]. In the small intestine c-MYC regulates the 
appropriate number of epithelial cells within the 
crypts[9]. Muncan et al[9] reported that upon conditional 
deletion of c-MYC gene crypt epithelial cells become 
smaller as compared to normal ones. Moreover, in the 
absence of c-MYC protein epithelial cell proliferation 
became reduced[9]. On the other hand, it was un
expectedly found in mice that conditional deletion of 
c-Myc in adult intestinal epithelium by utilizing a Cre-
estrogen receptor fusion transgene driven by the 
intestine-specific villin promoter did not induce an overt 
phenotype[22]. According to this result the proliferation 
and expansion of intestinal epithelial progenitors can 
occur in a Myc-independent manner, as well. The 
difference between the studies of Muncan et al[9] and 
Bettess et al[22] most likely relates to deletion efficiency 
accomplished with the different Cre transgenes in the 
earliest crypt progenitors. Regarding apoptotic cell 
death, c-MYC does not influence epithelial apoptotic 
rate in the small intestine, it induces apoptosis only in 
the colon[9,23].

In the intestine cell proliferation and differentiation 
are under the tight control of the Wnt/β-catenin 
signaling[24]. In mice c-MYC is a critical downstream 
effector of cellular proliferation induced by the Wnt/
β-catenin pathway[25,26]. Following epithelial injury, 
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Figure 1  Schematic representation of the structure, regulation and main effects of c-MYC. A: The c-MYC protein consists of three domains: N-terminal, Central 
region, and C-terminal. The Central region and the C-terminal domain of c-MYC are responsible for protein-protein interactions that result in transcriptional repression 
by c-MYC. The C-terminal domain contains a basic (B) helix-loop-helix (HLH)-leucine zipper (LZ) motif that is necessary for interaction with different proteins (such 
as Max), and physiological recognition of DNA target sequences[7,58]; B: Developmental and mitogenic signals tightly regulate c-MYC gene expression both in normal 
(nontransformed) and in transformed cells via the MAPK/ERK pathway. MicroRNAs display a dual-faced role in the c-MYC regulatory network; both as regulators 
and as targets of c-MYC. The stability of the c-MYC protein also represents a particularly effective mechanism of gene regulation. c-Myc-S: Truncated c-Myc protein; 
MB1 and MB2: Evolutionarily conserved Myc Box sequences; NLS: Nuclear localization signal; Shh: Sonic hedgehog; EGF: Epidermal growth factor; MAPK: Mitogen-
activated protein kinase; ERK: Extracellular signal-regulated kinase. 
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cells from involved or uninvolved inflammatory disease 
bowel (IBD) samples than in normal epithelial cells 
from either sporadic colon cancer or diverticulitis 
patients[46]. In active inflammation the downexpression 
of c-MYC in IBD epithelium may result in attenuated 
cell proliferation, therefore may contribute to mucosal 
ulceration. On the other hand, c-MYC may also be 
involved in epithelial regeneration after inflammatory 
damage by altering apoptotic cell death. 

It is a known fact, that patients with chronic, 
longstanding IBD have an increased risk for developing 
colitis-associated cancer (CAC). By using whole-
exome sequencing analysis it has been recently 
demonstrated that -among others- the MYC genomic 
locus is more frequently amplified in CAC than sporadic 
colorectal cancers[47]. Moreover, genomic alterations 
observed in CAC are distinct form those found in 
sporadic CRCs, and vary by type of IBD[48]. Proteomic 
network analyses have identified proteins related 
to mitochondria, oxidative activity, calcium-binding 
proteins, and c-MYC that play roles in early and 
late stage colitis-associated neoplastic progression, 
respectively[49]. c-MYC is often overexpressed in 
dysplastic cells in chronic longstanding ulcerative 
colitis, the precursor to CAC[50,51]. Taking together these 
data, it seems that the complex role and final effects 
of c-MYC in inflammatory colon mucosa are context- 
and microenvironment dependent.

c-Myc in colorectal cancer
The c-MYC oncogene is frequently deregulated 
in human cancers and is overexpressed in up to 
70%-80% of colon adenocarcinomas[52]. Since c-MYC 
is a downstream target of the APC (adenomatous 
polyposis coli) gene, and APC itself is inactivated in 
most colorectal cancers[53], it is not surprising that in 
early and advanced stages of colorectal carcinogenesis 
c-MYC is overexpressed at both the mRNA and protein 
levels[54,55].

