
World Journal of 
Gastroenterology
World J Gastroenterol  2018 May 28; 24(20): 2137-2210

ISSN 1007-9327 (print)
ISSN 2219-2840 (online)

Published by Baishideng Publishing Group Inc



S

REVIEW
2137	 Immune therapies in pancreatic ductal adenocarcinoma: Where are we now? 

Hilmi M, Bartholin L, Neuzillet C

MINIREVIEWS
2152	 Liver transplantation and multivisceral transplantation in the management of patients with advanced 

neuroendocrine tumours

Clift AK, Frilling A

2163	 Characteristics and predictors of gastric cancer after Helicobacter pylori  eradication

Shichijo S, Hirata Y

ORIGINAL ARTICLE
Basic Study

2173	 Effects of hepatitis E virus infection on interferon production via  ISG15

Wang M, Huang Y, He M, Peng WJ, Tian DY

Retrospective Study

2181	 Indoleamine-2,3-dioxygenase 1/cyclooxygenase 2 expression prediction for adverse prognosis in colorectal 

cancer

Ma WJ, Wang X, Yan WT, Zhou ZG, Pan ZZ, Chen G, Zhang RX

Clinical Trials Study

2191	 Regulatory polymorphism of CXCL10 rs1439490 in seronegative occult hepatitis C virus infection

Wang X, Wang S, Liu ZH, Qi WQ, Zhang Q, Zhang YG, Sun DR, Xu Y, Wang HG, Li ZX, Cong XL, Zhao P, Zhou CY, 

Wang JB

META-ANALYSIS
2203	 Donor-to-recipient gender match in liver transplantation: A systematic review and meta-analysis

Lai Q, Giovanardi F, Melandro F, Larghi Laureiro Z, Merli M, Lattanzi B, Hassan R, Rossi M, Mennini G

Contents Weekly  Volume 24  Number 20  May 28, 2018

� May 28, 2018|Volume 24|Issue 20|WJG|www.wjgnet.com



NAME OF JOURNAL 
World Journal of  Gastroenterology

ISSN
ISSN 1007-9327 (print)
ISSN 2219-2840 (online)

LAUNCH DATE
October 1, 1995

FREQUENCY
Weekly

EDITORS-IN-CHIEF
Damian Garcia-Olmo, MD, PhD, Doctor, Profes-
sor, Surgeon, Department of  Surgery, Universidad 
Autonoma de Madrid; Department of  General Sur-
gery, Fundacion Jimenez Diaz University Hospital, 
Madrid 28040, Spain

Stephen C Strom, PhD, Professor, Department of  
Laboratory Medicine, Division of  Pathology, Karo-
linska Institutet, Stockholm 141-86, Sweden

Andrzej S Tarnawski, MD, PhD, DSc (Med), 
Professor of  Medicine, Chief Gastroenterology, VA 
Long Beach Health Care System, University of  Cali-
fornia, Irvine, CA, 5901 E. Seventh Str., Long Beach, 

CA 90822, United States

EDITORIAL BOARD MEMBERS
All editorial board members resources online at http://
www.wjgnet.com/1007-9327/editorialboard.htm

EDITORIAL OFFICE
Ze-Mao Gong, Director
World Journal of  Gastroenterology
Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501, 
Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: editorialoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

PUBLISHER
Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501, 
Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: bpgoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

Contents

EDITORS FOR 
THIS ISSUE

Responsible Assistant Editor: Xiang Li                      Responsible Science Editor: Xue-Jiao Wang
Responsible Electronic Editor: Chen Wang	       Proofing Editorial Office Director: Ze-Mao Gong
Proofing Editor-in-Chief: Lian-Sheng Ma

PUBLICATION DATE
May 28, 2018

COPYRIGHT
© 2018 Baishideng Publishing Group Inc. Articles pub-
lished by this Open-Access journal are distributed under 
the terms of  the Creative Commons Attribution Non-
commercial License, which permits use, distribution, 
and reproduction in any medium, provided the original 
work is properly cited, the use is non commercial and is 
otherwise in compliance with the license.

SPECIAL STATEMENT
All articles published in journals owned by the Baishideng 
Publishing Group (BPG) represent the views and opin-
ions of  their authors, and not the views, opinions or 
policies of  the BPG, except where otherwise explicitly 
indicated.

INSTRUCTIONS TO AUTHORS
Full instructions are available online at http://www.
wjgnet.com/bpg/gerinfo/204

ONLINE SUBMISSION
http://www.f6publishing.com

World Journal of Gastroenterology
Volume 24  Number 20  May 28, 2018

Editorial board member of World Journal of Gastroenterology , Kentaro 
Yoshioka, MD, PhD, Professor, Department of Liver, Biliary Tract and Pancreas 
Diseases, Fujita Health University, Toyoake 470-1192, Japan

World Journal of  Gastroenterology (World J Gastroenterol, WJG, print ISSN 1007-9327, online 
ISSN 2219-2840, DOI: 10.3748) is a peer-reviewed open access journal. WJG was estab-
lished on October 1, 1995. It is published weekly on the 7th, 14th, 21st, and 28th each month. 
The WJG Editorial Board consists of  642 experts in gastroenterology and hepatology from 
59 countries.
    The primary task of  WJG is to rapidly publish high-quality original articles, reviews, 
and commentaries in the fields of  gastroenterology, hepatology, gastrointestinal endos-
copy, gastrointestinal surgery, hepatobiliary surgery, gastrointestinal oncology, gastroin-
testinal radiation oncology, gastrointestinal imaging, gastrointestinal interventional ther-
apy, gastrointestinal infectious diseases, gastrointestinal pharmacology, gastrointestinal 
pathophysiology, gastrointestinal pathology, evidence-based medicine in gastroenterol-
ogy, pancreatology, gastrointestinal laboratory medicine, gastrointestinal molecular biol-
ogy, gastrointestinal immunology, gastrointestinal microbiology, gastrointestinal genetics, 
gastrointestinal translational medicine, gastrointestinal diagnostics, and gastrointestinal 
therapeutics. WJG is dedicated to become an influential and prestigious journal in gas-
troenterology and hepatology, to promote the development of  above disciplines, and to 
improve the diagnostic and therapeutic skill and expertise of  clinicians.

