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Abstract
Like other solid tumors, colorectal cancer (CRC) is a 
genomic disorder in which various types of genomic 
alterations, such as point mutations, genomic rear-
rangements, gene fusions, or chromosomal copy 
number alterations, can contribute to the initiation 
and progression of the disease. The advent of a new 
DNA sequencing technology known as next-generation 
sequencing (NGS) has revolutionized the speed and 
throughput of cataloguing such cancer-related genomic 
alterations. Now the challenge is how to exploit this 
advanced technology to better understand the underly-
ing molecular mechanism of colorectal carcinogenesis 
and to identify clinically relevant genetic biomarkers for 
diagnosis and personalized therapeutics. In this review, 
we will introduce NGS-based cancer genomics studies 
focusing on those of CRC, including a recent large-scale 

report from the Cancer Genome Atlas. We will mainly 
discuss how NGS-based exome-, whole genome- and 
methylome-sequencing have extended our understand-
ing of colorectal carcinogenesis. We will also introduce 
the unique genomic features of CRC discovered by NGS 
technologies, such as the relationship with bacterial 
pathogens and the massive genomic rearrangements 
of chromothripsis. Finally, we will discuss the necessary 
steps prior to development of a clinical application of 
NGS-related findings for the advanced management of 
patients with CRC.
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Core tip: Next-generation sequencing (NGS)-driven ge-
nomic analyses are facilitating the genomic dissection 
of various types of human cancers, including colorectal 
cancer (CRC). This review contains an up-to-date sum-
mary of recent NGS-based CRC studies and an overview 
of how these efforts have advanced our understanding 
of colorectal carcinogenesis with novel biomarkers for 
genome-based cancer diagnosis and personalized can-
cer therapeutics.
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INTRODUCTION
Colorectal cancers (CRC) are the third most common hu-
man malignancy, and are also the leading cause of  cancer-
related deaths worldwide[1]. Early detection of  premalig-
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nant lesions such as adenomatous polyps has decreased 
the risk of  CRCs[2], however, cases which are initially 
undetected and progress to advanced CRC with distant 
metastasis are still unfortunately incurable[3]. The devel-
opment of  CRC is a complex and heterogeneous process 
arising from an interaction between multiple etiological 
factors, including genetic factors[4] and environmental 
factors such as diet and lifestyle[5]. Recently, significant 
progress has been made in the characterization of  genetic 
and epigenetic alterations in CRC genomes in support 
of  the genomic view of  colorectal carcinogenesis. Like 
other types of  human solid tumors, CRC genomes har-
bor various types of  genomic alterations ranging from 
small-scale changes (i.e., point mutations or small indels) 
to large-scale chromosomal copy number changes or re-
arrangements. Some of  these alterations may contribute 
to colorectal carcinogenesis as oncogenic drivers, but the 
full spectrum of  driver genomic alterations in CRC ge-
nomes is still incomplete. 

For decades, the genome-wide profiling of  cancer 
genomes has been mainly conducted using hybridization-
based microarray technologies (i.e., expression microar-
rays and array-based comparative genomic hybridiza-
tion)[6,7] or low-throughput Sanger sequencing[8]. Recently, 

the advancement of  DNA sequencing technologies - 
next-generation sequencing (NGS) - has revolutionized 
the speed and throughput of  DNA sequencing[9,10]. Table 
1 lists the NGS platforms widely used in the characteriza-
tion of  cancer genomes. Since the first attempt at cancer 
genome sequencing using NGS technology[11], successful 
sequencing by NGS has been accomplished in many ma-
jor human cancer types[12,13] including gastrointestinal ma-
lignancies such as esophageal[14], gastric[15], colorectal[16], 
and hepatocellular carcinomas[17,18]. The NGS-based stud-
ies of  CRC genomes are summarized in Table 2. These 
studies identified the unique mutational spectrum and 
novel targets of  genomic alterations in respective cancer 
types with biological and clinical significance.

