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Abstract
As the incidence of hepatocellular carcinoma (HCC) 
caused by infection with the hepatotropic viruses 
hepatitis B and hepatitis C decreases, greater 
attention has become focused on HCC caused by 
nonalcoholic steatohepatitis (NASH), an advanced 
form of nonalcoholic fatty liver disease which has 
shown increasing prevalence in correspondence with 
the overall increase in metabolic syndrome over the 
recent decades. Several clinical population studies have 
shown a positive relationship between NASH and HCC, 
while also providing initial insights into the underlying 
mechanisms of HCC development from NASH. Research 
into the pathological progression of NASH to HCC has 
advanced by use of several beneficial rodent models. 
In this review, we summarize the established mouse 
models for preclinical research of NASH-associated 
HCC and discuss the underlying hepatic mechanisms 
of NASH-related tumorigenesis identified to date that 
could lead to new targets for treatment and prevention. 

Key words: Hepatocellular carcinoma; Nonalcoholic 
steatohepatitis; Nonalcoholic fatty liver disease
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Core tip: This review provides a brief overview of 
the molecular mechanisms underlying progression 
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to hepatocellular carcinoma from nonalcoholic steato
hepatitis that have been identified to date using the 
array of mouse models currently available and popular 
in the experimental field.
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the underlying mechanisms of nonalcoholic steatohepatitis-
derived hepatocellular carcinoma. World J Gastroenterol 2018; 
24(18): 1989-1994  Available from: URL: http://www.wjgnet.
com/1007-9327/full/v24/i18/1989.htm  DOI: http://dx.doi.
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INTRODUCTION
As Western diet and problems with food satiation have 
spread across the globe in recent years, there has been 
a concomitant increase in patients with nonalcoholic 
fatty liver disease (NAFLD) and its progressive form of 
nonalcoholic steatohepatitis (NASH). This increase is 
the result of prevailing metabolic syndrome, including 
obesity, diabetes and hyperlipidemia[1-4]. The distinctive 
characteristic of NAFLD is its diversity of conditions, 
from simple fatty accumulation in the liver to hepatic 
injury and inflammation with or without fibrosis[2,5-7]. 
The sequential progression to NASH puts the sufferer 
at risk for irreversible liver cirrhosis and hepatocellular 
carcinoma (HCC)[4,7], causing the patient to require more 
medical attention due to the increased morbidity and 
mortality[8]. Indeed, HCC is a leading indication for liver 
transplantation, especially in developed countries[9,10]. 

Compared with the long history of both clinical and 
laboratory investigations to elucidate the molecular 
pathogenesis of HCC derived from chronic hepatotropic 
virus infections, particularly with hepatitis B virus and 
hepatitis C virus, and from alcoholic liver disease, the 
pathologic mechanisms of NASH-associated HCC (NASH-
HCC) remain largely uninvestigated and unknown. 
The public health threat associated with the increasing 
incidence of NASH-HCC[11], however, highlights the 
urgent need to gain a more comprehensive and detailed 
understanding of the mechanisms which mediate NASH-
HCC progression. Several experimental mouse models 
exist for such studies[12-15] and should be continuously 
applied to preclinical investigations into the pathogenic 
pathways of NASH-HCC to advance the subsequent 
development of methods to manage the modern 
increasing clinical trend. 

Here, we summarize the established mouse models 
for preclinical research of NASH-HCC progression 
(Table 1) and discuss the revealed mechanisms and 
the future prospective of NASH-related tumorigenesis 
in liver which could lead to new targets for treatment 
or prevention (Figure 1). Of note, we recognize the 
existence of other available rodent models which can 
also be used for assessing the mechanisms of NASH-

HCC; however, we focused this review on the ones 
which are most representative of metabolic syndrome-
associated steatohepatitis and which generate HCC 
unfailingly from NASH status within a certain period of 
time.

CONFIRMED TUMORIGENIC MECHANISMS 
OF CURRENT NASH-HCC MOUSE MODELS 
The established mouse models for preclinical research 
of NASH-HCC progression are listed below (Table 1). 

PTEN null mice
PTEN, a tumor suppressor gene which antagonizes 
the PI3K/Akt pathway, is mutated in many human 
cancers, including HCC, and is essential for maintaining 
homeostasis and preventing oncogenesis in the liver. 
Decreased Pten expression leads to increased tumor 
grade, advanced stage and poor prognosis. Hepatocyte-
specific Pten null mice were generated by Horie et al[12], 
wherein steatohepatitis emerges at 10 wk old and 
hepatic tumors at 40-44 wk old. The liver tumors 
become adenomas in 100% of these mice or HCC 
in 66% at 74-78 wk old, due to the Pten deficiency 
(Pten knock-out, KO) causing lipid accumulation in 
hepatocytes. In general, these mice have revealed that 
Pten function is crucial for preventing tumorigenesis in 
liver.

