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Abstract
AIM
To investigate hepatoprotective effects of Foeniculum vulgare root barks (FVRBs), a traditional Uyghur medicine, on carbon tetrachloride (CCl4)-induced hepatic fibrosis in mice. 

METHODS
Except for nomal group, the rest group mice were induced by intraperitoneal injection (i.p.) of 0.1% CCl4-olive oil mixture 10 mL/kg twice a week to build liver fibrosis model. After 4 wk, mice were treated concurrently with the 70% ethanol extract of FVRBs (88 mg/kg, 176 mg/kg, 352 mg/kg and 704 mg/kg, respectively) daily by oral gavage for 4 wk to evaluate its protective effects. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG), hexadecenoic acid (HA), laminin (LN), glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) in liver tissues were measured, respectively. Hematoxylin-eosin (H&E) staining and masson trichrome (MT) examination were performed to assess histopathological changes in the livers. The expression of transforming growth factor β1 (TGF-β1), matrix metalloprotein 9 (MMP-9) and metallopeptidase inhibitor 1 (TIMP-1) was observed by immunohistochemical analysis. Additionally, TGF-β1 and alpha smooth muscle actin (α-SMA) proteins were measured by western blotting.

RESULTS
Significant reduction in serum levels of AST, ALT, TG, HA and LN were observed in the FVRBs treated groups, suggesting that the FVRBs displayed hepatoprotective effects. Also, the depletion of GSH, SOD, and MDA accumulation in liver tissues was suppressed by FVRBs. The expression of TGF-β1, MMP-9 and TIMP-1 determined by immunohistology was markedly reduced in a dose-dependent manner by FVRBs treatment. Furthermore, protective effects of FVRBs against CCl4-induced liver injuries were confirmed by histopathological studies. Protein expression of TGF-β1 and α-SMA was decreased by western blot.

CONCLUSION
Our results indicate that FVRBs may be a promising agent against hepatic fibrosis and its possible mechanisms are inhibiting formation of lipid peroxidation and collagen in liver tissue of liver fibrosis mice.
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Core tip: Hepatic fibrosis is a wound-healing pathological process resulted from chronic hepatic injuries. In the present study, hepatoprotective effects of Foeniculum vulgare root barks (FVRBs), a traditional Uyghur medicine, on carbon tetrachloride (CCl4)-induced hepatic fibrosis in mice was investigated. FVRBs reduced serum levels of aspartate aminotransferase, alanine aminotransferase, triglyceride, hexadecenoic acid and laminin. Further, FVRBs inhibited CCl4-induced TGF-β1, MMP-9, TIMP-1 expressions and histopathological changes. Our study indicated that the protective effects of FVRBs are through inhibiting formation of lipid peroxidation and collagen in liver tissue of liver fibrosis mice.
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INTRODUCTION
Hepatic fibrosis is a wound-healing pathological process resulted from chronic hepatic injuries characterized by the accumulation of extracellular matrix (ECM)[1]. It occurs during most continuous and chronic liver diseases, driven by inflammatory responses to injury tissues, which ultimately lead to liver cirrhosis. Previous studies indicated that activation of hepatic stellate cells (HSCs) plays an important role in the progress of hepatic fibrosis[2,3]. Activation of HSCs increase cell proliferation, producing large amounts of ECM components including hexadecenoic acid (HA) and laminin (LN)[4,5]. In addition, aberrant activity of transforming growth factor β1 (TGF-β1) or members of the platelet derived growth factor family are also the most prominent drivers to activate and transdifferent HSCs into myofibroblast[6,7]. Further, several chemokines that modulate the inflammatory reaction are involved in the progression of HSC activation and the fibrotic insult[8,9]. In response to liver injury, lots of research has demonstrated that the reversion of fibrosis can be carried out，particularly in the early course of the disease. Currently, treatment of liver damage is mainly consists of inhibiting HSCs early activation, proliferation, and collagen fiber growth, promoting HSCs apoptosis and collagen degradation.
Many studies indicated that Foeniculum vulgare root barks (FVRBs), a traditional Uyghur medicine, contain the following chemical constituents, such as saccharides, glycosides, lactone compounds, phenols, tannins, flavonoids, alkaloids, volatile oil, grease, triterpenes and sterols and so on[10,11]. In addition, FVRBs has been traditionally used for the treatment of several pathophysiological states in China, such as dispel cold, warm kidney and stomach, dampness, swelling and pain[12-15]. For the first time, the present study was aimed to investigate the protective role of FVRBs on CCl4 induced liver injury in vivo and its possible mechanisms.
 