SOMATIC MUTATIONS IN CRC 
GENOMES
Like other solid tumors, CRC is thought to initiate and 
progress through a series of  genetic and epigenetic altera-
tions. The progression model of  colorectal carcinogen-
esis (i.e., from adenomatous polyp to benign adenoma, 
eventually progressing to invasive adenocarcinoma) has 
been referred to as a classical cancer evolution model in 
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  NGS types Whole genome sequencing Exome sequencing Epigenome sequencing1 RNA-seq

  Source Genomic DNA Genomic DNA (targeted) Genomic DNA (targeted) RNA 
  Alteration 
  types 

Point mutations and indels, rearrange-
ments2, DNA copy number changes

Point mutations and indels DNA methylation and posttran-
scriptional histone modifications

Gene fusions3, alternative splicing 
events, point mutations and indels

Table 1  The next-generation sequencing platforms for cancer genome analysis

1Epigenome sequencing can be classified into chromatin immunoprecipitation (ChIP)-based methods to detect genomic domains with epigenetic 
modifications[80] and more direct DNA methylation sequencing such as bisulfite-sequencing[59,60]; 2From whole genome sequencing data, the genomic 
rearrangements and DNA copy number changes are generally detected by paired-end mapping[81] and read-depth based methods[82], respectively; 3Gene 
fusions can also be identified by paired-end, high-coverage whole genome sequencing, but the transcription-related events such as exon skipping or other 
alternative splicing events can only be identified by RNA-seq. NGS: Next-generation sequencing.

  Ref. NGS types Major findings Alteration types and software used

  Bass et al[16] WGS (9 pairs; tumor-matched normal) Oncogenic fusion (VTI1A-TCG7L2) Point mutations (MuTect[83])
Indels (Indelocator)1

Rearrangements (dRanger)1

  TCGA consortium WGS (97 pairs; low-pass) See main text Point mutations (MuTect)
RNA-seq (218 tumors) Recurrent mutations (MutSig)1

Exome-seq (254 pairs) DNA copy numbers (BIC-seq[82])
Rearrangements (BreakDancer[81]) 

  Timmermann et al[84] Exome-seq (2 pairs, one MSI-H and one 
MSS)

Comparison of mutation spectrum be-
tween MSI-H and MSS CRC genomes

Point mutation and indel (Vendor-provided 
GS reference mapper, Roche)

  Zhou et al[85] Exome-seq (1 series: normal-adenoma-
adenocarcinoma)

Comparison of benign and malignant 
CRC genomes in the same patient

Point mutation and indel (Samtools[86])

  Kloosterman et al[73] WGS (4 pairs; primary-metastasis-
matched normals)
Targeted 1300 genes (4 pairs)

Comparison of primary or metastatic 
CRC genomes

Chromothripsis and mutations (Burrow-
Wheeler aligner[87] based in-house tools)

  Brannon et al[88] 
  (Proceedings)

Targeted 230 genes (50 pairs: primary-
metastasis-matched normals)

Comparison of primary or metastatic 
CRC genomes

IMPACT (integrated mutation profiling of 
actionable cancer targets)

  Yin et al[89] RNA-seq (2 pairs) RNA-seq based mutation study Point mutations and indels (Samtools) 

Table 2  The list of next-generation sequencing-based studies of colorectal cancer genomes

1Description of the software is available at https://confluence.broadinstitute.org/display/CGATools/. NGS: Next-generation sequencing; CRC: Colorectal 
cancer; TCGA: The cancer genome atlas; MSI: Microsatellite instability.



which the CRC genome acquires somatic alterations in 
a progressive manner throughout several developmental 
stages. In this model, dysregulation of  the APC/WNT 
pathway via the inactivation of  APC occurs in the nor-
mal epithelium as an initiation process, while the loss of  
TP53 and TGF-β/SMAD4 gives rise to clonal expansion 
of  tumor cells in the invasive adenocarcinoma (Figure 
1)[4,19]. However, the genomic alterations associated with 
colorectal carcinogenesis may be more complicated than 
previously assumed. A complete and comprehensive 
catalogue of  oncogenic drivers associated with colorectal 
carcinogenesis remains to be discovered.

