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Abstract
Celiac disease (CD) is a chronic immune-mediated 
disorder triggered by the ingestion of gluten in ge
netically predisposed individuals. Before activating the 
immune system, gluten peptides are transferred by 
the epithelial barrier to the mucosal lamina propria, 
where they are deamidated by intestinal tissue tran
sglutaminase 2. As a result, they strongly bind to 
human leucocyte antigens (HLAs), especially HLA-DQ2 
and HLA-DQ8, expressed on antigen-presenting cells. 
This induces an inflammatory response, which results 
in small bowel enteropathy. Although gluten is the main 
external trigger activating both innate and adaptive 
(specific) immunity, its presence in the intestinal lumen 
does not fully explain CD pathogenesis. It has been 
hypothesized that an early disruption of the gut barrier 
in genetically susceptible individuals, which would 
result in an increased intestinal permeability, could 
precede the onset of gluten-induced immune events. 
The intestinal barrier is a complex functional structure, 
whose functioning is dependent on intestinal microbiota 
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homeostasis, epithelial layer integrity, and the gut-
associated lymphoid tissue with its intraepithelial 
lymphocytes (IELs). The aim of this paper was to 
review the current literature and summarize the role of 
the gut microbiota, epithelial cells and their intercellular 
junctions, and IELs in CD development.

Key words:  Celiac disease; Intestinal microbiota; 
Epithelium; Intraepithelial lymphocytes; Intestinal 
barrier

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: There is evidence that the host-microbiota 
homeostasis is disrupted in celiac disease (CD) patients. 
Dysbiosis, meaning an imbalance in the gut microbiota 
and its metabolome, may activate innate immunity 
leading to pro-inflammatory changes, which induces 
intraepithelial lymphocyte infiltration and epithelial 
barrier damage, ultimately resulting in increased 
transfer of gluten peptides and inflammatory activation 
leading to CD development. The intestinal microbiota 
also has a direct effect on the breakdown of gluten and 
formation of immunogenic peptides. As colonization 
of the gut with microorganisms may be dependent on 
genetic factors, future prophylactic strategies may focus 
on gut microbiota modulation in genetically predisposed 
infants.

Cukrowska B, Sowińska A, Bierła JB, Czarnowska E, Rybak 
A, Grzybowska-Chlebowczyk U. Intestinal epithelium, 
intraepithelial lymphocytes and the gut microbiota - Key players 
in the pathogenesis of celiac disease. World J Gastroenterol 
2017; 23(42): 7505-7518  Available from: URL: http://www.
wjgnet.com/1007-9327/full/v23/i42/7505.htm  DOI: http://
dx.doi.org/10.3748/wjg.v23.i42.7505

INTRODUCTION
Celiac disease (CD) is a chronic immune-mediated 
disorder triggered by the ingestion of gluten in 
genetically predisposed individuals[1]. Gluten is a storage 
protein that consists of alcohol-insoluble glutenins and 
soluble prolamines, such as gliadin in wheat, secalin in 
rye, and hordein in barley. CD development requires 
the presence of gluten, the intestinal enzyme tissue 
transglutaminase 2 (TTG2), which modifies gluten 
peptides, and the genes encoding human leucocyte 
antigen (HLA)-DQ2 or HLA-DQ8[2]. Gluten from food 
products is degraded by gastrointestinal tract enzymes 
into peptides, which then are transferred through the 
epithelial barrier into the mucosal lamina propria. 

In CD individuals, some of these peptides can bind 
to HLA-DQ2 or HLA-DQ8 heterodimers expressed on the 
surface of antigen-presenting cells (e.g., macrophages, 
lymphocytes or dendritic cells) and, after triggering 

T-cell responses, lead to local tissue damage[3]. TTG2 
converts glutamine residues present in gluten peptides 
into glutamic acid, and this conversion generates 
deamidated gluten peptides (DGP), which strongly 
bind to HLA-DQ2/-DQ8 molecules. Consequently, 
increased gluten antigenicity amplifies a gluten-specific 
T-cell response. 

Gluten-activated T cells release pro-inflammatory 
cytokines [(mainly interferon-gamma (IFN-γ), in
terleukin (IL)-21 and IL-17)], which induce mucosal 
inflammation and have a direct cytotoxic effect on the 
epithelium, all of which finally leads to villous atrophy 
in the small intestine. Moreover, specific T cells induce 
B cells to produce antibodies directed against DGP and 
TTG2[4]. Thus, this adaptive (specific) T-cell response 
is a requirement for CD development. Nonetheless, 
innate immunity also plays an important role in CD 
development. The increased transfer of gluten peptides 
through the epithelial barrier could be a consequence 
of earlier activation of innate (non-specific) immunity, 
dependent on the function of both the epithelium and 
the lymphocytes located between epithelial cells, i.e. 
intraepithelial lymphocytes (IELs)[5]. 