MATERIALS AND METHODS
Animal
Kunming male mice weighing between 20 ± 2 g were supplied by the Experimental Animal Center of Urumqi (Urumqi, China). Mice were housed at the room temperature under a 12 h light/dark cycle (lights on at 08: 00 h) and were fed a standard diet ad libitum. All animal care and experimental procedures were approved by the Institute Ethnics Committee of Shihezi University. 

Drug material
FVRBs were obtained from Uygur pharmaceutical company (Uygur, China). FVRBs were extracted with 70% ethanol by heating reflux method, and steam drying. A voucher specimen (No. 20070820) has been deposited in School of Pharmacy, Shihezi University. 

Reagent
CCl4 were obtained from Tianjin Guangfu science and Technology Development Co. (Tianjin, China). Yiganling pian (batch number 150102044) containing 38.5 mg Silybum marianum each piece were purchased from Shanxi Li jun Chinese Medicine Co. (Shanxi, China). Alanine aminotransferase (ALT) assay kit, Aspartate aminotransferase (AST) determination kit, Triglycerid reagent kit, Malondialdehyde (MDA) assay kit, Reduced glutathione hormone (GSH) determination kit, and Superoxide dismutase (SOD) determination kit were all purchased from Nanjing Jiancheng (Nanjing, China). Hyaluronic acid (HA) and laminin (LN) enzyme-linked immunosorbent analysis kit were obtained from Xitang Co. (Shanghai, China). Rabbit primary antibody against TGF beta 1 (TGF-β1), alpha smooth muscle actin (-SMA), matrix metalloprotein 9 (MMP-9), metallopeptidase inhibitor 1 (TIMP-1), and horseradish peroxidase labeled second antibody were purchased from BOSTER (Wuhan, China).

Experimental protocol 
Mice were randomly divided into eight groups of twenty animals each (n = 20). The normal group was allowed free access to water and food. In the seven experimental groups, the mice were treated with CCl4 (10 mL/kg, i.p.) in olive oil (1:1000, v/v), twice in a week for eight weeks. Group b was served as solvent control and mice were given olive oil at 10 mL/kg at the fifth week. Group c was model group which was performed by i.p. 10 mL/kg CCl4 and olive oil (1:1000 v/v) mixture and mice were given water at 10 mL/kg at the fifth week. Group d, e, f, g was orally administered with FVRBS (88 mg/kg, 176 mg/kg, 352 mg/kg and 704 mg/kg, respectively) once daily at the fifth week and lasted for four weeks. Group h was positive control group and treated with Yiganling pian (200 mg/kg).
Mice were anesthetized with ethyl ether and blood samples were harvested. The blood was centrifuged at 3500 rpm for 10 min under 4℃ to obtain the supernatant serum and stored at 80℃until they were used in biochemical analysis. Liver, spleen and kidney were dissected out and washed immediately with ice cold saline to weight.

Biochemical analysis
Serum was collected as mentioned above. ALT, AST and TG were determined according to the manufacturer’s protocol using a Microplate Reader Thermo 3001. The observation absorbance of ALT and AST reaction were read at 505 nm and the observation absorbance of TG reaction was read at 546 nm. The enzyme activity was calculated as U/L. HA and LN levels were determined by the enzyme-linked immunosorbent assay method using the commercial kits. The absorbance of the reaction was read at 450 nm.

Measurement of MDA, GSH and SOD activities
Liver tissues samples were homogenized in physiological saline to give a 10% (w/v) liver homogenate and then centrifuged at 2500 rpm for 15 min at 4 ℃. The supernatant was used for the measurement of MDA, GSH and SOD activities by the commercial kits following the manufacture’s protocol. Data were expressed as U/mg of protein.

