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Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of 
the most aggressive diseases and is characterized 
by high chemoresistance, leading to the lack of 
effective therapeutic approaches and grim prognosis. 
Despite increasing understanding of the mechanisms 
of chemoresistance in cancer and the role of ATP-
binding cassette (ABC) transporters in this resistance, 
the therapeutic potential of their pharmacological 
inhibition has not been successfully exploited yet. 
In spite of the discovery of potent pharmacological 
modulators of ABC transporters, the results obtained in 
clinical trials have been so far disappointing, with high 
toxicity levels impairing their successful administration 
to the patients. Critically, although ABC transporters 
have been mostly studied for their involvement in 
development of multidrug resistance (MDR), in recent 
years the contribution of ABC transporters to cancer 
initiation and progression has emerged as an important 
area of research, the understanding of which could 
significantly influence the development of more specific 
and efficient therapies. In this review, we explore 
the role of ABC transporters in the development and 
progression of malignancies, with focus on PDAC. Their 
established involvement in development of MDR will 
be also presented. Moreover, an emerging role for ABC 
transporters as prognostic tools for patients’ survival 
will be discussed, demonstrating the therapeutic 
potential of ABC transporters in cancer therapy. 

Key words: Pancreatic ductal adenocarcinoma; Multi-
drug resistance; ATP-binding cassette transporters; 
Targeted therapies; Pancreatic ductal adenocarcinoma 
prognosis; Predictive markers
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Core tip: Pancreatic cancer is one of the deadliest 
cancers due to its highly aggressive biology and 
resistance to broad range of therapeutics. Expression 
of ATP-binding cassette (ABC) transporters by cancer 
cells is one of the main mechanisms responsible for 
the lowered drug accumulation. However, the attempts 
made in multidrug resistance reversal by the inhibition 
of their activity have not provided satisfactory results 
in clinical trials. Nevertheless, current knowledge on 
the role played by ABC transporters in carcinogenesis 
beyond chemoresistance, could create the opportunity 
for the development of novel, direct targeted 
therapeutic strategies. Additionally, the association 
between ABC transporters expression and pancreatic 
ductal adenocarcinoma patients’ prognosis and response 
to applied therapies confirms their pharmacological 
potential.

Adamska A, Falasca M. ATP-binding cassette transporters in 
progression and clinical outcome of pancreatic cancer: What is 
the way forward? World J Gastroenterol 2018; 24(29): 3222-3238  
Available from: URL: http://www.wjgnet.com/1007-9327/full/
v24/i29/3222.htm  DOI: http://dx.doi.org/10.3748/wjg.v24.
i29.3222

INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is one of 
the most fatal diseases in western world. Although not 
one of the leading causes of death, PDAC is certainly 
to be considered amid the most unfavourable cancers, 
ranking at 4th place in terms of death rate, with a 7%-8% 
chance of 5-year survival in United States[1]. Despite 
the progress made in understanding the biology and in 
the treatment of different cancer types, the mortality 
of PDAC patients still nearly equals its incidence and 
has not changed remarkably for the last few decades. 
The dismal prognosis of PDAC is the result of multiple 
factors including an aggressive nature, chemo- and 
radio-resistance and the lack of effective treatments 
and diagnostic tools. Therefore, when diagnosed, the 
vast majority of PDAC patients present with metastatic 
disease, not susceptible for surgery[2]. Only one 
fifth of the patients have the tumour resected and, 
unfortunately, most of them eventually relapse. Post-
operative chemo- and radiotherapy are usually applied 
in order to delay tumour recurrence; nevertheless, high 
resistance and the heterogeneous nature of pancreatic 
tumours impede its treatment[3]. 