The imbalance of cell proliferation and apoptosis 
is a key component in initiation of colorectal tumo
rigenesis. Basically, overexpression of c-MYC could 
lead to apoptosis[38], indicating its crucial role for 
determining cell survival and/or apoptotic pathways[36]. 
Under pathological conditions deregulated Wnt/
β-catenin signaling promotes CRC by activating the 
expression of c-MYC[56]. Moreover, c-MYC-triggered 
apoptosis provides an inherent “fail-safe” program to 
check unlimited cell growth. The extent of apoptotic 
cell death is in correlation with the level of c-MYC 
expression[57].

In case of early to late colorectal adenomas 
significant correlation of nuclear β-catenin and c-MYC 
nuclear expression was found with the size of colon 
adenomas, but not with their cellular proliferative 
activity[58]. This phenomenon implies a dose-dependent 
function of β-catenin. Without nuclear β-catenin, 
T-cell factor family (TCF) proteins are bound by a co-

the c-Myc 3’Wnt responsive DNA elements (WRE)-
dependent regulation of the expression of the c-Myc 
gene seems to be essential for maintaining intestinal 
homeostasis and regeneration[27].

In colonic epithelial cells, c-MYC-induced apoptosis 
can be either p53-dependent or independent[28-30]. 
Basically, in cells the level of p53 expression is low, but 
its expression is elevated upon stress responses[31,32]. 
By promoting proteosomic degradation mouse double 
minute (Mdm)-2 is a negative regulator of the p53 
protein[33]. As a regulatory loop, p53 transcriptionally 
upregulates Mdm2[33]. Alternative reading frame (Arf) 
also has a role in this regulatory mechanism, since 
it inhibits the function of Mdm2 and c-MYC[33,34]. By 
increasing Arf expression, c-MYC protein displays a 
prominent role in p53 regulation leading finally to p53-
dependent apoptosis[35]. The crosstalk between c-MYC 
and p53 is essential in inducing pro-survival or pro-
death responses to apoptotic stimuli.

Upon modulating apoptotic signals c-MYC is able to 
regulate intrinsic apoptosis independently from p53, 
as well[36,37]. c-MYC can also alter the balance between 
the pro- and antiapoptotic members of the Bcl2 
(B-cell/lymphoma 2)-family[16,38]. Bcl2 can inhibit c-MYC 
mediated apoptosis, however, on the other hand, 
c-MYC overexpression suppresses the antiapoptotic 
Bcl2 protein and mRNA levels[39]. To suppress the 
antiapoptotic Bcl2 expression the DNA-binding activity 
of c-MYC is required[40]. In mice, c-MYC may induce 
apoptosis via the activation of the proapoptotic 
protein, Bax[41]. c-MYC also participates in the extrinsic 
apoptotic pathways[38,42,43]. Therefore, it is difficult to 
predict which c-MYC target genes are responsible for 
the final biological effects. It is likely that the current 
status of cell physiology ultimately influences the 
outcome of c-MYC overexpression, and affects c-MYC 
regulating the apoptotic process in colonic epithelial 
cells.

c-Myc in colonic inflammation
As a hallmark of cancer, inflammation may lead to 
tumor formation. Acute and chronic colonic inflam
mation disrupts the integrity of the epithelial layer, 
moreover can lead to regenerative cell proliferation, 
and even fibrosis. In animal colitis models the use of 
glycogen synthase kinase (GSK)3β inhibitors mitigated 
disease symptoms by reducing pro-inflammatory 
immune response[44]. It has been shown, that during 
the recovery phase of dextran sulfate sodium (DSS)-
induced colitis GSK3β inhibition by lithum chloride 
promotes colonic regeneration. The explanation of 
this effect is that lithium treatment increased the 
expression of Myc transcripts, MYC proteins, and the 
expression of several Wnt/MYC target genes in the 
colonic epithelium[45]. 