To extend the mutational spectrum in CRC genomes, 
the first exome-wide screening of  approximately 13000 
genes was conducted by Sanger sequencing[20]. This analy-
sis identified approximately 800 somatic non-silent muta-
tions in 11 CRC genomes. To distinguish oncogenic drivers 
from neutral passenger mutations, they identified the mu-
tations whose frequency was significantly higher than ran-
dom. The analysis revealed 69 potential oncogenic driver 
mutations in CRC genomes, including several well-known 
cancer-related genes (i.e., TP53, APC, KRAS, SMAD4, and 
FBXW7), and a large number of  previously uncharacter-
ized genes. Since they examined two distinct tumor types 
(CRC and breast cancers), they were able to identify the 
differences in the panel of  candidate driver genes as well as 

identify the differences in the mutation spectrum between 
CRC and breast cancer genomes. The difference in the 
mutation spectrum (i.e., the predominance of  C:G to T:
A transitions over C:G to G:C transversions in CRC ge-
nomes) was confirmed by a subsequent kinase sequencing 
study across various cancer types[21] and by a recent whole-
genome sequencing of  nine CRC genomes[16].

NGS-BASED CRC STUDIES - LESSONS 
FROM THE CANCER GENOME ATLAS 
CRC STUDY
The advance in sequencing technologies has facilitated 
the use of  genome sequencing for cancer genome studies, 
including CRC genomes. The largest NGS-based exome 
sequencing study of  CRC genomes to date (approximately 
200 CRC genomes) has recently been published as part 
of  the Cancer Genome Atlas (TCGA) projects[22]. The 
platforms used in the multidimensional genomic charac-
terization of  CRC genomes were compared with those 
used for glioblastoma multiforme in 2008 (Table 3)[23]. 
Two important lessons from this large-scale multidimen-
sional TCGA CRC analysis are as follows:

First, similar to previous findings[20], most of  the 
significantly recurrent mutations were observed at 
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Normal 
epithelium

Small 
adenoma

Large 
adenoma

Carcinoma

Metastasis

APC
APC/WNT pathway altered in about 90% of CRC[22]

• Two major loci are APC  and CTNNB1 (about 70%)
• Additional 16 target genes in WNT/APC pathway (about 20%)

Confirmed recurrent oncogenic mutations (coding 12, 13, 61)[22]

BRAF  mutations exclusive in hypermutated CRC[22]

Chromosomal deletions more common than mutations[22]

Mutual exclusivity with deletions and mutations of ATM [22]

Metastatic lesion-specific alterations are relatively rare[73,74], but 
enriched in cancer-relevant pathways[86]

KRAS

BRAF

SMAD4

TP53

Unknown

Figure 1  A classical progression model of 
colorectal carcinogenesis. A classical progres-
sion model of colorectal carcinogenesis is illus-
trated with genes whose alterations are respon-
sible for each of the progressive steps. The right 
panel shows recent next-generation sequencing-
based reports of the corresponding genes. CRC: 
Colorectal cancer; ATM: Ataxia telangiectasia 
mutated.

  Alteration types Glioblastoma multiforme (2008, TCGA) Colorectal cancers (2012, TCGA) 

  Point mutations, indels Sanger sequencing Illumina GA and HiSeq DNA Sequencing1

ABI SOLiD DNA Sequencing1 
  DNA copy numbers Agilent Human CGH Microarray 244 A Agilent CGH Microarray Kit 1 × 1 M and 244 A

Affymetrix Genome-Wide SNP Array 6.0 Affymetrix Genome-Wide SNP Array 6.0
Illumina Human Infinium 550 K BeadChip Illumina Infinium 550 K and 1M-Duo BeadChip 

  DNA Methylation Illumina Infinium DNA Methylation 27 Illumina Infinium DNA Methylation 27
Illumina DNA Methylation Cancer Panel Ⅰ 

  Transcriptome Affymetrix Human Genome U133 Plus 2.0 Illumina GA and HiSeq RNA sequencing1

Agilent 244 K Custom Array Agilent 244 K Custom Array
Affymetrix Human Exon 1.0 ST Array 

  MicroRNA Agilent 8 × 15 K Human miRNA Microarray Illumina GA and HiSeq miRNA sequencing1 
  Whole-genome sequencing N/A Illumina HiSeq DNA sequencing1 