Some of the gluten peptides can directly react 
with epithelial cells and activate production of pro-
inflammatory cytokines, especially IL-15. IL-15 plays 
a key role in enhanced cytolytic activity of IELs via 
increasing the expression of both intestinal epithelial 
cell surface ligands (such as MICA and MICB, i.e. 
major histocompatibility complex class I chain-related 
molecules), which are targeted by cytotoxic, natural 
killer (NK)-like IELs, and NK receptors, such as NKG2D 
and CD94/NKG2C, on the surface of IELs. Finally, 
IL-15 activation leads to innate cytotoxic disruption 
of epithelial cells, resulting in increased intestinal 
permeability to different luminal macromolecules, in
cluding immunogenic gluten peptides[6]. 

Although gluten is the main external trigger of CD, 
gluten ingestion does not fully explain CD pathogenesis. 
Introduction of gluten into the diet starts in early 
childhood, but CD can develop at any point during a 
person’s lifetime. The role of both breastfeeding and 
the time when gluten is first introduced into the diet 
in the risk of CD has long been debated. Retrospective 
data from Sweden indicated that introducing gluten in 
small amounts to breastfed infants at the age between 
4 mo and 6 mo reduced the risk of CD compared with 
introducing gluten in larger amounts at older ages[7,8]. 
However, a recently published systematic review with 
meta-analysis of studies that assessed the effect of 
gluten consumption on CD development showed that 
for infants at high genetic risk of CD, gluten introduction 
at the age of 4 mo, 6 mo or 12 mo, resulted in 
similar rates of CD diagnosis in childhood, and neither 
breastfeeding as such (at any time during an infant’s 
life) nor breastfeeding during gluten introduction were 
shown to reduce the risk of CD[9]. Also, the recently 
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published prospective PreventCD cohort study showed 
that neither the gluten consumption pattern nor the 
amount of gluten consumed at the age of 11 mo to 
36 mo influenced CD development in children with a 
genetic risk[10]. 

Thus, the time of gluten introduction into the diet 
seems not to play a key role in CD development. In 
addition, gluten-free diet (GFD) has been reported to 
improve mucosal lesions and decrease specific antibody 
levels, but not to correct the increased activation of 
pro-inflammatory mediators, which is characteristic 
for CD[11]. That is why it has been hypothesized that 
an early disruption of the gut barrier in genetically 
susceptible individuals, which is not associated with 
gluten peptides and results in an increased intestinal 
permeability, could precede the onset of gluten-induced 
immune events. 

The intestinal barrier is a complex structure 
that separates the internal milieu from the luminal 
environment[12]. It consists of three main functional 
components: the microbiota that colonize the intestines; 
the epithelium, with its specialized mucus-producing 
cells and cells producing antimicrobial peptides; and 
gut-associated lymphoid tissue, composed of various 
immune cells (including IELs, which come in direct 
contact with gut luminal antigens, and lamina propria 
cells, producing secretory IgA) (Figure 1).

This review summarizes the role of epithelial cells 
and their intercellular junctions as well as IELs and 
the gut microbiota in the activation of early processes 
leading to the pathomechanisms associated with CD.

EPITHELIAL JUNCTIONS - STRUCTURES 
RESPONSIBLE FOR GUT PERMEABILITY
The small intestinal epithelium is organized into a 
monolayer of specialized cells: enterocytes (constituting 
approximately 80%), goblet cells (secreting mucus), 
Paneth cells (synthesizing defensins and other 
antimicrobial agents), endocrine cells (secreting 
hormones), and intestinal stem cells (responsible for 
epithelial cell homeostasis and regeneration)[13,14]. 
Epithelial cells form a continuous layer thanks to being 
sealed together by intercellular junctions, including tight 
junctions (TJs), adherens junctions (AJs), desmosomes, 
and gap junctions[15]. 

The ultrastructure of epithelial junctions is presented 
in Figure 2. TJs and AJs are supported by a dense 
perijunctional ring of actin and myosin, and they form 
the apical junctional complex and regulate epithelial 
paracellular permeability[16,17]. TJs are located near the 
apical surface of enterocytes and they act as a gate in 
the paracellular transport of ions, solutes, water, and 
cells. TJs are highly dynamic structures, whose degree 
of sealing varies in response to external stimuli as 
well as physiological and pathological conditions. TJs 
are composed of transmembrane proteins: occludin, 
claudins, junction adhesion molecules, tricellulin, and 
scaffold proteins - zonula occludens (ZO-1, ZO-2 and 
ZO-3)[17]. 