Additionally, in humans the steady-state levels of 
several nuclear proto-oncogenes including c-MYC and 
N-MYC were demonstrated to be lower in epithelial 
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repressor, and this complex acts as transcriptional 
repressor of the target genes[59,60]. Nuclear β-catenin 
competes with the co-repressor for TCF binding in a 
dose-dependent manner. In colorectal cancer cells the 
disruption of β-catenin/TCF-4 activity induces a rapid 
G1 arrest and blocks the physiologically active genetic 
program in the proliferative compartment of colonic 
crypts. Simultaneously, an intestinal differentiation 
program is induced, in which c-MYC plays a switch role 
by direct repression of the p21CIP1/WAF1 promoter. 
Following disruption of β-catenin/TCF-4 activity, the 
decreased expression of c-MYC results in p21CIP1/
WAF1 transcription, which in turn mediates G1 arrest 
and differentiation[12].

Though several in vitro studies proved that c-MYC 
has the ability to sensitize or induce apoptosis[61,62], 
its role in apoptotic cell-death is not well established 
and unclear in vivo. In a recent article, Phesse et 
al[63] demonstrated for the first time in an in vivo 
model that endogenous c-MYC is essential for efficient 
induction of p53-dependent apoptosis following DNA 
damage. It has been long known that p53 serves a 
key element in the development of sporadic colorectal 
cancer[64], and further, it is also involved in colitis-
associated carcinogenesis[65]. Until now, in the gut 
c-MYC was considered as a fundamentally expressed 
gene responsible for epithelial regeneration and the 
regulation of the number of crypt cells. Phesse et al[63] 
concluded that c-MYC serves as a universal regulator of 
apoptosis in in vivo systems suggesting an important 
and new aspect of colorectal carcinogenesis (Figure 2). 
On the other hand, the exact mechanisms linking c-MYC 
levels to Mdm2 expression still remain unclear. In 
accordance with recent results[63,66,67], one can speculate 
that c-MYC may directly inhibit Mdm2 transcription. The 
induction of the c-MYC-dependent apoptosis program 
requires c-MYC expression to exceed a threshold, which 
is defined by Bcl2 family proteins in a cell-, tissue type 
and milieu-specific fashion[23]. In the colon, however, 
the different behaviour of the apoptosis regulator Bax, 
controlled by c-MYC may suggest the existence of a 

different apoptotic program of epithelial cells.
A recent report has demonstrated a role of AMBRA1 

(activating molecule in Beclin-1 regulated autophagy) in 
both the autophagic pro-survival response and Beclin-
1-dependent autophagy in embryonic stem cells[68]. 
AMBRA1 has been shown to be a crucial regulator of 
autophagy and apoptosis in colorectal cancer cells 
that maintains the balance between these cellular 
mechanisms[69]. AMBRA1 promoted dephosphorylation 
and degradation of c-MYC, and favors the interaction 
between c-MYC and PP2A (a c-MYC phosphatase), 
leading finally reduced cell divison rate[70]. AMBRA1 
has been recently characterized as a target of mTOR 
(mammalian target of rapamycin) in the autophagy 
process[71]. Furthermore, the AMBRA1/PP2A-mediated 
regulation of c-MYC is also under mTOR control[70], 
indicating the key role of mTOR in regulating cellular 
fate by interfering with its metabolic status (Figure 3). 

The MK5 kinase regulates the translation of c-MYC, 
since it is required for the expression of miR-34b/c 
that bind to the 3’UTR of MYC. The MK5-MYC negative 
regulatory feedback loop has been found to be 
disrupted during colorectal tumorigenesis[15]. Two 
changes may explain the disruption of this regulatory 
circuit. First, silencing of the miR-34B/c gene promoters 
by DNA methylation[72]. Second, the expression of MK5 
is downregulated in colorectal tumors by a currently 
unknown mechanism[15]. Depletion of MK5 regulates 
Ephrin B1, a MYC-repressed gene that is involved in 
the progression of p53-deficient colorectal tumors[73].

Anti-inflammatory therapeutic 
aspects of c-Myc in the colon
Mesenchymal stem cell transplantation (MSCT) has 
been reported effective in the treatment of IBD 
as it can restore epithelial barrier integrity, induce 
immune suppression, and stimulate regeneration of 
endogenous host progenitor cells[74-78]. Mesenchymal 
stem cells can be engrafted into the damaged mucosa 
and even differentiated into colonic interstitial cells[79]. 
The pathobiologic background of this reparative 
process, however, is not well known. In an IBD-MSCT 
rat model, when intestinal epithelium was inflamed, 
the canonical Wnt signaling was found to be activated 
by Wnt3a and inhibited by GSK-3β and APC[78]. Shortly 
after MSCT, the elevated c-Myc and downregulated 
Apc gene expressions facilitate mesenchymal stem 
cell proliferation, and then differentiation into intesti
nal epithelial cells in the anaphase, by reducing the 
expression of c-Myc. These changes promoted inte
stinal stem cell proliferation and repaired the intestinal 
mucosa. Though, MSCT is a useful therapeutic 
possibility in IBD models, the parallel use of  GSK3β 
inhibitors after MSCT may be therapeutically useful to 
enhance MYC-signaling, hence promoting reparative 
cell proliferation[45]. 