Pancreatic cancer pathology is a multistep process. 
It arises as an accumulation of abnormalities, both 
genetic and physiological, progressing through 3 stages 
of precursor lesions called pancreatic intraepithelial 
neoplasias (PanINs) before transforming into a fully 
differentiated tumour[4]. The substantial number of 
genetic modifications and consequent dysregulation 
of the wide range of essential signalling pathways 

accompanying these processes make PDAC highly 
heterogeneous[5]. Also, the variability of mutations 
between patients as well as within the same tumour 
contributes to its high resistance to applied therapy. High 
heterogeneity of PDAC is expressed also phenotypically. 
Genetically diverse subclones, possessing different 
metabolic and functional characteristics, exist within 
a tumour. Recent evidence shows that one of the 
populations acquires characteristics similar to stem 
cells, which enables it to survive during stressful 
conditions and is partly responsible for cancer relapse 
after treatment[6]. Furthermore, PDAC cell plasticity, 
which plays a role in epithelial to mesenchymal 
transition (EMT), facilitates metastatic spread and 
adds to the dismal prognosis[7]. Moreover, one of the 
main characteristics of PDAC, responsible for therapies’ 
failure, is the formation of dense desmoplastic reaction, 
influencing cancer progression and impeding drug 
delivery to the tumour[8]. The interplay between tumour 
cells and stromal components (pancreatic stellate cells 
(PSCs), immune cells, cytokines or extracellular matrix 
proteins) influences cell metabolism, drug delivery 
and distribution. In addition, the existence of a rich 
tumour microenvironment (TME), influencing cancer 
cell functions and favouring chemoresistance, has been 
recently claimed to be an essential factor in cancer stem 
cell initiation and promotion[9]. 

PDAC RESISTANCE TO THERAPIES
On account of PDAC aggressive nature and its 
resistance to therapies, no successful treatment has 
been introduced so far[10]. In fact, until recently the gold 
standard in PDAC treatment was gemcitabine. Applied 
as a first line therapy drug since 1997, gemcitabine 
modestly improved patients’ perspectives, increasing 
overall survival (OS) for 6 mo compared to previously 
used fluorouracil (5-FU)[11]. Since that time, attempts 
have been made to increase the efficacy of PDAC 
treatment and prolong patient survival; however, only 
modest or statistically insignificant improvements have 
been achieved so far. In the last years, two new drug 
regimens, ABRAXANE and FOLFIRINOX have been 
introduced[12,13]. However, their application did not 
increase OS to a meaningful degree when compared to 
gemcitabine, at the same time escalating the frequency 
of adverse events. Nevertheless, both treatments 
have obtained FDA approval and currently ABRAXANE 
combined with gemcitabine is acknowledged as a 
standard first-line therapy for pancreatic cancer. 
Considering the high number of genes altered during 
PDAC progression, targeted therapies emerged as 
a potential therapeutic tool. Many small inhibitors 
have been developed as single agents or applied in 
combination with gemcitabine or ABRAXANE to enhance 
their efficacy[14-18]. However, the vast majority of them 
failed to improve patients’ survival in the clinical settings. 
Therefore, it remains pivotal to gain better knowledge 
on the mechanisms of PDAC chemoresistance and to 
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find novel therapeutic strategies in order to develop 
more effective treatment regimens. 

Among other factors, the failure of PDAC treatment 
has been attributed to local recurrence and liver 
metastasis and importantly, to its high chemoresistance, 
both intrinsic and acquired. The phenomenon called 
multi-drug resistance (MDR), which is characterized by 
resistance to a broad spectrum of structurally diversified 
compounds, has been confirmed as one of the main 
reasons for the inefficiency of PDAC therapies, leading 
to tragic health and economic consequences. 