Table 3  The platforms used in the Cancer Genome Atlas consortium

1Next-generation sequencing-based platforms are noted. The platforms used in the genomic characterization of glioblastoma multiforme in 2008 (left) and 
colorectal cancer genomes in 2012 (right) are shown. TCGA: The Cancer Genome Atlas. 
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hypermethylation) are mutually exclusive to each other[38]. 
The method to identify the pairs of  exclusive genomic 
alterations is formulated as a standard analysis pipeline in 
TCGA projects as Mutual Exclusivity Modules (MEMo) 
in cancer[39]. In CRC genomes, MEMo analysis revealed 
that nearly half  of  the TCGA CRC genomes showed an 
exclusive relationship between the up-regulation of  IGF2 
and IRS2, and between the mutation of  PIK3 pathway 
genes (PIK3CA and PIK3R1) and the homozygous dele-
tion of  PTEN[22]. This suggests that the IGF2-IRS2 axis 
is a major signaling pathway upstream of  the PI3K path-
way in CRC genomes[22]. The mutual exclusivity between 
the mutations of  TP53 and ATM was also identified in 
the TCGA CRC genomes[22].

GENOMIC REARRANGEMENTS AND 
GENE FUSIONS IN CRC GENOMES
Bass et al[16] reported whole-genome sequencing (se-
quencing coverage about 30-fold) of  nine CRC genomes. 
By comparing them with matched normal genomes, they 
identified approximately 140000 putative somatic muta-
tions per CRC genome, which included approximately 
700 non-silent point mutations and indels in coding 
sequences. One advantage of  whole-genome sequenc-
ing is that the genome-wide landscape of  the mutation 
spectrum in CRC genomes can be obtained, such as the 
relative paucity of  mutations in exons and higher muta-
tion frequency in intergenic regions than introns. This 
phenomenon is probably due to the selection pressure 
and transcription-coupled repair, and is consistent with 
other types of  cancer genomes such as prostate can-
cers[40] and multiple myelomas[41]. Since most of  the non-
synonymous nucleotide substitutions were observed at 
known cancer genes such as KRAS, APC, and TP53, 
they focused on novel aspects that can only be identified 
from paired-end whole-genome sequencing data such as 
chromosomal rearrangements. Among the approximately 
700 candidate rearrangements, 11 events give rise to in-
frame fusion genes. The extended screening further re-
vealed that VTI11A-TCF7L2 fusion is recurrent (3 out 
of  97 primary CRC genomes) and the siRNA-mediated 
down-regulation of  this fusion transcript reduced the 
anchorage-independent cell growth in vitro, indicative of  
their potential oncogenic activity. 

The low-pass (sequencing coverage approximately 
3-4-fold) whole-genome sequencing of  97 TCGA CRC 
genomes also identified three genomes harboring NAV2-
TCF7L1 fusion[22]. The predicted protein structures of  
fusion proteins lacked the β-catenin binding domain of  
TCF3 (encoded by TCF7L1), which is similar to the fu-
sion of  VTI11A-TCF7L2 that lacks the β-catenin bind-
ing domain of  TCF4 (encoded by TCF7L2). In addition, 
the inactivation of  TTC28 by genomic rearrangements is 
of  note since this event is recurrent (21 out of  97 cases) 
and involves multiple partners for rearrangements in 
TCGA CRC genomes[22]. Gene fusions can also be iden-
tified from transcriptome sequencing, so called RNA-

known cancer-related genes, such as APC, TP53, KRAS, 
PIK3CA, FBXW7, SMAD4, and NRAS. The study also 
revealed frequent coding microsatellite instability (MSI) 
on ACVR2A, TGFBR2, MSH3, and MSH6 by manual 
examination of  sequencing reads for 30 known MSI 
loci. Although the majority of  recurrent mutations were 
previously known, a number of  novel mutations were 
also identified, which may have functional implications 
on colorectal tumorigenesis. For example, the mutations 
in SOX9[24], FAM123B[25], and 14 other genes are known 
to be implicated in the altered WNT/APC pathway. Al-
though the biallelic inactivation of  APC and the activat-
ing mutation of  CTNNB1 encoding β-catenin are two 
major events that occurred in about 74% of  the total 
CRC genomes studied, the mutations and deletions of  an 
additional 16 (about 18%) genes in the WNT/APC path-
way were not negligible, leading to the conclusion that 
nearly all CRC genomes (about 92%) have an alteration 
in the WNT/APC pathway[22]. 