Traditionally, the pathomechanism of Crohn’s 
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Figure 2  Schematic illustration of the relation of c-MYC to p53 following 
DNA damage in the intestine.
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disease has been associated with Th1 cytokine profile. 
In an experimental autoimmune inflammation model 
it was demonstrated that inhibiting the functions 
of BET (bromo and extra-terminal domain)-family 
proteins during early T-cell differentiation resulted 

in long-lasting suppression of the pro-inflammatory 
functions of Th1 cells[80]. These effects were mimicked 
by an inhibitor of c-MYC function, as well, implicating 
reduced expression of c-Myc as one avenue by which 
BET-inhibitors suppressed the inflammatory functions 
of T-cells. hypothetically, BET and c-MYC inhibition may 
have therapeutic potential in Crohn’s disease (Table 1).

Anti-cancer therapeutic aspects 
of c-Myc in the colon
Cancer cells have been reported to display cell cycle 
arrest, differentiation, senescence or cell death after 
MYC inhibition via different molecular mechanisms 
(Table 1). 

5-aminosalicylic acid has been identified as an 
agonist of peroxisome proliferator-activated receptor 
(PPAR)-γ[81]. Activation of PPAR-γ induces apoptosis 
by downregulating c-MYC[82,83]. Regrading aspirin 
the involvement of the 26S proteasomal pathway 
has been found in decreasing c-MYC expression in 
a concentration-dependent fashion[84]. Due to its 
oncogenic activities including cell growth, proliferation, 
angiogenesis, genomic instability and blocking 
differentiation, the downregulation of c-MYC would be 
expected to have important clinical implications[85].

Ursodeoxycholic acid (UDCA) displays chemo
preventive action against chemical and colitis-associated 
colonic carcinogenesis[86]. One possible explanation 
of this effect is the inhibition of cell proliferation by 
suppressing c-MYC protein expression and, as a 
consequence, cell cycle regulatory molecules including 
cyclin-dependent kinase-4 and -6[86]. According to this 
result, c-MYC is a target molecule of UDCA in colon 
carcinoma cells. However, mapping the benefits of 
UDCA administration for CRC chemoprevention at 
population level needs further studies.

Integrins, containing noncovalently associated 
α/β heterodimers provide dynamic cell to cell linkage 
and cell attachment to matrix molecules. While in 
normal human intestinal epithelium α1β1 integrins 
are usually expressed in the lower third of crypts[87], 
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Figure 3  Interplay of AMBRA1, c-MYC and mTOR in colorectal cancer cells. AMBRA1 links autophagy to cell proliferation by facilitating c-MYC demolition. 
AMBRA1 promotes c-MYC phosphorilation and proteasomal degradation, therefore prevents hyperprolifearion and tumorigenesis. mTORC1 negatively controls the 
function of AMBRA1, thus finally supporting c-MYC-driven cell proliferation. Arrows represent stimulation or increase; blocked arrows represent inhibition; broken 
lines represent indirect effects. AMBRA1: Activating molecule in Beclin-1 regulated autophagy; mTORC1: Mammalian target of rapamycin complex 1; PP2A: Protein 
phosphatase 2A.

Table 1  Therapeutic options based on c-MYC targeting 
are represented by various strategies in inflammatory and 
cancerous colonic disorders

Main mode of action Potential pathways/agents

Inflammatory colonic disorders
Upregulation of c-MYC expression GSK inhibitors ± MSCT
Inhibition of c-MYC signaling BET inhibitors ± c-MYC inhibitors
(suppression of Th1 function)
Cancerous colonic diseases
Downregulation of c-MYC 
expression

dose-dependent gene and protein 
expression suppression; PPAR-γ 

(5-ASA, mesalazine)
suppressing protein expression by 

UDCA
crosstalk with integrins

E2F1 inhibition (downregulatin 
GCN5 expression)