Several other research groups have uncovered 
different mechanisms of NASH-HCC by using the Pten 
null mouse model. For example, a study of eicosapen
taenoic acid (EPA; a typical dietary n-3 polyunsatu
rated fatty acid contained in fish oil and a reagent for 
upgrading lipid metabolism[16]) performed by Ishii et al[17] 
showed the effect of EPA on steatohepatitis and tumor 
formation in Pten null mice. The data confirmed that 
the steatotic change, accumulation of inflammatory 
cells and presence of ballooning hepatocytes were 
significantly decreased in the EPA group compared 
with the control group. In addition, liver adenomas 
developed in 63% of the control group mice, as 
compared with 0% of the EPA group mice, by 40 wk of 
age. HCC developed in 75% of the control group and 
13% of the EPA group of the Pten KO mice at 76 wk old. 
In addition, MAPK and Akt, which are both downstream 
signaling molecules of Ras, were found to be activated 
in hepatocytes of the Pten KO mice, thereby promoting 
tumorigenesis[18]. Collectively, these data suggested that 
EPA alters fatty acid composition in liver and suppresses 
the development of HCC by inactivating these signaling 
pathways in Pten null mice. 

In another study of the Pten null mice, reduction 
of glucose-regulated protein 78 (GRP78; a molecular 
chaperone elevated in several human cancers, 
including HCC[19,20], and which is critical for endoplasmic 
reticulum folding, stress signaling and PI3K/Akt 
activation) promoted liver steatosis and liver injury at 
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3 mo of age and liver tumors at 6 mo of age[21]. These 
effects proceeded HCC or cholangiocarcinoma, which 
developed at 8-9 mo of age and was accompanied 
by elevation of p-JNK; in contrast, the GRP78 normal 
Pten null mice never generated tumor lesions in liver, 
as assessed out to 14 mo of age[21]. Collectively, 
these data suggested that JNK might contribute to 
acceleration of tumorigenesis in liver. Accordingly, these 
data demonstrated GPR78 as a regulator for Pten loss-
mediated liver steatosis and tumor progression on the 
basis of p-JNK elevation. 

In a third study of the Pten null nice, Miura et al[22] 
showed that liver tumors emerged after 36 wk of age, 
although no liver tumors were found in Pten normal mice 
until 72 wk of age. Toll-like receptor (TLR) 4 expressed 
on macrophages was found to contribute to the 
development of steatohepatitis and HCC in Pten KO mice. 
In general, gut-derived materials stimulate the immune 
system, including the TLRs which recognize bacterial 
components. TLR4, in particular, senses components of 
Gram-negative bacteria, including the lipopolysaccharide 
(LPS)[23]. In this way, TLRs affect the development of 
liver diseases. Moreover, macrophages are known to 
be a major source of proinflammatory cytokines which 

facilitate the progression of steatohepatitis[24,25] and Ly6C 
is a marker for inflammatory macrophages[26]. Hepatic 
macrophages isolated from the Pten null mice showed an 
increased expression of Ly6C. In addition, TLR4 signaling 
was shown to promote hepatic inflammation as well as 
subsequent liver tumor growth in the Pten null mice. 
Antibiotic treatment suppressed the tumor growth, in 
concert with a decreasing LPS level in the portal vein, 
suggesting that the gut microbiota serves as a source of 
TLR4 ligand(s) and that the Ly6C-positive macrophages 
play a role in tumor development in Pten null mice. 
Collectively, these data indicate that gut-derived LPS-
induced inflammation via TLR4 on macrophages and 
TLR4-mediated inflammation result in HCC.

Melanocortin 4 receptor KO mice
Melanocortin 4 receptor (MC4R), a seven-transmembrane 
G protein-coupled receptor, is involved in regulation of 
body weight; hence, MC4R gene mutation is the major 
monogenic origin of obesity in human[27,28]. Feeding 
of a high-fat diet to MC4R-deficient (MC4R-KO) mice 
for 20 wk and 1 year leads to NASH and multiple well-
differentiated HCC formations in the liver, respectively[13]. 
Similar to the findings in Pten null mice, Konuma et al[29] 
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Table 1  Mouse models of nonalcoholic steatohepatitis-associated hepatocellular carcinoma

List Backgrounds Inducer of NASH/HCC Carcinogenic duration HCC occurrence (%) Ref.