Occludin is an integral membrane protein with two 
extracellular loops, a short cytoplasmic N-terminal 
region, and a long cytoplasmic C-terminal region, 
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Figure 1  Schematic illustration of the intestinal barrier. The three main components of the intestinal barrier: the microbiota; epithelium, with its specialized cells 
(goblet cells, Paneth cells and enterocytes), together with a layer of mucus; and gut-associated lymphoid tissue cells, including IELs and dendritic cells. AJ: Adherens 
junction; D: Desmosome; IEL: Intraepithelial lymphocyte; TJ: Tight junction.
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proteins: α-, β- and γ-catenins[33].
Despite the major progress in knowledge on TJ 

structure and function, the mechanisms regulating 
TJs are still incompletely understood. The discovery 
of the Vibrio cholerae-derived Zonula occludens toxin, 
which reversibly regulates TJ permeability, helped 
identify its intestinal mammalian analogue - a human 
protein named zonulin[34,35]. Zonulin was identified as 
pre-haptoglobin 2. Structural analysis of this protein 
revealed similarities with several growth factors, such 
as hepatocyte growth factor or epidermal growth 
factor, which affect intercellular TJ integrity[36,37]. 

Zonulin was shown to induce TJ disassembly 
and a subsequent increase in intestinal permeability. 
Zonulin transactivates the epidermal growth factor 
receptor through proteinase-activated receptor 2, 
and then activates phospholipase C, which hydrolyzes 
phosphatidylinositol to release inositol 1, 4, 5-tris 
phosphate and diacylglycerol[38, 39]. Protein kinase Cα 
is then activated, either directly (via diacylglycerol) 
or through the release of intracellular calcium ions 
(via inositol 1, 4, 5-tris phosphate). Membrane-
associated, activated protein kinase Cα catalyzes the 
phosphorylation of target proteins, including ZO-1 and 
myosin 1C, as well as polymerization of soluble G-actin 
in F-actin. This polymerization results in actin filament 
rearrangement and subsequent displacement of proteins 
(including ZO-1) from the junctional complex. As 
result, intestinal TJs become looser, which increases the 
paracellular transport of luminal molecules[35]. 

Zonulin is over-expressed in tissues and sera of 
subjects affected by autoimmune diseases, including 
CD[35]. In vitro studies showed that increased zonulin 
release in the small intestine can be triggered by 
both gluten peptides[38,39] and enteric bacteria[40]. 

which interacts with a ZO-1 protein that links occludin 
to the actin cytoskeleton[18,19]. Occludin plays a role in 
TJ maintenance and assembly, which are regulated 
by phosphorylation of serine (Ser), threonine (Thr), 
and tyrosine (Tyr) residues[20]. In an intact epithelium, 
occludin is highly phosphorylated on Ser and Thr 
residues[21,22] and poorly phosphorylated on Tyr 
residues[23]. Dephosphorylation of Ser/Thr residues 
and increased phosphorylation of Tyr residues 
reduces occludin’s interaction with ZO-1, leading to 
its separation from the junctional complex and TJ 
disruption[24,25]. 

The claudin family can be divided into sealing proteins 
(claudins 1, 3, 4, 5 and 8), which reduce permeability, 
and pore-forming proteins (claudins 2, 7, 10 and 12), 
which increase permeability[26]. Thus, claudins 1, 3, 4, 5 
and 8 strengthen the intestinal barrier, whereas claudins 
2, 7, 10 and 12 weaken it. The extracellular loops of 
claudins are involved in the formation of ion-selective 
channels[27], while the intracellular C-terminal domain is 
connected to the cytoskeleton via a domain containing 
ZO-1, ZO-2 and ZO-3[28,29]. ZO-1, ZO-2 and ZO-3 are 
multidomain bridging proteins that function as cross-
linkers, anchoring the TJ strand proteins to the actin 
cytoskeleton[30]. 

Recently, tricellulin has been identified as a co
mponent maintaining TJ structure and regulating the 
passage of macromolecules through the junctions[31]. TJ 
development may be dependent on AJ formation, since 
the ability of ZO-1 proteins to migrate apically to join 
occludin was observed only after AJ assembly[32]. The 
main component of AJ is E-cadherin, a transmembrane 
protein that forms homodimers with other cadherin 
molecules on adjacent cells. This protein is connected 
to the actin cytoskeleton by a complex of cytoplasmic 

Claudins
Occludin
JAM

E - cadherin

Tight

junction

Adherens
junction

Desmosome

ZO
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F-actin

Figure 2  Ultrastructure and corresponding schematic representation of intercellular junctions. Transmission electron microscopy (JEOL JEM-1011, Japan; 
× 60000) was used to show the ultrastructure of intercellular junctions in the human small intestine. The transmission electron micrograph comes from our own 
research. JAM: Junction adhesion molecule.
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Zonulin secretion has been demonstrated to be 
independent of either the species or the virulence of 
the microorganisms tested[40]. However, recently an 
association of low serum zonulin levels with lower 
quantities of Bacteroidaceae and Veillonellaceae and 
higher quantities of Faecalibacterium has been found 
in overweight pregnant women[41]. Thus, this in vivo 
study suggests that zonulin release could be affected 
by changes in gut microbiota composition. 