Histopathological evaluation
Liver specimens were fixed in 10% formalin, and then embedded in paraffin. Four-micrometer-thick sections were obtained from paraffin blocks and stained with hematoxylin and eosin (H&E) and Masson’s trichrome (MT) before they were examined under light microscope. The images were randomly taken from ten fields under light microscopy by 200× magnification. 

Immunohistological analysis
TGF-β1, MMP-9, and TIMP-1 expression levels in the liver were measured by immunohistochemistry. The liver tissues were sectioned and incubated with rabbit anti-TGF-β1 antibody (1:100), rabbit anti-MMP-9 antibody (1:100), and rabbit anti-TIMP-1 antibody (1:100). Then the slides were processed using a DAB colouration immunohistochemical staining kit. Further, the slides were counterstained with hematoxylin and covered with a glycerin gel. In the negative control groups, the primary antibodies were replaced with PBS. The sections were observed under the microscope (Nikon 80i).

Western blotting analysis
The total protein was extracted from the liver tissue and the protein concentration was determination by BCA method. The protein was separated by using SDS-polyacrylamide gel electrophoresis, followed by transferred to PVDF membrane. The membranes were blocked with 5% nonfat milk in TBST buffer for 1 h. Then target proteins were incubated overnight at 4 ℃ with TGF-β1 and a-SMA primary antibodies (1:1000). After washing 4 times with TBST, the membranes were incubated with HRP-conjugated secondary antibody (1:10000) for 1 h at room temperature. Then the membranes were immersed in an enhanced chemiluminescence detection solution. Protein was analyzed by the gray value of the band, which was expressed by the ratio of the target protein and the β-actin protein.

Statistical analysis
All quantitative data were expressed as mean ± S.E. Data were analyzed with SPSS 13.0 software. Statistical significance between groups was determined by one-way analysis of variance (ANOVA) followed by Tukey’s multiple range post hoc test. P < 0.05 was considered as statistically significant. 

RESULTS
Effects of FVRBs on organ index increases induced by CCl4 treatment
As demonstrated in Fig. 1, organ index including liver, spleen and kidney coefficients were measured in mice. Similar to previous studies[16], liver and spleen index were significantly increased in mice treated with CCl4. Compared with the model group, the increase of liver index and spleen index in CCl4-treated group were reduced by FVRBs and Yiganling pian treatment. However, there were no significant differences in the kidney coefficient between the groups.

Effects of FVRBs on serum AST, ALT and TG activities in mice
As shown in Figure 2, CCl4 treatment markedly elevated serum AST, ALT and TG activities as compared with the normal group. The AST and ALT activities after CCl4 treatment were about 5 and 4 times higher than that of normal group, respectively. However, Yiganling pian treatment markedly inhibited the increase of serum AST, ALT and TG after long-term CCl4 injection in mice (P < 0.05; Figure 2). Similarly, the administration of FVRBs at different dosage significantly decreased AST, and ALT and TG activity (P < 0.05 or P < 0.01; Figure 2). 

Effects of FVRBs on MDA, GSH and SOD levels in CCl4-treated mice
Lipid peroxidation was evaluated by measuring MDA content in liver tissue. In CCl4 treatment group, the content of MDA was elevated as compared with the normal group. The administration of FVRBs significantly decreased MDA content in a dose-dependent manner. Also, as compared with the normal group, CCl4 treatment markedly decreased the GSH level and SOD activity in liver tissue. However, treatment with the extract of FVRBs (352 and 704 mg/kg) markedly recovered the CCl4-induced GSH depletion (P < 0.01; Figure 3). In addition, FVRBs treatment (88, 176, 352 and 704 mg/kg) significantly restored the depletion in SOD activity in a dose-dependent manner (Figure 3). Similarly, Yiganling pian group (200 mg/kg) increased the GSH content and SOD activity as compared with the CCl4 group (P < 0.01; Figure 3). Further, there was no significant difference in the level of MDA, GSH and SOD between the group of CCl4 and solvent group.