There are multiple factors contributing to the 
development of MDR in pancreatic cancer, such as 
decreased drug uptake, accelerated drug metabolism 
and DNA repair, blocking of apoptotic pathways, 
metabolic changes and the presence of highly resistant 
stem-like cells. Also, high heterogeneity of the tumour, 
dense stroma and hypoxia impairing drug delivery and 
constitutive activation of several signalling pathways, 
including K-Ras, PI3K/Akt, Notch or NF-κB, with the 
latter being additionally enhanced during chemo- and 
radiotherapy, all confer the modest response of PDAC 
to applied therapies[19-23]. Moreover EMT, frequently 
observed in PDAC tumours, has been implicated in 
conferring its resistance. Also, acquired mutations in 
targeted genes and reactivation of parallel pathways 
add to the therapy failing. However, in most cases the 
interplay between several of these processes is essential 
for chemoresistance development[24]. Additionally, 
high expression of transmembrane proteins belonging 
to the ATP-binding cassette (ABC) transporter family 
in tumour specimens is one of the major factors 
contributing to increased drug efflux and has been 
connected with MDR, adding to the poor response of 
PDAC to treatments[25-28]. Apart from drug extrusion, 
as integral membrane constituents, ABC transporters 
normally regulate the distribution of a wide variety of 
molecules, influencing different pathways and biological 
processes, which suggests their more direct impact on 
cell physiology and possibly, carcinogenesis. Therefore, 
the understanding of the role of ABC transporters both 
in healthy physiology and in cancer is crucial for the 
development of specific, potent and safe inhibitors that 
might be used in PDAC therapy.

ABC TRANSPORTERS AS MULTI-DRUG 
RESISTANCE MECHANISM
One of the main obstacles in cancer therapy is the 
resistance, both constitutive and acquired to admini
stered drugs. As aforementioned, one of the processes 
responsible for drug resistance is the decreased 
intracellular accumulation of the drugs caused by 
their efflux from the cells induced by the expression 
of membrane drug transporters belonging to the ABC 
family.

The family of ABC transporters is a highly conserved 
family of proteins, expressed in all organisms, which 

implies their relevance in many biological functions. To 
date, 48 human genes and one pseudogene encoding 
the members of ABC family have been described and 
grouped into 7 subfamilies (ABCA-G), based on their 
sequence and structural similarity[29,30]. ABC transporters 
are integral transmembrane proteins which, by utilizing 
energy obtained from ATP hydrolysis, which drives the 
progressive conformational changes in their domains, 
shuffle molecules across the plasma and intracellular 
membranes against their gradient[31,32] (Figure 1). The 
structure of ABC transporters is highly conserved and 
consists of two hydrophobic transmembrane domains 
(TMDs), which form a pore in the membrane creating 
substrate-binding environment linked to two hydrophilic 
nucleotide-binding domains (NBDs) localized in the 
cytosol[33,34]. ABC transporters are reported to export 
a wide variety of structurally diverse endogenous 
ligands including amino acids, peptides, vitamins, 
sugars, hormones, ions, lipids and xenobiotics[26,32,35-37]. 
For example, ABCB1 has been reported to be able 
to transport more than 200 structurally diversified 
molecules[38-41]. Additionally, ABC transporters are 
known to excrete toxins form kidneys, gastrointestinal 
tract and liver, demonstrating a protective role in those 
tissues[42]. Few ABC transporters, e.g., ABCC7- cystic 
fibrosis transmembrane conductance regulator (CFTR) 
or ABCC8- the sulphonyl urea receptor (SUR1), are 
not directly involved in transport of molecules across 
the membrane but use the ATP hydrolysis to regulate 
the activity of Cl- and K+ channels respectively[43]. In 
healthy physiology, ABC transporters are expressed 
in a wide variety of tissues, mainly associated with 
biological barriers (Table 1). As an example, ABCC1 is 
expressed in kidneys, intestine, ovaries, adrenal glands, 
colon, stomach, testes, lungs and blood-brain barrier 
and ABCB1 is mostly expressed in gastrointestinal tract, 
pancreas, kidneys, brain and adrenal glands, where 
they are involved in diverse physiological functions and 
in excreting toxins from the cells[40,44,45]. However, their 
enhanced levels have been found in different cancer 
types, suggesting the relevance of ABC transporters 
in cancer and its chemoresistance. So far, 15 of the 
transporters have been attributed the role of drug 
pumps, contributing to MDR in vitro[46]. Especially, P 
glycoprotein (P-gp)/ABCB1, breast cancer resistance 
protein (BCRP)/ABCG2, multidrug resistance protein 1 
(MRP1)/ABCC1 and other members of ABCC subfamily 
(e.g., ABCC2, ABCC3) have been reported to be 
responsible for PDAC chemoresistance[47].   