Recently, epithelial polarity regulators, especially 
the Par-3 protein, have been reported to be likely 
involved in regulating TJ permeability[42]. Par-3 and 
other proteins regulating cell polarity, such as Par-6 
and atypical protein kinase C, form the apical polarity 
complex that orchestrates the formation of apical 
junctional complex. In addition, Par-3 located in the 
junctional complex together with ZO-1 and catenins is 
able to affect TJs by rearranging the actin cytoskeleton. 
Schumann et al[43] in 2012 found a reduced level 

of Par-3 and a defect in performing lateral exclusion 
of Par-3 in the epithelial cells of CD patients. In this 
context, genetic studies on non-HLA gene candidates 
associated with CD seem to be very interesting. 
Wapenaar et al[44] in 2008 found two candidate genes: 
Par-3 and Magi2, encoding the proteins regulating 
of epithelial polarity. However, this study involved a 
homogenous Dutch population, and further genome-
wide association studies did not confirm this 
association[45].

DYSFUNCTION OF EPITHELIAL 
JUNCTIONS IN CD PATIENTS
One of the first studies on the structure of epithelial 
junctions using freeze-fracture electron micrographs 
presented severely altered TJs with strand dis
continuities and a reduced number of strands in 
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Figure 3  Schematic illustration of celiac disease pathogenesis. Microbiota dysbiosis activates innate immunity resulting in pro-inflammatory changes, which 
leads to IEL infiltration and epithelial barrier disruption. This ultimately results in an increased paracellular and transcellular transfer of immunogenic gluten peptides 
and activation of adaptive pro-inflammatory Th1/Th17 pathways, leading to villous atrophy and production of autoantibodies against intestinal TTG2. HLA: Human 
leucocyte antigen; IEL: Intraepithelial lymphocyte; IL: Interleukin; INF: Interferon; NOD: Nucleotide-binding oligomerization domain; Th: T helper; TLR: Toll-like 
receptor; TTG2: Tissue transglutaminase 2.
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children with active CD[46]. GFD improved these 
abnormalities, but only partially - strand numbers 
were restored to normal at the surface, but remained 
low in the crypts. The recent transmission electron 
microscopy analyses on duodenal biopsies of CD 
patients also showed changes in TJ ultrastructure: 
dilatation (saccular or fusiform) and destruction of 
pentalaminar structures[47]. Interestingly, ultrastructural 
abnormalities of TJs were also found in asymptomatic 
and serologically negative first-degree relatives of CD 
patients[48]. 

Furthermore, over-expression of occludin and the 
pore-forming protein claudin-2 was demonstrated in 
CD patients, as well as an under-expression of pore-
sealing proteins claudin-3 and 4, and scaffold protein 
ZO-1[47,49,50]. After introduction of a GFD, normalization 
of claudin expression was observed. No improvement 
after GFD introduction was reported in about 3% of the 
patients with refractory CD, whose mucosa undergoes 
a constant inflammatory process[51]. Other studies 
indicated a subcellular localization and downregulation 
of claudin 4 and claudin 5 in refractory CD patients[52]. 

Alterations in AJ structure were also reported. 
The expression of E-cadherin and β catenin - proteins 
required for TJ formation - was shown to be reduced 
in the duodenal epithelium of children with CD. 
Ciccocioppo et al[50] in 2006 showed that a lack of 
ZO-1 phosphorylation in active CD led to TJ disruption. 
The authors suggested that non-phosphorylated 
ZO-1 was unable to detach from β-catenin and to 
connect with occludin. It was also found that a higher 
phosphorylation of β-catenin was responsible for the 
absence of membranous E-cadherin. On the other 
hand, highly phosphorylated β-catenin was unable to 
connect with E-cadherin, which, in turn, could bind to 
the αEβ7-integrin of IELs. However, the levels of both 
E-cadherin and β-catenin returned to normal following 
GFD introduction[53,54]. Interestingly, a recent study 
by Mishra et al[48] in 2015 indicated the presence of 
altered ZO-1 and occludin expression not only in active 

CD patients but also in asymptomatic and serologically 
negative first-degree relatives of CD patients.