World Journal of  Gastroenterology (WJG) is now indexed in Current Contents®/Clinical Medicine, 
Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports®, Index 
Medicus, MEDLINE, PubMed, PubMed Central and Directory of  Open Access Journals. The 
2017 edition of  Journal Citation Reports® cites the 2016 impact factor for WJG as 3.365 (5-year 
impact factor: 3.176), ranking WJG as 29th among 79 journals in gastroenterology and hepatol-
ogy (quartile in category Q2). 

ABOUT COVER

INDEXING/ABSTRACTING

AIMS AND SCOPE

II May 28, 2018|Volume 24|Issue 20|WJG|www.wjgnet.com



Immune therapies in pancreatic ductal adenocarcinoma: 
Where are we now?

Marc Hilmi, Laurent Bartholin, Cindy Neuzillet

Marc Hilmi, Cindy Neuzillet, Service d’Oncologie Médicale, 
Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, 
Université Paris Est Créteil, Créteil 94010, France

Laurent Bartholin, Université de Lyon, Université Claude 
Bernard Lyon 1, Inserm U1052, CNRS 5286, Centre Léon 
Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon  
69008, France

ORCID number: Marc Hilmi (0000-0003-4762-6740); Laurent 
Bartholin (0000-0002-5637-3223); Cindy Neuzillet (0000-0001 
-7037-7477).

Author contributions: All authors contributed equal to this 
paper including conception and design of the study, literature 
review and analysis, drafting and critical revision and editing, and 
approval of the final version.

Conflict-of-interest statement: Neuzillet C reports non-
financial support from OSE Immunotherapeutics; Hilmi M and 
Bartholin L have no potential conflicts of interest relevant to this 
article were reported.

Open-Access: This article is an open-access article which was 
selected by an in-house editor and fully peer-reviewed by external 
reviewers. It is distributed in accordance with the Creative 
Commons Attribution Non Commercial (CC BY-NC 4.0) license, 
which permits others to distribute, remix, adapt, build upon this 
work non-commercially, and license their derivative works on 
different terms, provided the original work is properly cited and 
the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Cindy Neuzillet, MD, MSc, Service d’
Oncologie Médicale, Hôpital Henri Mondor, Assistance Publique-
Hôpitaux de Paris, Université Paris Est Créteil, 51 Avenue du 
Maréchal de Lattre de Tassigny, Créteil 94010, 
France. cindy.neuzillet@gmail.com 
Telephone: +33-682-550492

Received: March 28, 2018
Peer-review started: March 29, 2018
First decision: April 27, 2018

Revised: May 5, 2018
Accepted: May 18, 2018
Article in press: May 18, 2018
Published online: May 28, 2018

Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the 
deadliest cancers, mostly due to its resistance to treatment. 
Of these, checkpoint inhibitors (CPI) are inefficient when 
used as monotherapy, except in the case of a rare subset 
of tumors harboring microsatellite instability (< 2%). This 
inefficacy mainly resides in the low immunogenicity and 
non-inflamed phenotype of PDAC. The abundant stroma 
generates a hypoxic microenvironment and drives the 
recruitment of immunosuppressive cells through cancer-
associated-fibroblast activation and transforming growth 
factor β secretion. Several strategies have recently 
been developed to overcome this immunosuppressive 
microenvironment. Combination therapies involving CPI 
aim at increasing tumor immunogenicity and promoting 
the recruitment and activation of effector T cells. Ongoing 
studies are therefore exploring the association of CPI 
with vaccines, oncolytic viruses, MEK inhibitors, cytokine 
inhibitors, and hypoxia- and stroma-targeting agents. 
Adoptive T-cell transfer is also under investigation. 
Moreover, translational studies on tumor tissue and blood, 
prior to and during treatment may lead to the identification 
of biomarkers with predictive value for both clinical 
outcome and response to immunotherapy.

Key words: Drug therapy combination; Immunology; 
Hypoxia; Checkpoint inhibitor; Inflammation; Pancreatic 
cancer; Tumor-infiltrating lymphocyte; transforming 
growth factor β; Tumor microenvironment

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.
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therapies remain inefficient when used as single agents 
in pancreatic ductal adenocarcinoma (PDAC). Here, 
we present an overview of the biological mechanisms 
underlying these failures and the lessons learned, 
giving a rationale for innovative combination therapies. 
In particular, the latest ongoing studies are attempting 
to overcome the immunosuppressive microenvironment, 
the basis of resistance to CPI in PDAC.

Hilmi M, Bartholin L, Neuzillet C. Immune therapies in 
pancreatic ductal adenocarcinoma: Where are we now? World J 
Gastroenterol 2018; 24(20): 2137-2151  Available from: URL: 
http://www.wjgnet.com/1007-9327/full/v24/i20/2137.htm  DOI: 
http://dx.doi.org/10.3748/wjg.v24.i20.2137

INTRODUCTION 

Immunotherapy has paved the way for new therapeutic 
opportunities in cancer. Cytotoxic T lymphocyte-
associated protein 4 (CTLA-4) and programmed cell 
death-1 (PD-1) are receptors expressed on the surface 
of T-cells that regulate the duration and the amplitude of 
immune responses in physiological conditions[1]. CTLA-4 
is involved in the priming phase (lymph node) while PD-1 
and its ligand PDL-1 are implicated in the effector phase 
(tumor) (Figure 1). The hijacking of these immunological 
"checkpoints" by cancer cells is a major mechanism of 
immune evasion, a better understanding of which led to 
the clinical development of anti–CTLA-4 and anti–PD-1/
PD-L1 mAb with striking efficacy in several malignancies, 
including chemoresistant tumors. For example, objective 
responses associated with prolonged survival were 
observed in 30%-45% of melanomas[2], 15%-20% of 
lung cancers[3,4], 13% of pre-treated head and neck 
carcinomas[5], 22%-25% of pre-treated kidney cancers[6], 
and more than 60% of Hodgkin lymphomas[7] following 
anti–PD-1/PD-L1 monotherapies, leading to their clinical 
approval in these indications. However, immunotherapy 
failed to improve the outcome of patients in some tumor 
types[8], notably pancreatic ductal adenocarcinoma 
(PDAC). 