Up to date, most research has been focused on P-gp, 
a member of the ABCB subfamily of transporters[48,49]. 
It exports a wide variety of molecules of “amphipa
thic nature” including anthracyclines, HIV-protease 
inhibitors, calcium channel blockers, steroid hormones, 
antibiotics, lipids, taxanes and alkaloids[50,51]. P-gp 
overexpression has been observed in several cancers 
including ovarian, colon, kidney or adrenocortical 
cancer, correlating with poor prognosis[52,53]. Additionally, 
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has been demonstrated to be expressed in several 
cancers, including breast, lung, ovarian and prostate 
cancer, showing the correlation between the expression 
of ABCC1 and poor patients’ outcome[60]. It has been 
suggested that ABCC1 expression may confer resistance 
to methotrexate, vinca alkaloids, anthracyclines and 
camptothecins[47,61,62], influencing drug resistance in 
plethora of cancers. Additionally, cyclic nucleotides and 
their analogues (e.g., gemcitabine) may be transported 
by ABCC4 and ABCC5[62-64], potentially contributing to 
their ineffectiveness in PDAC therapy.

Resistance to doxorubicin, mitoxantrone, anthracyc
lines and topotecan (quinolone topoisomerase inhibitor)[65] 
has been attributed to ABCG2 transporter[66,67], which 

treatment-induced increase in ABCB1 expression has 
been noted in acute myeloid leukaemia (AML)[54], breast 
and high-grade bladder cancer[55]. ABCB1 is known 
to be responsible for developing drug resistance to 
neutral and cationic hydrophobic compounds, e.g., to 
anthracyclines (daunorubicin, doxorubicin), colchicines, 
taxanes (paclitaxel, docetaxel), vinca alkaloids (e.g., 
vincristine, vinblastine) and tyrosine kinase inhibitors 
(imatinib)[56-58]. 

The main role in xenobiotic transport and drug 
resistance in many cancers has been attributed to the 
ABCC subfamily of transmembrane transporters[59], 
with 9 out of 12 members being involved in MDR[47,59]. 
The most studied of MDR proteins, ABCC1 (MPR1) 

ABC transporter Tissue expression Cancer overexpression Correlation with PDAC 
survival (5-yr survival)

ABCA
   ABCA1 Lung, colon, liver, brain,  testicles Glioma, lung, testis, liver, colorectal, breast, renal 

cancer,
H: 21%
L: 29%

   ABCA7 Bone marrow, brain, kidney, colon, lung pancreas Melanoma, Lung, cervical, stomach, endometrial, 
colorectal, pancreatic cancer

H: 38%
L: 0%

ABCB
   ABCB1 Brain, blood-brain barrier, colon, liver, kidney, 

testis, placenta, small intestine, pancreas
Ovarian, breast, colon, kidney, adrenocortical 

cancer, AML
H: 34%
L: 20%

   ABCB4 Liver Liver, lung, renal cancer, melanoma H: 49%
L: 22%

ABCC
   ABCC1 Kidney, colon, pancreas, lymph nodes, liver, testis, 

brain, blood-brain barrier, breasts, spleen,
Breast, lung, ovarian or prostate cancer, 

neuroblastoma
H: 13%
L: 43%

   ABCC2 Brain, lymph nodes, liver, colon, kidney, lung, 
testis, breasts, pancreas

Colorectal, liver, lung, gastric cancer H: 29%
L: 27%

   ABCC3 Pancreas, liver, lymph nodes, lung, adrenal glands, 
colon, testis, spleen, small intestine

Pancreatic, liver, lung, colorectal, stomach, renal, 
breast cancer

H: 13%
L: 41%

   ABCC4 Brain, testis, colon, kidney adrenal glands, 
pancreas, liver, ovary, lung, spleen, breasts, skin, 

heart

Prostate, renal, lung, breast, ovarian, stomach 
cancer

H: 32%
L: 23%

   ABCC5 Lymph nodes, pancreas, kidney, testis, brain, 
colon, liver, heart, muscles