Fasano et al[35] in 2000 tried to explain the in
creased expression of zonulin found in CD patients. 
Some studies suggested that gliadin, by binding to the 
proinflammatory chemokine CXCR3 receptor on the 
intestinal epithelium, initiates the release of zonulin, 
which induces cytoskeleton rearrangement, ZO-1 
and occludin down-regulation, leading to disruption 
of TJ integrity and finally to an increase in epithelial 
permeability[38,55]. Thus, the receptor CXCR3 could 
be involved in early TJ dysfunction, preceding the 
immune cascade of events observed in CD patients. 
Recently, Bondar et al[55] in 2014 showed that CXCL10 
- a ligand for CXCR - is over-expressed in the small 
intestine of CD patients and strongly activated by poly 
I:C (an experimental model of viral infections) and 
IL-15 in non-CD controls. Thus, it cannot be excluded 
that the CXCR3/CXCL10 axis activated by infectious 
agents may play a role in initiating gluten-induced 
inflammatory processes in the small intestinal mucosa. 

Overall, the presented results show that epithelial 
barrier impairment occurring in CD patients can 
play an important role in CD development. Because 
epithelial function is regulated by microorganisms 
colonizing the intestines[56], there is a hypothesis that 
dysbiosis, i.e. disturbances in both the quantity and 
composition of the gut microbiota, is a critical factor for 
the activation of innate immunity, leading to epithelial 
barrier dysfunctions.

GUT MICROBIOTA: THE MAINSTAY 
OF EPITHELIAL AND IMMUNE 
HOMEOSTASIS
The microbiota colonizing the gut after birth reaches 
the pattern found in adults within 2-3 years of life. 
Eventually, the human intestine is colonized with 
more than 1000 species categorized into subgroups 

Type 0                                              Type 1                                                Type 2                                         Type 3  

Figure 4  A schematic illustration of progressive histopathological changes in the small intestine according to the modified Marsh-Oberhuber grading 
scale. Type 0: Normal mucosa with IEL count < 25 per 100 enterocytes; Type 1: Normal mucosa with an increased IEL count; Types 2 and 3 show increased IEL 
counts and lymphocytes in the lamina propria. IELs are presented as black dots. IEL: Intraepithelial lymphocyte.
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of phyla, classes, orders, families and genera, with 
Firmicutes and Bacteroidetes constituting the most 
abundant phyla[57]. The number of bacteria in the 
gut microbiota is similar to the number of cells 
making up the human body[58], and microbiota genes 
(microbiome) outnumber those in the human genome 
by approximately 100-fold. This complex microbial 
community adjusts the immune system, protects 
the body against pathogens, harvests nutrients and 
energy from the diet, and ferments non-digestible 
carbohydrates. 

Extensive studies in germ-free (GF) animals, 
i.e. animals deprived of the gut microbiota, have 
demonstrated an indispensable role of microbiota in 
shaping the local mucosal gut-associated lymphoid 
tissue as well as systemic immunity[59,60]. In contrast 
to conventionally raised (CV) mice, GF mice have 
hypoplastic Peyer’s patches and decreased number 
of both IgA-secreting plasma cells and lymphocytes 
located in the lamina propria. Colonization of GF 
animals with components of the gut microbiota 
induces production of secretory immunoglobulins A 
(sIgA). sIgAs are natural antibodies that constitute the 
first line of defense by reacting with a wide spectrum 
of microorganisms and toxic molecules, which directly 
affects the composition of the gut microbiota[61]. 
Experimental data have shown that sIgAs cooperate 
with innate defense factors to reinforce the epithelial 
barrier[62]. 

Epithelial barrier integrity also depends on ho
meostatic regulatory mechanisms, including mucosal 
induction of regulatory T (Treg) cells, and the gut 
microbiota plays a decisive role in this process[63]. 
According to some reports, gut-colonizing commensals 
are responsible for differentiation of effector T helper 
(Th) 1, Th17, and Treg cells responsible for Th1/Th2/
Th17 homeostasis[64]. Colonization of GF mice with 
components of conventional microbiota also induced 
the recruitment and activation of IELs, some of which 
(especially γδ IELs) were reported to be involved in 
epithelial cell generation and differentiation[65,66]. Thus, 
the gut microbiota seems capable of protecting the 
epithelium and strengthening its barrier function[59]. 