Recent epidemiological projections have predicted 
that PDAC will become the second leading cause 
of cancer-associated death in the USA and Europe 
by 2030[9]. PDAC is the gastrointestinal tumor with 
the poorest prognosis, with 80% of patients having 
advanced disease at diagnosis and a 5-year survival rate 
that does not exceed 7%[10]. PDAC is characterized by 
its resistance to conventional therapies (chemotherapy, 
targeted therapy and radiotherapy)[11]; thus innovative 
therapeutic options are crucially needed. Despite hopes 
raised by the results of immune therapies in other 
cancers, these strategies have so far been disappointing 
in PDAC. Nonetheless, an improved understanding 
of the biology of its microenvironment has recently 
provided a rationale for innovative therapeutic co
mbinations to unlock PDAC resistance to immune 

therapy. 
The objectives of this review are (1) to present 

an overview of the immune therapies that have so 
far been tested in PDAC, (2) to describe the main me
chanisms involved in resistance to these therapies, and 
(3) to introduce the current strategies to overcome 
this resistance. 

FAILURE OF IMMUNE MONOTHERAPIES 
IN PDAC 
Patients with PDAC were treated with anti–PD-1/PD-L1 
(pembrolizumab, atezolizumab) and anti–CTLA-4 (ipi
limumab) monotherapies in three phase Ⅰ[12–14] and one 
phase Ⅱ trials[14], respectively. Overall, these studies 
showed no activity of checkpoint inhibitor (CPI) mono
therapies in unselected patients with advanced, pre-
treated, progressive PDAC (Table 1). 

Nevertheless, PD-1 blockade appears to be efficient 
in a subset of patients with PDAC harboring a mismatch 
repair (MMR) deficiency. The MMR machinery is encoded 
by four key genes (MLH1, MSH2, MSH6, PMS2), which 
behave as genome safeguards by correcting base 
mispairs occurring during DNA replication. Loss of 
MMR results in drastically increased rates of somatic 
mutations[15,16], potentially translated into neoantigens 
that can be recognized by the immune system[17,18] 
rendering them responsive to CPI. MMR deficiency 
can be caused by inherited germline defect in the 
case of Lynch syndrome, predisposing to a spectrum 
of tumors [mainly, colorectal (CRC) and endometrial 
cancers], or emerge from somatic mutations or 
promoter methylation (e.g., in BRAF-mutated CRC)[19]. 
Microsatellite instability-high (MSI-H) is the phenotypic 
evidence of MMR deficiency. Recently, the use of 
pembrolizumab was approved for MSI-H or MMR-
deficient tumors based on five clinical trials[20], which 
including 149 patients with tumors from 15 primary 
origins, mostly CRC (91/149). The objective response 
rate was 39.6%, including complete responses in 7.4%, 
and 78% of responses lasted more than 6 mo. MSI-H is 
thus recognized as a predictive biomarker of response 
to PD-1 blockade[21,22]. 

Six patients with PDAC were included in a multitumor 
expansion study of pembrolizumab (12 cancer types) 
with evidence of clinical benefit (one stable disease, 
three partial responses, and two complete responses). 
However, MSI-H is a rare event in PDAC[23] as illustrated 
by a genetic study on 385 PDAC that reported that 
hypermutated profiles (all related to MMR deficiency) 
were found in less than 2% of cases (4 out of 385)[24]. 
Therefore, the subset of PDAC patients eligible for CPI 
monotherapy is small.

Beside CPI, other immune therapy strategies (vac
cines, oncolytic viruses, TGFβ inhibitors) have been 
tested and also remained inefficient in PDAC patients 
when used as monotherapies or in combination with 
gemcitabine chemotherapy (Table 1). Overall, except 
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Table 1  Summary of clinical trials of immune therapies (single agent or combination with gemcitabine) in patients with pancreatic 
ductal adenocarcinoma

Type of 
immunotherapy

Molecules Trial Phase n Population Main results

Immune checkpoint 
inhibitors

PD-L1 (BMS-936559) Brahmer et al[8] Ⅰ 14 Advanced PDAC
Pre-treated

No objective response

PD-L1 (atezolizumab) Herbst et al[12] Ⅰ 1 Advanced PDAC
Pre-treated

No objective response

PD-1 
(pembrolizumab)

Patnaik et al[13] Ⅰ 1 Advanced PDAC
Pre-treated

No objective response

CTLA-4 (ipilimumab) Royal et al[14] Ⅱ 27 Advanced PDAC
Pre-treated

No objective response

Therapeutic vaccines GVAX Jaffee et al[118] Ⅰ 14 Resected PDAC
Adjuvant

Combination with 
chemoradiotherapy

3 patients remained disease-free for > 
25 mo

Lutz et al[119] Ⅱ 60 Resected PDAC
Adjuvant

Combination with 
chemoradiotherapy

Median disease-free survival: 17.3 mo 
Median overall survival: 24.8 mo

Laheru et al[120] Ⅱ 50 Advanced PDAC
Pre-treated

Combination with 
cyclophosphamide

Median overall survival: 4.3 mo 

Lutz et al[30] Pilot
Randomized

54 Resected PDAC
Neoadjuvant and 

adjuvant
Combination with 
cyclophosphamide

Arm 1: GVAX alone
Arm 2: Cyclophosphamide 

(intravenous) + GVAX
Arm 3: Cyclophosphamide (daily oral) 