Effects of FVRBs on serum HA and LN in mice
After CCl4 administration, the levels of serum HA and LN were significantly increased as compared with that of control group (P < 0.05; Figure 4). Treatment with Yiganling pian (200 mg/kg) significantly decreased the levels of serum HA and LN (P < 0.05; Figure 4). Meanwhile, FVRBs treatment markedly decreased the elevation of serum HA and LN in a dose-dependent manner after long-term CCl4 injection in mice (P < 0.05; Figure 4).

Effects of FVRBs on histopathological evaluation  
As shown in Figure 5A, the liver sections of normal control group exhibited the normal cellular structure with well-preserved cytoplasm, prominent nucleolus and central vein. In contrast, the liver sections of CCl4-treated group and solvent group exhibited significant pathological changes, such as fibrosis, ballooning degeneration, steatosis, disseminated macrovesicular and microvesicular (Figure 5C and 5B). There was focal necrosis as well as piecemeal necrosis and fibrosis of portal areas. However, the FVRBs and Yiganling pian treatment groups showed a few to milder degree of leukocytes infiltration and necrosis (Figure 5E, F, G, H). In addition, as compared to the normal control, the livers of mice treated with CCl4 and solvent group exhibited extensive accumulation of connective tissue leading to the formation of continuous fibrotic septa, nodules of regeneration, and noticeable alterations in the central vein (Figure 6A, B and C). However, the FVRBs and Yiganling pian treatment groups significantly attenuated CCl4-induced alterations (Figure 6E, F, G and H). The severe hepatic fibrosis was reduced by the treatment of FVRBs, which was in good correlation with the results of hepatic antioxidant enzyme activities and the serum aminotransferase activities.

Effects of FVRBs on immunohistochemistry analysis
As shown in Figure 7A, the expression of TGF-β1 of normal control group was only observed in the portal area and central vein, relatively shallow, narrow range. In Figure 7B and C, the expression of TGF-β1 in model group was mainly distributed in the portal area and central vein, with fibrous septa and brown granules wide distribution. However, the positive expressions of TGF-β1 were significantly decreased in FVRBs treatment group (Figure 7D-G). The positive control group also showed a good reduction in the expression of TGF-β1 (Figure 7H).
Immunohistochemical expression of MMP-9 protein was shown in Figure 8. Tinting in the cytoplasmic and membrane, the protein color was brown or brown granules. The overall color of the normal group was light blue, while the model group was significant difference. Compared with the model group, the positive expression in the treatment group was decreased, especially in the dose group of 704 mg/kg.  
The results of TIMP-1 protein expressions were shown in Figure 9. In normal group, there are a few positive expression of TIMP-1 in peripheral blood vessels and bile duct wall of the portal area (Figure 9A). In the solvent group and the model group, the positive staining of TIMP-1 was distributed in the fiber spacing and the central vein, and the brown yellow was obviously visible (Figure 9B, 9C). Compared with the model group, the positive expression of the FVRBs treatment groups was markedly decreased (Figure 9 D-G). Further, there is a small amount of positive staining in Yiganling positive control group (Figure 9H). 

Effect of FVRBs on TGF-β1, α-SMA protein expression
As illustrated in Fig. 10, compared to the normal group, the expression of TGF-β1 and a-SMA in CCl4 treatment group was signiﬁcantly increased (P < 0.01). However, FVRBs treatment group markedly decreased TGF-β1 and a-SMA ratio as compared with the CCl4 treatment group (P < 0.05 or P < 0.01). Meanwhile, treatment with Yiganling pian positive group also signiﬁcantly attenuated TGF-β1 and a-SMA ratio (P < 0.01).