Recently, using transmission electron microscopy, 
we found ultrastructural differences of enterocytes and 
epithelial junctions in GF mice, CV or specific pathogen-
free (SPF) mice, and mice inoculated with a mixture 
of Lactobacillus strains obtained from stools of healthy 
children[61]. Brush borders of GF-mouse enterocytes 
were irregularly arranged and exhibited decreased 
numbers of cytoskeletal microfilaments and a lack 
of elongation into the terminal web. The AJ region 
was significantly broader and shorter in GF animals 
compared both with that in CV mice and in mice 
colonized with Lactobacillus strains. Consistent with 
other reports[67,68], we observed that the gut microbiota 

and Lactobacillus strains significantly increased the 
expression of TJ proteins: occludin and ZO-1[61]. On the 
other hand, there is experimental evidence that certain 
components of the gut microbiota, such as Escherichia 
coli, Klebsiella pneumoniae and Streptococcus viridans, 
are able to increase gut permeability[69].

The gut microbiota interacts with the host via 
pattern recognition receptors (PRRs), including Toll-
like receptors (TLRs) expressed on the surface of 
epithelial and dendritic cells. Recognition of specific 
microbial structures, called microorganism-associated 
molecular patterns, by PRRs induces signaling 
cascades that eventually result in immune response 
activation and the production of cytokines responsible 
for intestinal barrier strengthening (e.g., TGF-β and 
IL-10) or weakening (e.g., IL-15, TNF-α and IFN-γ)[70]. 
Alterations in TLR4 and TLR2 expression, as well as 
functional single-nucleotide polymorphisms in the 
genes expressed upon TLR4 activation, have also been 
associated with CD[45,71,72].

Interestingly, epithelial barrier function may be 
controlled indirectly by the intestinal metabolome, e.g., 
gut microbiota metabolites in the form of low-molecular 
weight chemical intermediates[73]. Soluble dietary 
fibers (such as fructans, pectin, inulin and xylans) 
and resistant starches can be actively fermented by 
commensal microbiota in the human colon, producing 
biologically active short-chain fatty acids (SCFAs), 
such as acetate, propionate and butyrate. These 
SCFAs are the main metabolites produced by gut-
colonizing bacteria and a major source of energy for 
intestinal epithelial cells[74]. Acetate and propionate are 
predominantly produced by bacterial species of the 
phylum Bacteroidetes, whereas butyrate is primarily 
produced by those of the phylum Firmicutes. SCFAs 
serve as specific activators of orphan G-protein-coupled 
receptors, such as GPR43 and GPR41, predominantly 
expressed in intestinal epithelial cells[75,76]. GPR43 
deficiency leads to expansion of Firmicutes in the 
gut microbiota and consequently raises fecal SCFAs 
and plasma acetate levels. Indoles, produced from 
tryptophan by various Gram-positive and Gram-
negative intestinal bacteria, and acetate, produced by 
Bifidobacterium strains, enhance epithelial defense 
functions and suppress intestinal inflammation[77-79]. 
Microbe-derived SCFAs also have an impact on 
terminal differentiation of CD4+ Th cells[80].

The gut microbiota is responsible not only for im
mune homeostasis and epithelial barrier function, but 
also can have direct impact on gluten digestion in the 
intestinal tract. There is evidence that certain bacterial 
strains isolated from feces, e.g., Bifidobacterium 
and Bacteroides fragilis, are capable of digesting 
immunogenic gliadin peptides, which are rich in proline 
residues but resistant to human enzymes[81,82].
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GUT MICROBIOTA AND METABOLOME 
IN CD 
Several studies addressed the phenomenon of gut 
dysbiosis in CD patients with active untreated disease 
and those on a GFD. Fecal analyses in untreated CD 
patients showed an imbalance in the composition of 
intestinal microbiota characterized by an increase 
in the number of Bacteroides species and reduced 
numbers of Bifidobacterium species[83-86]. In addition, 
CD patients, both untreated and treated with a 
GFD, demonstrated a lesser diversity of Bacteroides 
species in biopsy samples of the duodenal microbiota 
in comparison with controls[87]. The numbers of 
Escherichia coli and Staphylococcus bacteria were also 
higher in fecal and biopsy specimens of untreated CD 
children than in controls[88]. Escherichia coli strains from 
CD children carried a higher number of virulence genes 
than those from healthy children. Nadal et al[89] in 2007 
reported a significantly lower ratio of harmless Gram-
positive bacteria (Lactobacillus and Bifidobacterium) 
to potentially harmful Gram-negative bacteria 
(Bacteroides/Prevotella and Escherichia coli) in CD 
patients compared to controls, with no distinction 
between active and inactive CD. The numbers of 
bacteria of Streptococcus and Prevotella genera were 
found to be lower both in adults and children with 
untreated CD in comparison with healthy controls. 