+ GVAX
Intra-tumoral tertiary lymphoid 

aggregates
PD-1 and PDL-1 upregulation 

CRS 207 Le et al[121] Ⅰ 7 Advanced PDAC
Pre-treated

No objective response

GVAX + CRS 207 Le et al[78] Ⅱ
Randomized

90 Advanced PDAC
Pre-treated

Arm 1: Cyclophosphamide + GVAX + 
CRS-207

Arm 2: Cyclophosphamide + GVAX
No objective response

Algenpantucel-L Hardacre et al[122] Ⅱ 70 Resected PDAC
Adjuvant

Combination with 
chemotherapy

Disease-free survival: 62% at 1 yr
Overall survival: 86% at 1 yr

Mutated KRAS 
peptide

Gjertsen et al[123] Ⅰ/Ⅱ 5 Advanced PDAC
Pre-treated

No objective response

Gjertsen et al[124] Ⅰ/Ⅱ 48 Advanced PDAC
Pre-treated

Resected PDAC
Adjuvant

No objective response
Median overall survival in resected 

PDAC: 25.6 mo

Abou-Alfa et al[125] Ⅰ 24 Resected PDAC
Adjuvant

Median disease-free survival: 8.6 mo
Median overall survival: 20.3 mo

Telomerase peptide 
(GV1001)

Middleton et al[126] Ⅲ
Randomized

1062 Advanced PDAC
First line

Combination with 
chemotherapy

Arm 1: chemotherapy alone
Arm 2: sequential chemo-

immunotherapy
Arm 3: concurrent chemo-

immunotherapy
No benefit on overall survival of 

adding vaccination to chemotherapy
Oncolytic viruses Mutated adenovirus 

(ONYX-15)
Hecht et al[127] Ⅰ/Ⅱ 21 Advanced PDAC

Pre-treated and first line 
Combination with 

chemotherapy

Two partial responses 

Mulvihill et al[128] Ⅰ 23 Advanced PDAC
Pre-treated and first line

No objective response

Anti-transforming 
growth factor β 
(TGFβ)

Anti-TGFβ2 
(trabedersen)

Oettle et al[129] Ⅰ/Ⅱ 37 Advanced PDAC
Pre-treated

One complete response 
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actionable targets to trigger the immune response 
(e.g., for vaccine strategies)[37-39]. Nonetheless, such 
approaches are currently limited by the poor performance 
of neoepitope predictive algorithms. Indeed, less than 
5% of predicted neoepitopes actually give rise to a 
biological response[34]. The Tumor Neoantigen Selection 
Alliance initiative is a global bioinformatics collaborative 
effort aiming to develop a software that can best predict 
immunogenic mutation-associated cancer antigens from 
patients’ tumor DNA[40].

T cells recruitment and activity: The release of tumor 
neoantigens following cell death[41] allows antigen-
presenting cells (APC), such as dendritic cells to uptake 
and present them to T cells leading to the activation 
of the latter[42-44]. Secondly, T cells must be recruited 
into the tumor after trafficking in blood vessels[45] and 
passing through the endothelial wall[46]. Finally, tumor-
infiltrating lymphocytes (TIL) recognize and kill tumor 
cells[43].

Depending on the histological pattern of TIL, tumors 
are classified into T-cell inflamed (also known as “hot” 
tumors) vs non-inflamed (“cold”) tumors, in which T 
cells are excluded or absent[47]. Preclinical and clinical 
evidence suggest that only patients who have T-cell 
inflamed tumors respond to CPI monotherapy[47]. Most 
PDAC are thought to belong to the non-inflamed tumor 
group, displaying low levels of TIL along with low PD-L1 
expression, which can account for the poor efficacy of 
single-agent immune therapies[48-50].

PDAC display an abundant desmoplastic stroma, 
the extent of which is often greater than the epithelial 
component of the tumor[51,52]. The stroma is a complex 
structure composed of extracellular matrix proteins and 
various cell types including cancer associated fibroblasts 
(CAF), endothelial cells, and immune cells[52]. This 
fibrotic barrier was believed to physically impede T cell 
infiltration[53]. However, recent work using multiplex 
imaging for spatial analysis of desmoplastic elements 
in PDAC revealed that collagen Ⅰ deposits are inversely 
correlated with TIL numbers[54]. This observation 
has led to the hypothesis that the stroma may be 
a chemical rather than a physical barrier[55] (Figure 
2). Indeed, PDAC is characterized by a high density 
of immunosuppressive cells including T regulatory 
cells (TREG) and myeloid cells [e.g. dendritic cells, 
myeloid derived suppressive cells (MDSC) and 
M2 macrophages], which are negative prognostic 
factors[56]. Myeloid cells release TGFβ[57], nitric oxide 
synthase and arginase, preventing TIL recruitment and 
activity[56,58]. Tumor hypoxia is a predominant driver 
in the recruitment of these immune cells through CAF 

for MSI-H tumors, PDAC are considered to be resistant 
to single-agent immune therapy.

Reasons why checkpoint inhibitor monotherapies 
failed to show any activity in pancreatic ductal 
adenocarcinoma
The “cancer-immunity cycle” theory defines three 
conditions that are required to obtain an effective anti-
tumoral immune response[25]: tumor immunogenicity, T 
cell recruitment and activation.