FGFR kinase inhibition
epigenetic regulation by miR-320b

siRNA blocking of ABC-transporters
lncRNAs (blocking of PARROT or 

CCAT1-L)
siRNAs using PEI-PGMA platform

modified ODC promoter
Promoting c-MYC degradation 26S proteosomal pathway (aspirin)

SIRT2 inhibition
Inhibition of c-MYC signaling Omomyc

BET (+ Wnt/MAPK) inhibitors

GSK: Glycogen synthase kinnase; MSCT: Mesenchymal stem cell trans
plantation; PPAR-γ: Peroxisome proliferator-activated receptor-γ; 5-ASA: 
5-aminosalicylate; UDCA: Ursodeoxycholic acid; E2F1: E2F Transcription 
factor 1; GCN5: Histone acetyltransferase; FGFR: Fibroblast growth factor 
receptor; miR-320b: Micro-ribonucleic acid-320b; siRNA: Small interfering 
ribonucleic acid; ABC: Adenosine triphosphate-binding casette; lncRNA: 
Long noncoding ribonucleic acid; PARROT: Proliferation associated RNA 
and regulator of translation; CCAT1-L: Longer isoform of colon cancer 
associated transcript 1; PEI-PGMA: Polyethileneimine-polyglycidal 
methacrylate; ODC: Ornithine decarboxylase; SIRT2: Sirtuine2; BET: 
Bromo- and extra-terminal domain; MAPK: Mitogen-activated protein 
kinase.
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in colorectal cancers and colon cancer cell lines 
integrin-α1 is expressed up to 65% of cases[88]. c-MYC 
regulates several integrin subunits, thus influences 
various functions of integrins regarding colon cancer 
cell proliferation, migration, and survival[89-92]. A combi
nation of anti-MYC and -integrin targeted therapies 
hence may represent novel aspects of anti-tumor 
strategies in colon cancers.

Aberrant kinase activation originated from mutation, 
amplification, or translocation can drive growth and 
survival in several human cancers[93,94]. In gastric cancer, 
the crosstalk between fibroblast growth factor receptor 
(FGFR)2 and CD44 has been found to maintain cancer 
stemness by reciprocically regulating their expression 
via differentially regulating c-MYC transcription[95]. Since 
FGFR2 has been found to be amplified in the NCI-H716 
colorectal cancer cell line[96], this result suggests 
that emerging FGFR inhibitor therapeutics may have 
efficacy in a subset of colon cancer driven by FGFR2 
amplification.

It has been shown that the inhibition of BET protein 
family impairs the proliferation of several cancer cell 
lines[97-99]. These effects are partly mediated by c-MYC 
repression[98]. In a recent study of Tögel et al[100] the 
authors investigated the effect of BET inhibitors on 
proliferation and c-MYC expression within 20 CRC 
cell lines. They have found that JQ1, a BET inhibitor, 
administered together with Wnt or MAPK inhibitors 
sufficiently downregulates the expression of c-MYC, 
thus inhibits CRC cell proliferation. Based on these 
results, this kind of combined therapy seems to be 
effective in CRC treatment.

Upon recent results, targeting c-MYC can also be 
considered as a promising anti-cancer therapeutic 
strategy[23,101-104]. c-MYC inhibition with a protein 
fragment called Omomyc has been shown to be very 
effective to regress epithelial cell-derived tumors in 
mice models[23,105]. Omomyc has been found to be a 
pan-MYC family (c-, N- and L-MYC) inhibitor, potentially 
useful for cancers carrying any MYC family member 
amplification[106].

In case of cancers in which cell growth is not 
dependent on amplified MYC family genes, MYC 
suppression alone is not enough for a sufficient 
therapeutic effect. In animal models of Myc-driven 
cancers, reversion of the tumor by Myc suppression 
has been impeded by the parallel repression of TP53 
or retinoblastoma-1 proteins underlining the relevance 
of these pathways to be intact for the treatment of 
cancers by MYC targeting[107-109]. 

Using a focused RNA interference library for genes 
involved in epigenetic regulation, sirtuin2 (SIRT2), an 
NAD(+)-dependent deacetylase, has been identified as 
a modulator of the therapy response to EGFR inhibitors 
in colon and lung cancers[110]. Thiomyristoyl lysine 
compound (TM), a SIRT2 inhibitor with high potency 
and specificity, has broad anti-cancer activity. SIRT2 
inhibition was found to promote c-MYC ubiquitination 
and degradation, hence it may be a potential 

target for c-MYC-driven cancers including colorectal 
carcinoma[111].