The disturbances in intestinal microbiota com
position found in CD patients have been associated 
with changes in the metabolome[90]. Metabolic 
profiles of serum, urine and feces in celiac patients 
revealed a significantly altered profile of volatile 
organic compounds (e.g., phenols and ketones), 
SCFAs and amino acids (e.g., proline, methionine, 
histidine and tryptophan)[91,92]. CD patients were 
also characterized by higher urine levels of certain 
gut microbiota-derived metabolites, such as indoxyl 
sulfate, meta-[hydroxyphenyl] propionic acid and 
phenylacetylglycine, which were associated with 
untreated CD[92]. Interestingly, metabolic abnormalities 
found in celiac patients and “potential” celiac patients 
(i.e. individuals with a positive antibody test but no 
evidence of intestinal damage) were similar, indicating 
that CD-related dysmetabolism/dysbiosis precedes the 
intestinal damage[93]. 

Only a few serum metabolites can help differentiate 
between potential and overt CD; none of these 
metabolites are related to energy metabolism. 
Glycolysis appears to be somehow impaired in potential 
CD patients, just as is the case in overt CD patients. 
This is consistent with the hypothesis that the gut 
microbiota of CD patients is altered or contains specific 
species with their distinctive microbial metabolome. 
Schirmer et al[94] in 2016 reported that TNF-α and 
IFN-γ production was associated with specific microbial 
metabolic pathways: palmitoleic acid metabolism and 
tryptophan degradation to tryptophol. 

Low doses of pro-inflammatory cytokines, such as 
IFN-γ, were shown not to affect TJ protein expression 
but to activate bacterial endocytosis by epithelial 
cells[95]. This process is dependent on extracellular 
signal-regulated kinase Cζ and ADP-ribosylation 
factor-6 signaling[96]. Thus, some commensal bacteria 
might interact with certain intracellular PRRs, namely, 
nucleotide-binding oligomerization domain (NOD)-
like receptors, and activate epithelium-derived pro-
inflammatory cytokines and free radicals that may 
cause secondary TJ damage[96,97]. An increased activity 
and expression of inducible nitric oxide synthase in 
human duodenal enterocytes has been reported in CD 
patients[97].

Thus, dysbiosis, which can follow viral or bacterial 
infections or antibiotic therapy, may activate innate 
immunity leading to pro-inflammatory changes, 
with the resulting IEL infiltration, epithelial barrier 
disruption, and increased transfer of immunogenic 
gluten peptides, which in turn activate inflammation 
leading to CD development (Figure 3).

ROLE OF IELs IN EPITHELIAL BARRIER 
HOMEOSTASIS 
The typical histopathological presentation of CD 
is small intestinal enteropathy characterized by 
an increase in IELs, crypt hyperplasia, and villous 
atrophy. The changes develop gradually over time. The 
increased number of IELs is one of the earliest signs 
of CD[98] and may herald the impending disease[99]. 
Histological changes in the small intestine can be 
graded using the Marsh classification[100] modified 
by Oberhuber[101] (Figure 4). The Marsh-Oberhuber 
classification includes four categories of CD-associated 
lesions: infiltrative (type 1), infiltrative-hyperplastic 
(type 2), flat-destructive (type 3) and atrophic-
hypoplastic (type 4)[101]. 

Irrespective of the type of changes found in CD 
patients, an increase in the number of IELs is considered 
to be the most sensitive histopathological marker of 
CD. The upper limit of normal for IELs in duodenal or 
jejunal mucosa is 25 IELs per 100 enterocytes. An IEL 
count between 25 and 29 is considered to be “borderline 
intraepithelial lymphocytosis”, and 30 or more means 
“pathological lymphocytosis” in the duodenum[103,104]. 
IELs are classified into two major subgroups based on 
their phenotypical and functional characteristics: one 
bears the αβ T-cell receptor (αβ-IEL), while the other 
bears the γδ T-cell receptor (γδ-IEL). When it comes 
to the typical composition of the small-intestinal IEL 
population, approximately 75% of it consists of CD8-
positive αβ T cells, 10% constitute CD4-positive αβ T 
cells, and 15% constitute γδ T cells which are CD4- 
and either CD8- or CD8+[5]. 

In CD sensitive patients, gluten exposure causes 
rapid activation of both αβ-IELs and γδ-IELs[105], 
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while a GFD lowers both αβ-IEL and γδ-IEL counts; 
however, lowering of the latter IEL subtype takes 
months or even years[106]. It is believed that CD8+ αβ-
IELs represent the effector T cell subset that mediates 
epithelial cell destruction (after IL-15 up-regulation) 
and, ultimately, induces villous atrophy in CD. The role 
of γδ-IELs in CD pathogenesis remains unclear.