Tumor immunogenicity: Immunogenicity is related to 
the degree of epitope structural difference between tumor 
and normal cells. The more different the epitope, the 
more likely to be recognized by T cells[26]. Hence, tumor-
associated antigens (TAA) loosely fall into two classes 
based on their tumoral specificity and immunogenicity: 
(1) Low (differentiation antigens, overexpressed self-
antigens) and (2) high (viral antigens, cancer-germline 
genes, and neoantigens) tumoral specificity. Neoantigens 
are peptides generated from non-silent coding mutations 
in the cancer cell genome and are highly immunogenic. 
Several studies have shown that tumor mutation load is 
linked to neoantigen burden and positively correlated with 
response to immunotherapy[27,28]. Pancreatic cancer has 
a low mutation load compared to other solid tumors, with 
an average mutation rate of 1 mutation per megabase 
(Mb) (compared to 11 mutations per Mb for melanoma), 
only occasionally yielding neoantigens[29]. Nevertheless, 
PDAC has an immunogenic capacity as reflected by 
the presence of T-cell infiltrates and tertiary lymphoid 
structures in resected PDAC samples[30-32]. Some studies 
suggest that although the rate of mutations is low, it is 
sufficient to create highly immunogenic neoantigens, 
notably through KRAS codon 12 mutations[33,34]. 

Importantly, DNA mutations do not necessarily 
translate into immunogenicity because both antigen 
presentation by major histocompatibility complex (MHC) 
and recognition by the T cell receptor (TCR) with a high 
affinity are required to induce T cell response, leading 
to the concept of neoantigen quality. It has been shown 
that the fitness of a neoantigen, i.e., its distance from 
the wild type sequence coupled with its binding affinity 
to the TCR, is correlated with the activation of T cells[35]. 
High-quality neoantigens (mutation-associated or 
microbial-like sequences) have been associated with 
longer survival in PDAC, highlighting the fact that the 
neoantigen quality outweighs the neoantigen quantity 
in clinical significance[36]. 

Determining MHC-antigenic structures (e.g., using 
mass spectrometry) is useful to (1) predict which 
neoantigen will be recognized by T cells and (2) identify 

TGFβ receptor 
inhibitor 

(galunisertib)

Melisi et al[130] Ⅱ
Randomized

156 Advanced PDAC
Pre-treated and first line

Combination with 
chemotherapy

Arm 1: galunisertib + gemcitabine
Arm 2: gemcitabine +placebo

No benefit on overall survival of 
adding galunisertib to chemotherapy 

CTLA-4: Cytotoxic T lymphocyte-associated protein 4; PD-1: Programmed cell death-1; PD-L1: Programmed death-ligand 1.
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activation[59-61]. Activated CAF then secrete immuno
suppressive cytokines[62,63], such as CXCL12 and IL-6, 
which promote MDSC recruitment and inhibit effector 
T cell recruitment.

In addition, although T cell infiltration seems to be 
necessary for the response to immune therapy, the 
presence of TIL is not sufficient to induce an effective 
anti-tumor response[64]. Indeed, TIL activation is 
required. However, in PDAC, even in the presence of 
tumor-specific neoepitopes, T cells display a reduced 
activation signature[34] and most of them are PD-1–
positive[65], suggesting that T cell activation is actively 
suppressed. Notably, not only MDSC but also TREG 

and CD8-positive γδT cells restrain activation of αβT 
cells that are directed against the tumor[66]. These 
deleterious TIL represent approximately 40% of CD8-
positive TIL populations in PDAC and may mislead 
the interpretation of the biological significance of TIL 
in PDAC. This may enlighten some negative results 
showing no prognostic impact of T cell infiltration in 
PDAC[56,64].

Overall, given its low mutational load, low lymphocyte 
count, the presence of inflammatory cytokines and 
hypoxia, PDAC displays a unique microenvironment that 
is unfavorable to immune therapy according to the cancer 
immunogram and requires combination strategies[67].

DC

T cell

MHC + neoantigen

TCR

M2
macrophage

Tumor cell
MHC +

neoantigen

TCR

T cell

Priming phase

Lymph node
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Tumor (pancreas)

DC

TCR

T cell

MHC

B7

CD28

CTLA4

Anti-CTLA4

T cell
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PD-L1 PD-1

Anti-PD-1/Anti-PD-L1

Figure 1  Cytotoxic T lymphocyte-associated protein 4 and programmed cell death-1 biological functions and therapeutic targeting. Cells of the immune 
system express several surface molecules that are important for immune surveillance and regulation of the immune response. T cell receptor (TCR) is expressed by 
T cells; it is an antigen-specific molecule that is unique to each T cell clone. Major human compatibility (MHC) molecule is expressed by antigen-presenting cells (e.g., 
dendritic cell) and display a potential tumor antigen for recognition by the specific TCR. Left panel: When an antigen presented in the context of MHC is recognized by 
the TCR, interaction of CD28 (expressed by T cell) with B7 (CD80/CD86) molecules provide a co-stimulatory signal leading to T-cell activation. However, depending 
on the conditions and microenvironment, these T cells can also express various levels of cytotoxic T lymphocyte-associated protein 4 (CTLA-4), a regulatory 
receptor (immune checkpoint) with a higher binding affinity for B7 than CD28. Therefore, when CTLA-4 is available at the cell surface, it successfully competes for 
binding with B7, removing the co-stimulatory signal and leading to T-cell downregulation. Tumor cells can then escape the T cell cytotoxic effect (immune evasion). 
CTLA-4 blockade affects the immune priming phase occurring in the lymph node, by supporting the activation and proliferation of a higher number of effector T cells, 
regardless of TCR specificity, and by reducing Treg-mediated suppression of T-cell responses. Right panel: T cells also express PD-1 receptor, which has the potential 
to induce a programmed-death cascade in T cells that mistakenly react to host cells and thereby maintaining self-tolerance. PD-1 ligand, PD-L1, is used by tumor cells 
to engage the PD-1 receptor and switch off the reaction, inducing immune tolerance to the MHC-presented antigen. PD-L1 can also be expressed by stromal cells 
(e.g., M2 macrophages). PD-1 blockade works during the effector phase in peripheral tissues (tumor) to restore the immune function of “exhausted” T cells that have 
been turned off following extended or high levels of antigen exposure. CTLA-4: Cytotoxic T lymphocyte-associated protein 4; DC: Dendritic cell; MHC: Major human 
compatibility; PD-1: Programmed cell death-1; PD-L1: Programmed death-ligand 1; TCR: T cell receptor.
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Research challenges
Rational combinations: Following the failure of CPI 
monotherapies in PDAC, efforts have been made to 
develop rational combinations to overcome PDAC 
resistance to immune therapy. Based on the cancer 
immunity cycle[25], most of them combine a CPI with 
another agent aiming to (1) increase tumor immu
nogenicity; (2) increase TIL number and activity; 
and/or (3) attenuate immunosuppression in the tumor 
microenvironment. Combination therapy can employ 
immune therapy, conventional chemo/radiotherapy, 
targeted therapy, or vaccine/adoptive T-cell therapy[50,68].