Lung, urothelial, breast, cervical, renal cancer, 
glioma

H: 34%
L: 0%

ABCG
   ABCG1 Pancreas, liver, colon, kidney, brain, lung, lymph 

nodes, testis
Lung, renal, breast, endometrial, prostate, 

colorectal, cervical, pancreatic cancer, glioma
H: 34%  
L: 0%

   ABCG2 Intestine, testis, colon, placenta, liver, kidney, small 
intestine

Liver, testis, prostate, renal cancer, glioma H: 32%
L: 23%

   ABCG4 Brain, endocrine, testis, colon, liver, kidney Glioma, melanoma, thyroid, head and neck, renal, 
testis, ovarian, endometrial cancer

H:43%
L: 23%

Table 1  Selected ATP-binding cassette transporters, their normal physiological expression and overexpression in cancer tissues[117,171]

The correlation between the overexpression of the transporters in PDAC and observed 5-year survival is also demonstrated[117]. H: High expression of 
the transporter; L: Low expression of the transporter. Statistically significant association is highlighted in bold. AML: Acute myeloid leukaemia; PDAC: 
Pancreatic ductal adenocarcinoma; ABC: ATP-binding cassette.

TMD

NBD

ATP
ADP Pi

NBD

TMD
TMD TMD

ATP

ATPATP

TMD

NBD NBD

TMD
TMD

NBD NBD

TMD

Figure 1  The schematic presentation of the mechanism of ATP-mediated ATP-binding cassette transporter substrate translocation. TMD: Transmembrane 
domain; NBD: Nucleotide-binding domain.
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functions mainly in the ovaries, brain, liver, prostate, 
placenta and small intestine[68]. Additionally, increased 
ABCG2 expression has been reported in pluripotent 
stem cells, suggesting its role in the maintenance and 
protection of stem cells[69]. 

Regardless of the remarkable increase in the 
knowledge on the ABC transporters structure and 
MDR induction achieved in the past few decades, 
the actual function and significance of these proteins 
is highly underexplored. It is known that in healthy 
physiology, ABC transporters are involved in drug 
absorption, distribution and elimination, determining 
bioavailability of administered drugs. Both apical and 
basolateral membranes of gastrointestinal tract and 
biological barriers, in which ABC transporter expression 
has been demonstrated, need to be penetrated by the 
drug to reach its target. Therefore, ABC transporters 
expression may influence pharmacokinetic characte
ristics of administered chemotherapeutics. Additionally, 
various other physiological roles have been assigned 
to ABC transporters such as export of fatty acids, 
cholesterol, peptides, sterols and xenobiotics. Many 
ABC transporters are involved in secretion of bioactive 
molecules and in the transport of signalling lipids, 
which contribution to cancer progression has been 
well established. As an example, ABCA1 is involved in 
reverse cholesterol transport as well as phospholipids 
transport to plasma membrane[70,71]. Interestingly, 
recent studies demonstrated ABCC1 as an active player 
in progression of ovarian and prostate cancer[72,73], by 
extrusion of lipids (lysophosphatidylinositol, sphingosine 
1-phosphate) that have been previously attributed 
a crucial role in carcinogenesis[73,74]. The changes 
in cancer cell proliferation, migration, invasion and 
resistance to apoptosis mediated by the activity of ABC 
transporters have been also widely documented[75]. 
Considering that information, attention has been 
brought to the pivotal role played by ABC transporters 
in carcinogenesis beyond chemoresistance and to 
the correlation between their expression with cancer 
progression and aggressiveness. Nevertheless, this area 
is still overlooked and more studies need to be focused 
on this aspect of ABC transporters’ activity in order to 
fully elucidate their role in cancer. 