A study which assigned potential molecular functions 
to rare mutations in CRC genomes using the pathway-lev-
el convergence was previously reported[26]. Thus, pathway- 
or network-level information from available resources (i.e., 
Gene Ontology[27]) and other methodologies to predict 
the functional impacts of  non-synonymous point muta-
tions[28,29] may help determine the potential functions of  
rare mutations and distinguish oncogenic drivers in studies 
with small-sized cohorts. This issue is also related to the 
sample-size problem in study design. Due to the limits on 
sample availability and research budget, many of  the can-
cer mutation studies use a small discovery cohort for the 
generation of  candidate mutations that are subsequently 
validated in an extended set. Increasing the number of  
samples in the initial discovery set would be beneficial in 
identifying events that are not highly recurrent but are still 
clinically meaningful (i.e., gene fusions involving receptor 
tyrosine kinases with available inhibitors). For example, 
the frequency of  gene fusions such as ALK[30] and RET[31] 
in lung adenocarcinomas and FGFR[32] in glioblastoma 
multiforme are less than 5%. Although the level of  recur-
rence is still the generally accepted functional indicator of  
genomic alterations[33,34], the incorporation of  knowledge 
from other resources may facilitate the identification of  
biological or clinically relevant mutations more efficiently 
in a moderate-sized cohort. 

Second, the concordant and discordant relationships 
between alterations examined across the samples may 
reveal valuable functional insights. The concordant rela-
tionship adopts the concepts of  co-expressed networks 
in which the genes with significantly correlated expres-
sion levels (measured by Pearson’s correlation coefficients 
or mutual information) across diverse cellular conditions 
may have a functional relationship[35-37]. Importantly, TC-
GA-related studies revealed that the exclusivity between 
the potential oncogenic drivers may be common. For 
example, TCGA ovarian cancer study showed that the 
alterations of  BRCA1 and BRCA2 (including germline or 
somatic mutations and epigenetic silencing via promoter 
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seq[42,43]. A recent RNA-seq-based study revealed recur-
rent gene fusions involving R-spondin family members 
of  RSPO2 and RSPO3[44]. These fusions were exclusive 
to APC mutations in the observed CRC genomes, sug-
gesting their potential roles in activating the APC/WNT 
pathway in colorectal carcinogenesis. Cancer-related gene 
fusion events are gaining attention since there has been 
no effective gene fusion screening method other than 
NGS-based paired-end sequencing. More importantly, 
many of  the fusion candidates discovered so far repre-
sent oncogenic drivers and clinically actionable events (i.e., 
the fusion activates potential oncogenes such as tyrosine 
kinases that can be inhibited by small molecule inhibitors) 
as shown in recent studies[30-32] including the C2orf44-
ALK fusion in CRC[45]. 

In addition, it was proposed that the genomic rear-
rangements in individual cancer genomes can be used as 
personal cancer markers to trace the disease activity (i.e., 
to detect recurrences or to evaluate the tumor burden of  
residual diseases)[46]. The proposed method, personalized 
analysis of  rearranged ends, was applied to four can-
cer genomes, including two CRCs in a pilot test. It was 
demonstrated that the PCR-based quantification of  the 
rearranged DNA in the plasma correlated well with the 
treatment course of  CRC[46]. 