Increasing tumor immunogenicity: Chemothera
peutic agents and radiotherapy may play a dual 
role by directly killing cancer cells, thus reducing the 
overall tumor burden and indirectly by releasing pro-
inflammatory molecules and tumor-associated antigens 
(TAA) (e.g., calreticulin, ATP) which, when presented 
in an immunogenic fashion, may function as in situ 
vaccines to attract and activate T cells (so called 
“immunogenic death”). Among chemotherapeutic 
agents used in the PDAC therapeutic armamentarium, 
platinum-based agents and taxanes are preferential 
combination partners for immunotherapy because they 

can induce immunogenic cell death, sensitize tumor 
cells to immune-mediated destruction and enhance T 
cell activation[69-71]. Although some investigators have 
shown that FOLFIRI [folinic acid, 5-fluorouracil (5FU) 
and irinotecan combination] can be given with vaccines 
to CRC patients without abrogation of the immune 
response[72], 5FU and irinotecan have been reported to 
be more immunosuppressive[73]. Therefore, combining 
them with an immune therapy may impair the immune-
mediated anti-tumor response, and a sequential design 
for immune therapy after induction chemotherapy using 
these agents may be more effective. 

Tumor vaccines and oncolytic viruses both aim at 
increasing tumor antigen recognition by the immune 
system through presentation by dendritic cells[74,75]. 
Although relatively inefficient as monotherapies, vac
cine strategies are currently explored in combination 
with CPI. GVAX is a granulocyte-macrophage colony-
stimulating factor (GM-CSF)-secreting allogeneic 
PDAC vaccine. It was first evaluated in combination 
with anti–CTLA-4 therapy[76]. Thirty pre-treated PDAC 
patients were randomized to receive ipilimumab alone 
or combined with GVAX. The latter experienced a 
longer median overall survival (OS) (3.6 mo vs 5.7 
mo, P = 0.07) with no additional toxicity. Furthermore, 
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Figure 2  Summary of the mechanisms responsible for pancreatic ductal adenocarcinoma resistance to immune therapy. The circle outlines the three steps 
of the cancer-immunity cycle: (1) Immunogenicity (yellow); (2) T-cell recruitment and (3) activation. Pancreatic ductal adenocarcinoma resistance to immune therapy 
is due to the combination of several factors: (1) Low tumor immunogenicity, with a low mutation rate and low neaoantigen burden compared to other tumors (e.g., 
melanoma); (2) low T-cell recruitment and (3) activation: the dense desmoplastic stroma generates high interstitial pressure; this results in poor tumor perfusion 
and intra-tumor hypoxia, which in turn activates fibroblasts to release immunosuppressive cytokines (e.g., TGFβ, IL-6, CSF1 = “chemical barrier”) that lead to the 
recruitment of immunosuppressive cells (M2 macrophages, TREG, MDSC) and exclusion and anergy of effector T cells. CSF1: Colony stimulating factor 1; IL-6: 
Interleukin-6; MDSC: Myeloid-derived suppressive cells; TGFβ: Transforming growth factor β; TREG: T regulatory cells.
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the observation that neoadjuvant GVAX was able 
to induce intra-tumoral tertiary lymphoid structures 
and upregulate PD-L1 membranous expression in 
resected tumor samples[30] provided a rationale for its 
combination with anti–PD-1. This was also supported 
by preclinical data in mouse models[77] showing an 
improved survival rate with the combination of GVAX 
and PD-1 blockade compared to each agent taken 
individually. In clinical practice, GVAX is associated 
to cancer vaccine CRS-207 (an attenuated form of 
Listeria monocytogenes) and/or cyclophosphamide 
(aiming at downregulating TREG) in clinical trials in the 
adjuvant setting[78]. GVAX/cyclophosphamide therapy 
is also currently being tested in PDAC in combination 
with nivolumab (anti–PD-1) alone (NCT02243271, 
NCT02451982, NCT03161379) or combined to ipili
mumab (anti-CTLA-4) (NCT03190265), or with 
pembrolizumab (anti–PD-1) alone (NCT02648282) or 
combined to the indoleamine-2,3 dioxygenase (IDO, an 
enzyme that inhibits T cells proliferation by catalyzing 
the degradation of tryptophan[79]) inhibitor epacadostat 
(NCT03006302). Restoring the proliferation and ac
tivation of various immune cells, including T cells[80], 
may potentiate the response to vaccine therapy. Of 
note, there is also a rationale for combining GVAX 
with TGFβ inhibitors in preclinical models[77,81]. How
ever, this combination has not reached clinical trials. 
GVAX, like peptidic “one-size-fits-all” vaccines, 
has to face the challenges of (1) the unique tumor 
antigen landscape specific to each patient and (2) the 
emergence of immune evasion, both of which can 
compromise patient response to vaccine therapy[82]. 
Personalized vaccine approaches are expected to 
partially overcome these issues but their development 
remains limited by their logistic complexity and high 
costs[82-84]. Alternatively, oncolytic viruses combine 
antigen presentation with the induction of a type 
Ⅰ interferon-γ (IFN-γ) response that potentiates 
effector T-cell activation[74,75]. Similar to the vaccine 
approach, the oncolytic virus reolysin was tested in 
metastatic PDAC in combination with carboplatin 
and paclitaxel but failed to improve progression-free 
survival (PFS)[85]. However, a phase Ⅱ study[86] ex
plored the combination of reolysin, pembrolizumab 
(anti–PD-1) and chemotherapy in 11 patients with 
pre-treated PDAC and showed antitumor activity with 
a manageable safety profile. Among the 5 evaluable 
patients, two had stable diseases (126 and 221 d) and 
one had partial response lasting more than 6 mo. A 
phase Ib trial in combination with pembrolizumab and 
gemcitabine, irinotecan or leucovorin/5-fluorouracil 
(5-FU) is ongoing (NCT02620423).