ABC TRANSPORTERS- DRIVERS OF 
PDAC PROGRESSION?
There have been very limited studies on the role and 
expression of ABC transporters in pancreatic cancer; 
however, strong correlation between few of their 
members and PDAC has been recently suggested. 
On the basis of mRNA analysis, the expression of 
ABCC1, ABCC3, ABCC4, ABCC5 and ABCG2 in both 
pancreatic cancer samples and in healthy pancreas has 
been demonstrated[76,77] and was correlated with cell 
resistance to commonly applied chemotherapeutics[78]. 
At the same time, ABCC6, ABCC8 and ABCC9 could not 

be detected in any of the studied pancreatic cancer cell 
lines[79]. Furthermore, more in depth analysis showed 
that although ABCG2, ABCC1 and ABCC4 levels did not 
differ significantly between tumour and healthy tissues, 
ABCC3 and ABCC5 were found to be remarkably 
overexpressed in PDAC specimens. Moreover, although 
expression of none of them could be coupled with 
cancer stage, the differentiation status and tumour 
grading were related with increased ABCC3 levels 
and correlated with poor survival, whereas no such 
correlation could be found for ABCC5. 

ABCC3 transporter is involved in transporting of bile 
salts and organic ions[80,81]. It has been also implicated 
in mediation of drug resistance, e.g., to vincristine, 
methotrexate or etoposide; compounds used in clinical 
studies for PDAC treatments, which demonstrated only 
marginal effects[82]. Moreover, its expression levels have 
been correlated with survival of patients after resection, 
suggesting possible predictive aspect of ABCC3 
expression in PDAC.

ABCC5 is involved in transport of nucleotide 
analogues; therefore, it is tempting to speculate its 
involvement in excessive efflux of nucleotide analogues-
based drugs, such as 5-FU or gemcitabine. In fact, 
although still controversial, it has been shown that 
ABCC5 is responsible for gemcitabine resistance in 
pancreatic cancer[64,79,83]. Analysis of PDAC specimens 
demonstrated overexpression of ABCC5 transporter 
in samples resistant to gemcitabine, suggesting its 
involvement in the decreased efficiency of the drug. 
Furthermore, exposure of different PDAC cell lines to 
gemcitabine, as well as 5-FU/gemcitabine combination 
significantly increased the expression of ABCC5 
demonstrating drug induced mechanism of PDAC cell 
resistance to the treatment[79,84]. Therefore, although 
not directly associated with PDAC progression, the 
importance of ABCC5 in PDAC chemoresistance, both 
inherent and acquired, makes it a valuable drug target 
for the enhancement of the efficacy of applied therapies. 

While the role of ABC transporters in mediating 
chemoresistance is well established, little is known 
about their direct, drug-efflux independent contribution 
to pancreatic cancer progression. Nevertheless, 
intensive studies in recent years suggest that beyond 
their role in drug resistance, the biological functions 
of ABC transporters are more complex. It has been 
proposed that tumour-promoting functions of ABC 
transporters are based on their ability to export active 
signalling molecules and hormones, which by autocrine 
or paracrine regulation activate cancer cells as well 
as tumour environment. Increasing interest in this 
area has demonstrated the significant impact of these 
proteins on invasion, migration and differentiation of 
malignant cells[75]. Also, changes in metabolism as 
well as redox status, characteristics pivotal in PDAC 
tumorigenesis, may be induced by ABC transporters-
released molecules. 

One of the major events in PDAC development 
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is the metabolic switch, which occurs in response to 
decreased nutrient and oxygen supply[85-87]. Increased 
glucose dependence and use or aerobic glycolysis for 
energy production, known as Warburg effect, allows 
quickly proliferating PDAC cells to survive under harsh 
conditions and is considered as one of the hallmarks 
of cancer[88]. Additionally, glutamine dependence and 
increased protein breakdown add to cancer cell high 
proliferative abilities. However, a small population 
of cells with stem-like characteristics, which reside 
the areas of the tumour lacking oxygen and glucose 
supply, are known to rely on mitochondrial oxidative 
phosphorylation rather than glycolysis, which results 
in increased ATP production. This phenomenon may 
add to increased activity of ABC transporters observed 
in cancer cells. Therefore, low oxygen and nutrient 
supply may contribute to PDAC resistance by increase 
of the ABC transporters levels and their ATP-dependent 
substrate transport, suggesting a possible mechanism of 
hypoxia-induced chemoresistance, tumour maintenance 
and cancer progression. 