Recent studies have suggested that the elevated 
expression of general control nonrepressed protein 
5 (GCN5), a histone acetyltransferase can often be 
detected in human cancers[112]. GCN5 expression is 
elevated in colon cancer, and its overexpression is 
regulated by c-MYC[113]. By suppressing GCN5 human 
colon cancer cell growth can be inhibited. Furthermore, 
the suppression of the proapoptotic transcription factor 
E2F1-induced GCN5 transcription facilitates E2F1-
induced cell death, implying a negative feedback in 
apoptosis regulation[113]. According to these results, 
GCN5 seems to be a potential therapeutic target for 
human colon cancers.

Regarding transcription factor-based therapies 
of tumorous diseases inhibition of c-MYC may also 
represent a promising option[101,114]. Numerous 
cytotoxic agents, and ionizing radiation have been 
shown to induce apoptosis following DNA damage. 
Since most of the anti-cancer drugs are used in 
combination with the potential of genotoxicity, it is 
of importance to further assess the role of c-MYC in 
response to DNA damage. 

Therapeutic approaches that would allow the 
reprogramming and returning of altered c-MYC activity 
within tumor cells are also promising therapeutical 
strategies. RNA interference technology is one of 
these modalities. MiRNAs are key post-transcriptional 
regulators of genetic networks. Single-stranded 
mature miRNAs associated with Argonaute proteins 
form the core of a gene regulatory complex [i.e. RNA-
induced silencing complex (RISC)]. MiRNA-RISC-
mediated gene inhibition can be materialized by three 
processes: (1) site-specific cleavage; (2) enhanced 
mRNA degradation; and (3) translational inhibition[115]. 
Evidences indicate that post-transcriptional miRNA-
mediated gene expression regulation can act as 
tumor suppressor or onogene in CRC[116]. Currently, 
miR-320b has been found to be significantly down
regulated in CRC tumor tissues. In addition, miR-
320b overexpression has been found to correlate 
with decreased cell growth both in vitro and in vivo. 
Moreover, it has been also demonstrated that miR320b 
directly targets c-MYC, and its overexpression in 
SW-480, SW-620, HCT-116, LoVo, and HK293 CRC cell 
lines decreases c-MYC expression at gene and protein 
level as well[117]. According to these results, increasing 
miR-320b gene expression may represent a potential 
therapeutic approach in CRC.

Colorectal cancer stem cells (CSCs) has an 
important role in tumor initiation, progression, and 
recurrence. c-MYC was found to be highly expressed 
in CD133+ colon CSCs[118]. The overexpression of 
ATP-binding casette (ABC) transporters in cancer cells 
can result in therapy resistance by exporting anti-
tumor drugs[119]. Recently, c-MYC expression has been 
effectively blocked on mRNA and protein level by 
c-MYC small interfering RNA (siRNA), moreover c-MYC 

7944 September 21, 2016|Volume 22|Issue 35|WJG|www.wjgnet.com

Sipos F et al . c-MYC in colonic diseases



silencing sensitized CD133+ CSCs to chemotherapy-
induced cytotoxicity by downregulating the expression 
of ABC transporter proteins[120].

In eukaryotic cells a vast number of noncoding RNA 
species are transcribed. Among them, long noncoding 
RNAs (lncRNAs) have been widely implicated in 
post-transcriptional gene expression regulation. The 
expression level of lncRNAs is usually very low and 
tissue-specific[121]. c-MYC can regulate the expression 
of lncRNAs, some of these may also contribute to 
the transcription of c-MYC target genes[122]. It has 
been reported that proliferation associated RNA 
and regulator of translation (PARROT), an lncRNA 
dynamically expressed in both transformed and 
normal cells contributes to proliferation in senescence 
and cancer. PARROT has been also identified as an 
upstream regulator of c-MYC. Its depletion results in 
the depletion of c-MYC mRNA and protein expression, 
subsequently altering cell growth and proliferation[121]. 
In gastric cancer c-MYC activates the expression of 
colon cancer associated transcript 1 (CCAT1) lncRNA, 
leading to an increased proliferation and migration of 
cancer cells[123]. CCAT1-L, a longer isoform of CCAT1, 
has been reported to regulate MYC expression in 
colon cancer. It is supposed that CCAT1-L allows the 
interaction between the enhancer and the c-MYC 
promoter thus promotes tumorigenesis[124]. 