Increase TIL recruitment and activity: Most anti–
PD-1/PD-L1-based combination trials focus on converting 
the PDAC non-inflamed (immune-excluded or desert) 
microenvironment into an inflamed pattern by increasing 
T cells recruitment and activity.

CPI combination: The association of CTLA-4 and 

PD-1 antibodies resulted in an improved OS in patients 
with advanced melanoma compared with each agent 
used as monotherapy, albeit at the price of increased 
toxicity with 59% of patients experiencing grade 3 or 4 
adverse events (vs 21%-28% with monotherapy)[87]. 
The PA.7 randomized phase Ⅱ trial (NCT02879318) 
explores the combination of tremelimumab (anti–
CTLA-4 mAb) and durvalumab (anti–PD-L1 mAb) 
with gemcitabine plus nab-paclitaxel chemotherapy 
vs chemotherapy alone as a first-line treatment for 
metastatic PDAC. Co-targeting of other immunomo
dulatory pathways such as IDO, OX40, CD40, the 
lymphocyte activation gene 3 protein (LAG3) or T 
cell immunoglobulin and mucin 3 (TIM3), among nu
merous candidates, might be as efficient and less toxic 
than PD-1/CTLA-4 combination[88] but remain to be 
explored in PDAC patients. 

Combination with anti-M2/-MDSC: The CCL2-CCR2 
chemokine axis induces the recruitment of immuno
suppressive tumor-associated-macrophages (TAM)[89]. 
A CCR2 inhibitor (PF-04136309) has been tested in 
combination with FOLFIRINOX chemotherapy in a 
phase Ib study in patients with borderline resectable/
locally advanced PDAC[89]. The objective response rate 
was 49% and disease control rate reached 97% with 
a manageable safety profile. Interestingly, ancillary 
studies showed (1) a decrease in TAM infiltration to
gether with (2) a decrease in circulating monocytes 
and (3) an increase in bone marrow monocytes in 
patients treated with the combination, supporting the 
mechanistic hypothesis of a reduction in intra-tumor 
monocyte recruitment from the bone marrow[90].

Other inflammatory pathways have been targeted 
using small molecules or mAb and are currently being 
explored in clinical trials in combination with CPI 
based on promising results in mouse models. These 
include colony stimulating factor 1 receptor (CSF1R)[91] 
(NCT02777710), IL-6[92], TGFβ (NCT02734160), CCR4 
(NCT02301130), CXCR2 (NCT02583477) and CXCR4/
CXCL12 (NCT03168139). Nonetheless, similarly to 
the results obtained following pathway inhibition using 
tyrosine kinase inhibitors, secondary resistance due 
to cytokine axes compensation has emerged, leading 
to disease progression and pleading for combination 
strategies[93].

Combination with MEK inhibitors: MEK inhibition 
(MEK-i) was primarily developed in PDAC as a KRAS 
signaling inhibition strategy, given the high frequency of 
activating KRAS mutations in these tumors (> 90%)[94]. 
MEK-i failed to improve the survival rate of PDAC 
patients when used as monotherapy or in combination 
with gemcitabine[94]. However, novel perspectives are 
opening up for MEK-i as a combination partner with 
immune therapy. Indeed, MEK-i exerts multifaceted 
immunostimulatory effects by (1) increasing MHC-I 
expression and decreasing PD-L1 expression on tumor 
cells, (2) increasing TIL activity and survival, and (3) 
decreasing macrophage and MDSC infiltrates[95]. 

A phase Ib study (NCT01988896) has investigated 
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the combination of cobimetinib (MEK-i) with ate
zolizumab (anti–PD-L1) in pre-treated metastatic CRC; 
durable objective responses were observed in patients 
with microsatellite stable (MSS)/MSI-low tumors, 
mostly KRAS-mutated, prompting the evaluation of this 
combination in PDAC in a clinical trial (NCT03193190).

Targeting tumor hypoxia: Likewise, hypoxia-targeting 
strategies have been tested with disappointing results in 
combination with gemcitabine[96]. Evofosfamide (TH-302) 
is a cytotoxic prodrug that is activated under hypoxic 
conditions, targeting hypoxic tumor areas. It is now being 
explored as a combination partner for immunotherapy 
since it can improve tumor tissue oxygenation and 
subsequently decrease MDSC recruitment and increase 
effector T cell activity[59,97]. The use of TH-302 with 
CPI may therefore be effective in restoring a favorable 
immune environment. A phase Ⅰ trial is underway to 
study the combination of TH-302 with ipilimumab (anti-
CTLA-4) in PDAC, melanoma, head and neck cancer and 
prostate cancer (NCT03098160).