MICROSATELLITE INSTABILITY IN CRC 
GENOMES
Microsatellites are short tandem repeat sequences pres-
ent at millions of  sites in the human genome[47]. MSI 
defined as the length polymorphism of  microsatellite 
repeat sequences, can arise due to a defect in the DNA 
mismatch repair system[48]. MSI is common in hereditary 
nonpolyposis colon cancers, also known as Lynch syn-
drome, where germline mutations of  MLH1 and MSH2 
are commonly observed[49,50]. About 15% of  sporadic 
CRC are microsatellite-unstable, where transcriptional 
silencing of  MLH1 by promoter hypermethylation is 
common[51,52]. The microsatellite-unstable sporadic CRC 
has distinct clinical and genomic features (i.e., common 
in right-sided colons and elderly females, and nearly dip-
loid, etc.) compared to microsatellite-stable, but aneuploid 
CRC genomes. The key genes targeted by somatic point 
mutations and MSI-induced frameshifting mutations are 
different between the microsatellite-stable and -unstable 
CRC genomes, as shown in the TCGA CRC study[22]. 
Since the MSI analysis in the TCGA CRC study was lim-
ited to a manual search of  exome sequencing reads for 
about 30 known loci with frequent MSI (i.e., TGFBR2, 
ACVR2A, BAX, etc.), a question remains as to whether 
we can fully exploit the NGS technology to screen the 
locus-level MSI in an exome- or genome-wide scale. One 
interesting report by Wang et al[53] showed that pancreatic 
cell lines with a homozygous deletion of  MLH1 (which 
is a frequent target of  promoter hypermethylation in MSI 
CRC genomes) frequently harbors truncating indels in 
TP53 and TGFBR2. This suggests that whole genome- or 

exome-sequencing data may be used for large-scale MSI 
screening to identify novel MSI events targeting tumor 
suppressor genes in cancer genomes.

NGS AND CRC EPIGENETICS
For decades, DNA methylation has been studied as one 
of  the major cancer-related epigenetic modifications. 
Until recently, it was recognized that cancer genomes are 
undermethylated overall, but some genomic loci have fo-
cal DNA hypermethylation[54,55]. Transcriptional silencing 
by focal hypermethylation, especially at the CpG islands 
of  gene promoters, is among the putative inactivating 
mechanisms of  tumor suppressor genes in cancer ge-
nomes and often preferred over the inactivation by irre-
versible nucleotide substitutions[56]. Yet, the landscape of  
cancer-associated DNA methylation seems more dynamic 
than previously anticipated, as revealed by genome-wide 
CRC methylome studies[57,58]. Two recent CRC methylome 
studies used NGS-based sequencing of  bisulfite-treated 
genomic DNA for bp-resolution methylome profiling[59,60]. 
Both studies proposed the presence of  large blocks of  
DNA hypomethylation that occupied almost half  of  the 
genomes. Additionally, they reported that such findings as 
the genome-wide methylation variability of  the adenoma 
genome is an intermediate between those of  normal epi-
thelium and CRC[60] and the domains of  DNA hypometh-
ylation regionally coincided with those of  nuclear lamina 
attachment[59]. In addition, DNA methylation profiling has 
been also proposed as a means of  early CRC diagnosis us-
ing non-invasive resources (i.e., blood- or stool-based)[61,62], 
which can benefit from NGS technologies.