Achieving effective intracellular delivery of thera
peutic RNA interfering molecules such as siRNAs or 
short hairpin RNAs (shRNAs) is quite challenging. In a 
recent study, spherical nucleic acid-gold nanoparticle 
conjugates have been shown to selectively induce 
apoptosis in glioma cells in vivo[125]. However, the used 
21 base siRNA duplexes were quite unstable. ShRNAs 
with a transient period of expression are better suited 
for long-term effectiveness, due to their ability to 
produce siRNAs continuously within cancer cells, thus 
resulting in prolonged suppression of target genes[126]. 
Until today, shRNAs have been delivered effectively 
in vivo using viral vectors. Among nonviral vectors, 
polyethileneimine (PEI) is the most widely used, gold-
standard agent[127]. However, the major disadvantage 
of PEI is its cytotoxicity[128]. On the other hand, it has 
been demonstrated that anchoring multiple PEI chains 
to macromolecule polyglycidal methacrylate (PGMA) 
nanoparticles dramatically reduces their cytotoxicity, 
while achieving efficient nanoparticle endocytosis[129]. 
Using the PGMA platform effective delivery of small 
oligos (anti-miRs and mimics) and larger encoding 
shRNAs were performed in a wide variety of cancer 
cell lines including colorectal ones. Furthermore, the 
effectiveness of this therapy was validated for in vivo 
tumor suppression using transgenic mouse models. It 
was found that oral delivery of the c-Myc-conjugated 
nanoparticles to an Apc-deficient crypt progenitor 
colon cancer model resulted in an increased host 
survival and re-entered intestinal tissue to a non-Wnt-
deregulated state[126]. According to these results, it 
seems that careful design of nonviral nanoparticles 

may help to made RNA interference technology an 
affordable and amenable therapy for CRC.

Regarding tumor-specific cytotoxicity, viral-directed 
enzyme prodrug therapy may also represent an ideal 
alternative[130]. However, the viruses used to deliver 
cDNAs encoding prodrug-activating enzymes can 
transduce normal cells, not just tumor cells. To achieve 
tumor-specific expression of the delivered cDNAs is 
to regulate transcription of the prodrug-activating 
enzyme with a promoter that is preferentially activated 
by tumor cells. MYC-responsive, modified ornithine 
decarboxylase (ODC) promoter/enhancer sequences 
have been identified that upregulate target protein 
expression in SW480 an HT29 colon cancer cells 
overexpressing the c-MYC protein. The modified ODC 
promoter may be useful in achieving tissue-specific 
expression of target proteins in cancers overexpress 
c-MYC[131].

CONCLUSION
The incidence of inflammatory colonic disorders 
is increasing worldwide. Though inflammation is 
required to heal infections, wounds, and maintain 
tissue homeostasis, as the seventh hallmark of 
cancer, however, it may affect all stages of tumor 
development. c-MYC, with its dual-faced role in cell 
proliferation and death, is implicated in several aspects 
of inflammatory tissue damage and repair. Since the 
therapeutic potential of c-MYC influencing therapies 
has not studied yet in the clinic, additional studies are 
needed to determine whether long-term treatment 
with c-MYC targeting agents can therapeutically 
suppress ongoing inflammation.

Colorectal carcinogenesis is a complex, multistep 
process that is driven by the accumulation of multiple 
genetic alterations. c-MYC is overexpressed in several 
types of malignant tumors including colorectal cancer, 
and is necessary for the uncontrolled proliferation of 
cancer cells. Single or combined therapies based on 
c-MYC targeting are represented by various strategies. 
Molecules directly targeting c-MYC, or agents acting 
on other genes involved in the c-MYC pathway could 
be selected for combined regiments. However, due to 
its context-dependent cellular function, it is clinically 
essential to consider which cytotoxic drugs are used 
in combination with c-MYC targeted agents in various 
tissues. Noncoding small RNAs have been recently 
implicated in anti-cancer therapies[132]. Regardless of 
the therapy applied, it is important to first determine 
the molecular pathways underlying the agents to 
inform the therapy design. Combining c-MYC-targeting 
agents with specific noncoding RNAs may lead to the 
development of novel colorectal cancer therapies. 
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