Targeting fibroblasts and the stromal physical 
barrier: There have been contradictory reports on the 
roles of the desmoplastic stroma in PDAC (tumor-
promoting vs tumor-restrictive effect). CAF elimination 
using sonic hedgehog inhibitors or genetic strategy 
for selective depletion of α-smooth muscle actin 
(α-SMA)-positive cells in transgenic mice resulted in 
aggressive and undifferentiated tumors with increased 
vascularization and TREG infiltration, respectively[98,99]. 
Clinical trials with hedgehog inhibitors in PDAC were 
negative for any anti-neoplastic activity[100]. Strategies 
then shifted toward stroma modulation rather than 
depletion. 

Focal adhesion kinase (FAK) is a cytoplasmic ty
rosine kinase protein that has been reported to be 
overexpressed and active in many solid tumors, including 
PDAC[101]. FAK is expressed by fibroblastic cells as well 
as tumoral, endothelial and immune cells[101], and its 
inhibition engenders pleiomorphic effects[102]. In preclinical 
models, FAK inhibition reduced fibrosis, decreased the 
amount of tumor-infiltrating immunosuppressive cells, 
and rendered the previously unresponsive KPC mouse 
models sensitive to PD-1 blockade[102]. Two phase Ⅰ
/Ⅱ studies are underway to verify the benefit of this 
combination (NCT02546531 and NCT02758587). Other 
CAF-modulating or anti-fibrotic agents are also under 
investigation including TGFβ inhibitors (NCT02734160), 
PEGPH20 (NCT03193190) and vitamin D (NCT03331562) 
in combination with CPI. In addition, all-trans-retinoic 
acid (ATRA) (NCT03307148), and BET-inhibitors 
(NCT02711137) are being explored in combination with 
chemotherapy.

CAR-T cells: Adoptive cell therapy is a technology that 
has recently drawn increasing attention. T cells may 
be engineered to express a chimeric antigen receptor 
(CAR) in order to target specific tumor antigen[103]. This 
approach has already proven its effectiveness in B-cell 

hematological malignancies with T cells expressing CD19 
CAR[104,105]. Similarly, mesothelin CAR-T therapy has been 
proposed in solid tumors[106]. In PDAC, this therapy led 
to the prolonged survival in a mouse model study[107]. 
Nevertheless, clinical development of this strategy in 
solid tumors is hampered by (1) its limited efficacy 
in comparison with the results seen in hematological 
malignancies; (2) high level of toxicity, including life-
threatening immune adverse events (neurotoxicity and 
cytokine release syndrome); and (3) costs and logistics 
to be deployed on a large patient population. Next 
generation CAR T-cells are currently being developed to 
overcome these challenges[108].

CONCLUSION
Rethink current clinical trial approaches
Besides exploring new therapeutic avenues, it is also 
necessary to rethink the design of clinical immune 
therapy trials targeting PDAC. The clinical trial design 
tends to shift from traditional phase Ⅰ to Ⅲ develop
ment plan toward a signal detection strategy in multiple 
patient cohorts. In the context of an increasing number 
of clinical trials, there is a need to identify the most 
relevant combinations among the numerous candidate 
agents. Development of new preclinical models closer 
to the complex in vivo conditions should significantly 
improve the predictive value for therapeutic agent 
testing and guide the selection of the most active 
combinations for evaluation in clinical trials. 

Second, the examples of MEK-i, vaccines, evo
fosfamide or TGFβ inhibitors show that it may be worth 
giving a second chance to some molecules that were 
found inactive as monotherapy. 

In addition, patients with heavily pre-treated, pro
gressive, advanced PDAC are not good candidates 
for immune therapy and this may partially account 
for failure of previous studies. These patients should 
possibly be excluded from immunotherapy clinical 
trials. Alternatively, positioning immune therapy as 
maintenance strategy following a course of induction 
chemotherapy (e.g., with FOLFIRINOX) seems to 
present several advantages: (1) It allows the identifi
cation and exclusion of patients with rapid tumor 
progression; (2) such a treatment may have induced 
immunogenic cell death and sensitized the tumor 
to CPI; and (3) given that induction chemotherapy 
was not interrupted due to inefficacy, it could be rein
troduced at disease progression. Taken together, these 
elements support the development of immune therapy 
as maintenance therapy in patients with controlled 
disease. 

Finally, there is a critical need for predictive bio
marker identification in order to guide patient selection 
for immune therapy and to stratify the randomization. 
Meanwhile, it is necessary to assess the predictive value 
of already available PDAC molecular classifications in 
the ancillary studies of ongoing clinical trials[109-112]. 
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Future directions
PDAC is resistant to CPI monotherapy due to its un
favorable non-immune inflamed microenvironment. 
A better understanding of the biological mechanisms 
underlying PDAC immunosuppression may pave the 
way to innovative and promising strategies. Given the 
key role of the team hypoxia-TGFβ-CAF-M2/MDSC, the 
development of rational combinations of immunotherapy 
targeting these pathways and cell populations to increase 
intra-tumor recruitment and activation of T cells is 
coherent. To achieve this, we will have to reconsider 
inactive molecules in monotherapy, optimize the 
position of immunotherapy in the therapeutic sequence 
and develop new preclinical models to better predict 
therapeutic efficacy.

Furthermore, an improved understanding of the 
mechanisms of sensitivity and resistance to immun
otherapy has revealed the increasing complexity in the 
tumor antigens, TIL, TREG, and MDSC landscape[113]. For 
instance, (1) anti-inflammatory and pro-inflammatory 
cytokines have counter balancing activities; (2) biological 
effects may be different between primary and metastatic 
tumor sites as illustrated by dissociated responses; (3) 
hypermutated tumors are more likely to respond to 
but also to develop resistance to CPI[114]; and (4) the 
immune therapy response is also dependent on the 
patient microbiota[115,116] and genetics[117]. Mechanisms 
of action of CPI remain yet to be fully elucidated. The 
collaboration between clinicians and researchers will be 
the cornerstone of future progress in this field.
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