PTEN null mice Genetic Spontaneous 40 wk 66 (74-78 wk) [12,17,18,21,22]
MC4R KO mice Genetic HFC diet 1 yr 100 [13,29,31]
STAM mice DM/HL Streptozotocin, HFC diet 20 wk 100 [14,32-36]
ALR KO mice Genetic Spontaneous 1 yr 60 [15]

HFC: High fat/calorie; DM: Diabetes; HL: Hyperlipidemia; HCC: Hepatocellular carcinoma; NASH: Nonalcoholic steatohepatitis.

Inflammatory cytokines, 
lipopolysaccharide, macrophage, 

mitochondrial dysfunction, 
oxidative, ER stress signaling, 

TLR4, fibrosis, etc . HCC

NASH

NAFLD

Metabolic syndrome
   Obesity
   Diabetes
   Hyperlipidemia
   Hypertension

MAPK, Akt/PI3K, JNK, etc . 
proliferating pathway

Lipids 
accumulation

Figure 1  Developmental process of hepatocellular carcinoma via nonalcoholic steatohepatitis. Based on excessive lipids accumulation, several factors 
such as inflammatory cytokines, oxidative stress or proliferating pathways are involved in the whole process of hepatocellular carcinoma development from 
nonalcoholic steatohepatitis status via nonalcoholic fatty liver disease. NAFLD: Nonalcoholic fatty liver disease; HCC: Hepatocellular carcinoma; NASH: Nonalcoholic 
steatohepatitis.
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factor of novel treatment of NASH-HCC.
Third, Conti et al[35] revealed that aberrant expression 

of hepatic micro (mi)RNAs, such as miR-34a-5p, miR-
93-5p, miR-221-3p and miR-222-3p, indicates their 
mechanistic significance in NASH-HCC tumorigenesis; 
specifically, 10 over-expressed miRNAs were identified. 
It is well known that human HCC tumorigenesis is 
associated with extensive genomic alterations. Therefore, 
the authors concluded that the altered expression profile 
of these miRNAs could be a surrogate marker for the 
initiation and progression of NASH-HCC. 

Finally, based on the confirmed finding that NASH-
HCC is associated with metabolic alterations in hepatic 
lipid homeostasis, Pogribny et al[36] indicated that one 
of the specific features of NASH-HCC is a significant 
dysregulation of 1-carbon homeostasis, with decreased 
expression of key 1-carbon metabolism genes, especially 
of the S-adenosylhomocysteine hydrolase (Ahcy) 
gene, and increased expression of the S-adenosyl-L-
homocysteine (SAH) gene. Their results suggest that the 
inhibition of Ahcy expression may be a trigger of SAH 
elevation and subsequent progression of NASH-HCC. 

Augmenter of liver regeneration-KO mice
Augmenter of liver regeneration (ALR), a hepatic growth 
factor, is widely known as a pleiotropic protein. ALR is 
critical for mitochondrial function, lipid homeostasis and 
cell survival. Gandhi et al[15] generated a liver-specific 
ALR-L-KO mouse and reported that depletion of hepatic 
ALR caused steatosis, mitochondrial degeneration and 
apoptosis of hepatocytes at 2 wk of age. These effects 
were followed by consecutive cell death, sustained 
inflammation at 4 wk, fibrosis/cirrhosis at 8 wk and 
eventually HCC formation (in 60%) at 1 year. Thus, 
it was theorized that inhibition of ALR synthesis in 
hepatocytes could lead to mitochondrial dysfunction 
and cell death, resulting in consecutive NASH and HCC 
occurrence.

FUTURE PERSPECTIVES FOR THE STUDY 
OF NASH-HCC BY ANIMAL MODELS 
The “two-hit” hypothesis of the underlying mechanism 
of NASH-HCC involves the excessive accumulation 
of lipids in liver as the first step, thereby promoting 
sensitization to LPS, oxidative stress and inflammatory 
cytokines, representing the second hit[37-39] (Figure 1). 
Recently, Tilg and Moschen[40] proposed a “multiple-
hit” hypothesis, in which various factors derived from 
gut and adipose tissue might take place in parallel 
during the progression from NAFLD to NASH. However, 
the definitive mechanisms in the progression from 
simple fatty liver to NASH and HCC are still under 
investigation, due to the inherent complexity of the 
functional combination of several factors. For some 
time, it was believed that the lack of appropriate animal 
models which were able to sufficiently reflect the actual 

found that highly-purified EPA treatment of MC4R-KO 
mice effectively inhibited the development of liver fibrosis 
without affecting body weight.