NOVEL ASPECTS OF CRC GENOMES BY 
NGS STUDIES
NGS-based genome analysis may facilitate the identi-
fication of  previously unrecognized, novel features of  
CRC cancer genomes. For example, owing to its high-
throughput nature, NGS analysis may be able to detect 
the presence of  foreign DNA sequences originating from 
bacterial or viral pathogens. Although the clear association 
between pathogens and certain human tumor types has 
been demonstrated in limited cases such as hepatitis B or 
C viruses with hepatocellular carcinoma, there have been 
ongoing efforts to use the sequencing data for pathogen 
discovery[63,64]. For instance, Kostic et al[65,66] analyzed nine 
CRC whole genome sequencing data sets[16] using their 
algorithm of  PathSeq to identify microbial sequences 
enriched in CRC genomes compared to those in matched 
normal genomes. They observed that the sequences of  
Fusobacterium are enriched in CRC genomes, which was 
also shown in transcriptome sequencing results by inde-
pendent researchers[67]. Although the oncogenic role of  
Fusobacterium in CRC genomes is only beginning to be 
elucidated[68], these results highlight the possibility that 
NGS-driven sequencing data will be a valuable resource to 
identify novel pathogens associated with human cancers. 
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Chromothripsis is a unique cancer genome-associated 
phenomenon in which tens to hundreds of  chromosomal 
rearrangements occur in a “one-off ” cellular event[69]. 
This phenomenon involves one or a few chromosomes 
in which massive chromosomal fragmentation is followed 
by rejoining of  the fragments[70]. This results in unique 
genomic signatures that can be identified by paired-end 
sequencing (i.e., massive intrachromosomal rearrange-
ments in the affected chromosome that can be visualized 
in a Circos diagram[71]) or from copy number profiles (i.e., 
frequent oscillations between two copy number states 
indicative of  retained and lost chromosomal fragments). 
After the first discovery of  chromothripsis in one chronic 
lymphocytic leukemia patient by paired-end sequenc-
ing[69], Stephens et al[69] also examined the copy number 
profiles of  746 cancer cell lines, observing that 2.4% of  
them (18 cell lines) showed the genomic signatures of  
chromothripsis. Recently, Kim et al[72] reported the tumor 
type-specific frequencies of  chromothripsis as measured 
from a large-scale copy number profile of  about 8000 
cancer genomes including CRCs. Six out of  366 CRC 
genomes (1.8%) in the database showed the signature of  
chromothripsis (i.e., significant frequent alternation be-
tween different copy number states[72]) and the frequency 
was not substantially different from the average across 
the database (1.5%). Of  note, Kloosterman et al[73] re-
ported the paired-end whole-genome sequencing results 
of  four CRC genomes with liver metastases, observing 
that all cases harbored evidence of  chromothripsis. In 
addition, the comparison between primary and metastatic 
CRC genomes revealed that most genomic arrangements 
are shared both by primary and metastatic genomes, 
indicating that metastasis occurs quite rapidly with few 
additional mutational events, which was also proposed in 
mutation-based CRC genome studies[74]. Along with chro-
mothripsis, several unique features of  cancer genomes 
have been reported in breast cancer genomes (kataegis; 
regional hypermutations near rearrangement break-
points)[75] and in prostate cancer genomes (chromoplexy; 
chains of  copy-neutral rearrangements across multiple 
chromosomes)[40], which may expand the mutational cat-
egories in CRC genomes.

CONCLUSION
We have discussed the recent NGS-based CRC studies in 
various genomic aspects. The progress of  CRC genomic 
analysis (but not exclusive to CRC) can be summarized 
into three issues: (1) the screening of  clinically action-
able targets for personalized targeted medicine; (2) the 
advancement of  pathway-level understanding in colorec-
tal carcinogenesis using a large-scale cohort; and (3) the 
identification of  novel features or mutation types in CRC 
genomes. In terms of  the first issue, Roychowdhury et 
al[76] reported an advanced NGS-based cancer patient 
management protocol that includes low-pass whole-
genome, exome, and transcriptome sequencing of  cancer 
genomes. The notable aspects of  the protocol are the 

timeline (< 4 wk after enrollment) and cost (approximately 
3600 USD), as well as the presence of  a multidisciplinary 
sequencing tumor board (STB) to evaluate the mutation 
profiles of  the patients and make a clinical decision. In 
their pilot study, the STB evaluated the sequencing results 
from a patient with metastatic CRC harboring NRAS 
mutation and CDK8 amplification and concluded that 
BRAF/MEK inhibitors and PI3K and/or CDK inhibi-
tors could be beneficial for the patient. Second, the more 
complete and comprehensive collection of  CRC-related 
somatic genomic alterations will advance the pathway-
level understanding of  colorectal carcinogenesis and help 
distinguish the oncogenic drivers from neutral passen-
gers, as seen in large-scale meta-analyses of  cancer ge-
nome profiles[72,77]. Finally, NGS-driven genomic studies 
are already reporting novel features of  cancer genomes 
beyond the traditional mutational categories. Besides the 
MSI and chromothripsis we discussed, some researchers 
used publicly available genome sequencing data (including 
those of  CRC genomes[16]) and reported novel mitochon-
drial mutations[78] and the activity of  human retrotrans-
positions in the cancer genomes[79]. Taken together, NGS 
technology will advance our understanding of  CRC ge-
nomes and the obtained knowledge will lead to a better 
diagnosis and personalized targeted therapeutics for CRC 
management. 
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