A recent study showed that IEL expansion can be 
modulated by the host microbiota. Mice deficient in 
NOD2 (receptors recognizing bacterial molecules)[107] 
exhibited a significant reduction in IEL counts and 
IL-15 expression in the epithelium, with the residual 
IELs displaying reduced proliferation and increased 
apoptosis. Moreover, Lactobacillus strains were able 
to decrease the number of IELs activated by TLR3 
after an experimentally induced viral infection (poly I:
C). They also significantly reduced the levels of pro-
inflammatory cytokines, such as TNF-α and IL-15, 
and increased serum and intestinal regulatory IL-10 
levels[108]. Finally, the immunomodulatory capacity of 
Lactobacilli helped significantly reduce intestinal tissue 
damage.

The data above indicate that IEL homeostasis is 
controlled by commensal microbiota, which affects 
cytokine production by epithelial cells via PRR 
activation. Moreover, increased IEL counts in CD 
patients, which lead to epithelial barrier disturbances, 
may be primarily induced by microbiota dysbiosis.

ROLE OF THE GUT MICROBIOTA 
PROGRAMMING IN CD DEVELOPMENT
Recent research has shown that early bacterial 
colonization may affect the risk of developing CD 
later in life. This phenomenon is called microbial 
programming[109]. There is evidence indicating that 
the pioneer microbiota of the neonatal gut is essential 
for gut maturation as well as for metabolic and 
immunologic programming[109,110]. Establishment of the 
human gut microbiota is a complex, stepwise process. 
The composition of microbiota within the 1st year of life 
is characterized by low diversity, high instability, and 
high inter-individual variation[111]. By the age of 2-3 
years, the microbiota becomes stable, more diverse, 
and resembles that found in adults, with Firmicutes 
and Bacteroidetes as the predominant phyla. Gut 
microbiota formation after the birth is dependent on 
different environmental factors, such as the mode 
of delivery, breast or formula feeding, or antibiotic 
therapy[111]. 

Although the evidence that the perinatal en
vironment influences CD development is still only 
circumstantial[112], there have been studies showing 
that cesarean sections and antibiotic treatment 
in infancy increased the risk of CD[113-115]. There 
is also evidence that colonization of the gut with 
microorganisms may be dependent on genetic 

factors[116,117]. The hypothesis that gut microbiota 
composition is affected by host genes has been 
confirmed by studies in twins, showing that fecal 
microbiota of monozygotic twins was much more similar 
than that of dizygotic twins[118]. Recent microbiome 
analyses performed on 22 infants demonstrated that 
certain HLA genes predisposing to CD could affect 
microbiota composition[119]. The infants at high genetic 
risk of CD, i.e. those with an HLA-DQ2 genotype, 
showed a higher proportion of Firmicutes and 
Proteobacteria and lower proportion of Actinobacteria 
than those at low genetic risk. At the genus level, the 
gut microbiota of high-risk infants had a significantly 
lower proportion of Bifidobacterium and unclassified 
Bifidobacteriaceae and a higher proportion of 
Corynebacterium, Gemella, Clostridium, unclassified 
Clostridiaceae, unclassified Enterobacteriaceae and 
Raoultella. Sellitto et al[120] in 2012 reported an overall 
lack of bacteria of the phylum Bacteriodetes, with a 
high abundance of Firmicutes, in infants genetically 
predisposed to CD compared with microbiota 
composition of low-risk infants. Those differences were 
stable until 2 years of age. 

As CD is strongly associated with HLA genes - 
almost 100% individuals with CD are carriers of alleles 
encoding HLA-DQ2/DQ8 molecules - these findings 
suggest that children with the CD risk genotype have a 
different microbiota profile than those without genetic 
predisposition. However, it must be emphasized that 
about 25%-30% of the general population exhibits the 
same HLA genotypes as CD patients[121]. In addition, 
there are also non-HLA genes associated with CD. 

CONCLUDING REMARKS AND FUTURE 
STRATEGIES
Although gluten is necessary in order to activate 
the processes leading to CD, there is evidence that 
an imbalance in the gut microbiota and intestinal 
epithelium can precede the specific gluten-dependent 
immune response. Under certain conditions affecting 
the intestinal microbiota, e.g., after infections or 
antibiotic therapy, an increased translocation of dietary 
macromolecules (including gluten peptides) via the 
opening of epithelial junctions triggers a cascade of 
events in genetically susceptible individuals, leading 
to overt CD. Microbiota disturbances are observed not 
only in untreated CD patients, but also in potential CD 
patients and those following a GFD as well as in infants 
at high genetic risk of CD. The microbial fingerprint 
associated with CD is likely dependent on specific 
genetic factors, including (but not exclusively) the 
HLA-DQ2/-DQ8 genotype. Future strategies should 
include prospective, birth cohort studies involving 
comprehensive genome, microbiome and metabolome 
analyses. Such an approach could help identify a “CD-
specific“ microbial/metabolic fingerprint, which would 
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become the target for both primary prevention and 
management of CD.
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