DISCUSSION
Liver fibrosis is usually regarded as an outcome of chronic liver injury in the process of long-term wound healing[17-19]. In the present study, CCl4-induced toxic liver injury, the most commonly used model for hepatic fibrosis[20,21], has been performed. Simultaneously, we detected the levels of ALT, AST, TG, HA and LN that used to assess liver function and the degree of liver fibrosis. There are evidences that natural substances may have a protective role against CCl4-induced liver injury[22,23]. Considerable efforts have been made in the study of natural products with hepatoprotective activities[24,25]. Our study has shown that CCl4 caused significant increases in serum levels of ALT, AST, TG, HA and LN in mice. However, FVRBs treatment significantly attenuated these trends. Its hepatoprotective effect was further confirmed by histopathological observations, for FVRBs attenuated CCl4 induced necro-inflammatory and fibrogenic effects.
There is growing evidence that oxidative stress contributes to the development of liver fibrosis by activating various signaling pathways involved in fibrogenesis[26,27]. The tissue concentration of MDA, a product of lipid peroxidation during liver fibrogenesis was assayed. Also, the SOD and GSH activities were measured. In the present study, in the CCl4-treated mice, the MDA level in liver tissue was elevated and the activities of SOD and GSH were decreased. However, reversal of these trends by FVRBs treatment suggests that FVRBs prevented the progression of liver fibrosis by inhibiting oxidative stress in the liver. 
The histopathological studies are direct means for assessing the protective effect of FVRBs. HE and Masson results showed that FVRBs could reduce the liver necrosis, significantly inhibit collagen fiber hyperplasia, improve liver tissue structure and reduce fiber tissue. These results further confirmed that FVRBs dose-dependently decreased hepatic histopathological changes.
The activation of HSCs is the central link in the pathogenesis of liver fibrosis[28-30]. In recent years, many studies found that TGF-β1 is the strongest factor inducing fibrosis, and it is also an important factor to promote the activation of HSCs[28,31]. Our result confirmed that administration of FVRBs reduced the expression of TGF-β1 protein by immunohistochemistry and western blotting methods. Therefore, the anti-fibrotic effect of FVRBs may be mediated by its inhibition effect on TGF-β1. In addition, α-SMA expression also increases generation and proliferation of chemotactic factors that capable of recruiting inflammatory cells[32,33]. From the results we know that expression of α-SMA was enhanced by CCl4 treatment, while the administration of FVRBs prevented the development of fibrosis maybe through the inhibition of α-SMA.
The essential pathological of liver fibrosis is the excessive accumulation of collagen and other extracellular matrix[34]. Under normal circumstances, the synthesis and decomposition of collagen is balanced. Once the synthesis is over than decomposition, it will cause the accumulation of collagen in the liver, lead to format liver fibrosis[35]. Matrix metalloproteinases (MMPs) can promote the degradation of extracellular matrix, which matched with the tissue inhibitors of metalloproteinase (TIMPs) to reduce liver fibrosis severity[36, 37]. Among MMPs family, MMP-9 plays an essential role in fibrosis formation. Many studies have shown that MMP-9 is elevated in patients with liver fibrosis. TIMP-1 can inhibit MMP-9[38], preventing the degradation of ECM, thereby forming or promoting liver fibrosis. In the present study, the expression of MMP-9 and TIMP-1 protein have shown significant differences between CCl4 and FVRBs treatment groups, which suggest that MMP-9 and TIMP-1 are related with the protective effects of FVRBs against the formation of hepatic stellate cells.
In conclusion, FVRBs dose-dependently ameliorated hepatic oxidative stress and suppressed inflammation in CCl4-injured livers. And its mechanisms against liver fibrosis maybe related with inhibiting lipid peroxidation formation in liver tissue of liver fibrosis mice and inhibiting the collagen formation by suppressing protein expressions of TGF-β1, α-SMA, MMP-9 and TIMP-1. Thus, FVRBs may have potential therapeutic utilities for protecting against liver fibrosis. Further experimental studies to determine the effective constituents of FVRBs are necessary. 