According to their previous study, hepatic crown-
like structures (hCLSs), a unique histological feature, 
were found to play a pivotal role in the progression 
from simple steatosis to NASH[30], with EPA markedly 
suppressing hCLS formation and fibrosis via prevention 
of hepatocyte injury. Thus, it was concluded that the 
beneficial effect of EPA involved the hCLSs. In addition, 
canagliflozin (CANA, a sodium glucose cotransporter 
2 inhibitor and antidiabetic drug) was shown to 
attenuate NASH-HCC in another study[31]. Based on the 
evidence that CANA induces adipose expansion without 
promoting macrophage augmentation, inflammation or 
fibrosis and altered glutathione metabolism to reduce 
oxidative stress in adipose tissue, the authors concluded 
that the decreased hepatic fat accumulation upon CANA 
treatment suppresses hepatic inflammation, fibrosis at 
20 wk and subsequent NASH-HCC at 52 wk in Western 
diet-fed MC4R-KO mice.     
 
STAM mice
The STAM mouse model was generated by neonatal 
male C57BL/6J mice exposure to low-dose streptozotocin 
at 2 d after birth followed by feeding with a high-fat diet 
after 4 wk of age[14]. As a result, NASH developed at 8 
wk and HCC at 16-20 wk. This mouse model has specific 
positive features, such as the average duration of HCC 
occurrence being within 16-20 wk of age, the number of 
HCC nodules being over 4 in any single mouse, the basal 
liver function being relatively preserved and there being 
no visible metastasis in the entire body[32]. Moreover, this 
model has the substantial benefit of its HCC development 
from NASH being identical to the known progression 
in human patients, but with the whole process being 
completed within a relatively short period of time.

By using the STAM model, four studies have 
uncovered several of the mechanisms underlying NASH-
HCC. First, Lau et al[33] demonstrated that cancer-
associated fibroblasts, which regulate liver tumor-
initiating cells, are augmented in parallel with increasing 
human growth factor (HGF) level during fibrosis and 
that HGF-induced FRA1 activation is related to fibrosis-
dependent HCC development. These data suggest that 
cancer-associated fibroblast-derived, HGF-mediated 
FRA1 can be a new therapeutic target for NASH-HCC. 
Second, Fernandes et al[34] showed that solithromycin, 
a novel macrolide antibiotic, suppressed NASH, fibrosis 
and NASH-HCC by modulating the gluconeogenesis 
pathway, in particular the components of fructose 1, 
6-biphosphatase and glucose-6-phosphatase which are 
regulated by protein kinase C epsilon. Solithromycin 
improved the hepatic morphological features, such as the 
hepatocyte ballooning degeneration, and functions, as 
evidenced by reduction in NAFLD activity score along with 
decreased inflammation, fibrosis and HCC progression. 
This mechanism was ultimately suggested as a candidate 
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process of human NASH-HCC progression was the main 
obstacle to such research[41]. In recent years, however, 
the situation has changed according to the development 
and availability of several rodent models. Each model 
harbors different specific characteristics, including 
genetic background, obesity status, diet induction, etc. 
Thus, researchers can now evaluate the mechanisms 
of NASH-HCC related to a specific factor/parameter by 
using these animal models.

According to the overall analyses of hepato
carcinogenesis in each of the mouse models discussed 
above, it is the STAM mice that generate HCC 
unfailingly and most rapidly. The considerable demerit 
of this mouse model, however, is the obscurity of the 
original gene of tumorigenesis for HCC due to lack of 
genetic manipulation and the inclusion of diabetes and 
hyperlipidemia in the background. Genetic manipulation 
in mouse models, such as of the PTEN-KO or ALR-
KO, is a useful means by which to clarify the role of a 
specific gene in the molecular foundation of NASH-HCC 
progression; although, the sequential progression to HCC 
in these models has a relatively long duration and HCC 
occurrence is uncertain.

It is still questionable whether or not these available 
mouse models represent the initiating and/or progression 
processes of bona fide human NASH-HCC. Furthermore, 
it is noteworthy that among actual NASH patients there 
are individual differences in degree of fibrosis and timing 
of tumorigenesis in liver. At the present time, however, 
it is undoubted that these mouse models are essential 
for investigating the underlying mechanisms of NASH-
HCC. Therefore, the future research targets may move 
forward towards gaining a more comprehensive NASH-
HCC evaluation by using these mouse models. 

CONCLUSION
Several mouse models have become available in recent 
years that support investigation into the underlying 
mechanisms of NASH-HCC. In response to the growing 
demand for better management of NASH-HCC, further 
inquiries are expected by researchers upon selecting 
an appropriate NASH mouse model according to the 
specific mechanisms and/or therapeutic targets of 
interest. After that, we hope to get some breakthrough 
for new treatment or prevention of NASH-HCC in the 
near future.
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