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Figure 1 Effect of Foeniculum vulgare root barks organ index in hepatic fibrosis mice. Data is expressed as the mean ± SD (n = 20). bP < 0.01 vs the normal control group. bP < 0.05 vs the CCl4-treated group. cP < 0.01 vs the CCl4-treated group. a: Normal group; b: Solvent group + CCl4; c: CCl4-treated group; d, e, f and g: are FVRBs treatment group with 88 mg/kg, 176 mg/kg, 352 mg/kg, and 704 mg/kg, respectively; h: Yiganling pian + CCl4.
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Figure 2 Effect of Foeniculum vulgare root barks on alanine aminotransferase, aspartate aminotransferase and triglyceride activities in CCl4-treated mice. Data is expressed as the mean ± SD (n = 20). bP < 0.01 vs the normal control group. bP < 0.05 vs the CCl4-treated group. cP < 0.01 vs the CCl4-treated group. a: Normal group; b: Solvent group + CCl4; c: CCl4-treated group; d, e, f and g: are FVRBs treatment group with 88 mg/kg, 176 mg/kg, 352 mg/kg, and 704 mg/kg, respectively; h: Yiganling pian + CCl4.
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Figure 3 Effect of Foeniculum vulgare root barks on malondialdehyde, glutathione and superoxide dismutase levels in CCl4-treated mice. Data is expressed as the mean ± SD (n = 20). bP < 0.01 vs the normal control group. bP < 0.05 vs the CCl4-treated group. cP < 0.01 vs the CCl4-treated group. a: Normal group; b: Solvent group + CCl4; c: CCl4-treated group; d, e, f and g: are FVRBs treatment group with 88 mg/kg, 176 mg/kg, 352 mg/kg, and 704 mg/kg, respectively; h: Yiganling pian + CCl4.
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Figure 4 Effect of Foeniculum vulgare root barks on serum hexadecenoic acid, laminin levels in mice. Data is expressed as the mean ± SD (n = 20). bP < 0.01 vs the normal control group. bP < 0.05 vs the CCl4-treated group. cP < 0.01 vs the CCl4-treated group. a: Normal group; b: Solvent group + CCl4; c: CCl4-treated group; d, e, f and g: are Foeniculum vulgare root barks (FVRBs) treatment group with 88 mg/kg, 176 mg/kg, 352 mg/kg, and 704 mg/kg, respectively; h: Yiganling pian + CCl4.
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Figure 5 H&E (× 400) of the liver sections in mice. A: Normal group; B: Solvent group + CCl4; C: CCl4-treated group; D, E, F And G: are Foeniculum vulgare root barks (FVRBs) treatment group with 88 mg/kg, 176 mg/kg, 352 mg/kg, and 704 mg/kg, respectively; H: Yiganling pian + CCl4.
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Figure 6 Masson trichrome examinations (× 400) of the liver sections in mice. A: Normal group; B: Solvent group + CCl4; C: CCl4-treated group; D, E, F and G: are FVRBs treatment group with 88 mg/kg, 176 mg/kg, 352 mg/kg, and 704 mg/kg, respectively; H: Yiganling pian + CCl4.
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Figure 7 Immunohistochemical examination of transforming growth factor β1 positive cells (x400) of the liver sections in mice. A: Normal group; B: Solvent group + CCl4; C: CCl4-treated group; D, E, F and G: are Foeniculum vulgare root barks (FVRBs) treatment group with 88 mg/kg, 176 mg/kg, 352 mg/kg, and 704 mg/kg, respectively; H: Yiganling pian + CCl4.
 

[image: ]
Figure 8 Immunohistochemical examination of matrix metalloprotein 9 positive cells ( 400) of the liver sections in mice. A: Normal group; B: Solvent group + CCl4; C: CCl4-treated group; D, E, F And G: are Foeniculum vulgare root barks (FVRBs) treatment group with 88 mg/kg, 176 mg/kg, 352 mg/kg, and 704 mg/kg, respectively; H: Yiganling pian + CCl4.
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Figure 9 Immunohistochemical examination of metallopeptidase inhibitor 1  positive cells ( 400) of the liver sections in mice. A: Normal group; B: Solvent group + CCl4; C: CCl4-treated group; D, E, F And G: are Foeniculum vulgare root barks (FVRBs) treatment group with 88 mg/kg, 176 mg/kg, 352 mg/kg, and 704 mg/kg, respectively; H: Yiganling pian + CCl4.
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Figure 10 Effect of Foeniculum vulgare root barks on the examination of transforming growth factor β1 and α-SMA Proteins. bP < 0.01 vs the normal control group. bP < 0.05 vs the CCl4-treated group. cP < 0.01 vs the CCl4-treated group.
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