Apart from glucose and glutamine addiction, 
increased lipid metabolism and demand has been 
recently demonstrated for PDAC[89,90]. Bioactive 
phospholipids are directly involved in the induction 
of cancer cell proliferation and thereby, cancer 
progression[91]. Increase in the levels of saturated 
lipids helps cancer cells to acquire additional resistance 
to oxidative stress by consolidating the membranes. 
Both, de novo lipid synthesis and their increased 
uptake have been reported in PDAC[92,93]. Moreover, 
enzymes involved in lipolysis and lipogenesis are 
overexpressed in PDAC and are usually correlated 
with poor prognosis[90]. It has been demonstrated by 
our work that, in prostate and ovarian cancer, ABCC1-
transported lysophosphatidylinositol activates GPR55 
receptor forming an autocrine loop, which activation 
triggers signalling cascade inducing cell proliferation[72]. 
Phospholipids transport has been also reported for 
another member of ABC transporter family, ABCG1. 
Therefore, it is tempting to suspect the existence 
of a similar mechanism, involving ABC transporter-
mediated phospholipid activation of cancer cells in 
PDAC. An essential factor in PDAC cell survival is also 
cholesterol availability. As a component of lipid rafts, 
it influences membrane composition and integrity and 
interacts with membrane-bound proteins, facilitating 
activation of phosphorylation cascades[90]. The essential 
role played by cholesterol in PDAC tumorigenesis limits 
the growth and division of PDAC cells, depending 
on its availability[94]. A recent study by Mohelnikova-
Duchonova et al[95] showed an upregulation in transcript 
levels of several ABC transporters in PDAC compared 
to non-neoplastic tissues. Particularly, upregulation of 2 
members of ABCA family, ABCA1 and ABCA7 involved in 
cholesterol export, together with expression of ABCG1 
transporting phosphatidylserine, phosphatidylcholine 
and sphingomyelin, suggests their involvement in 
cellular cholesterol imbalance in the disease[95]. Another 

of the characteristics of PDAC is the highly inflammatory 
environment, which actively promotes cancer cell 
proliferation and survival, angiogenesis and assists the 
metastatic spread[96]. Chronic inflammation, that aids 
the tumorigenesis and at the same time is one of the 
main factors contributing to its initiation, is mediated 
by prostaglandin-mediated pathways. Therefore, the 
main inflammatory molecules- prostaglandins and 
leukotrienes are considered as significant players in 
PDAC development. The prostaglandin-mediated PDAC 
progression may involve activation of PI3K-Akt signalling 
pathway, a major player in PDAC progression, increase 
in VEGFA expression and stimulation of angiogenesis 
and support of the inflammatory environment[97]. It 
is now known that several ABC transporters, mainly 
belonging to the ABCC subfamily (ABCC1, ABCC2, 
ABCC4) are involved in prostaglandins efflux outside 
of the cells, enabling the activation of the G protein-
coupled receptors, triggering cancer progression[75,98]. 
Therefore, the manipulation of ABC transporter 
activity blocking prostaglandin signalling represents an 
additional potential therapeutic tool. Additionally, due 
to the proved contribution of leukotriene C4 (LTC4) to 
PDAC progression[99], its induced pathways have been 
widely studied as potential drug targets. Regarding 
the involvement of ABC transporters in leukotriene 
release, their inhibition presents an additional possibility 
for LCT4-signalling blockade, influencing cancer 
development.

Elevated levels of reactive oxygen species (ROS), 
inducing oxidative stress are also implicated in PDAC 
initiation and progression[100]. One of the molecules 
responsible for the maintenance of redox status in 
homeostasis is glutathione (GSH)[101], which transport 
is activated in response to oxidative stress. It is also 
involved in several signalling processes regulating 
cell proliferation, apoptosis or immune response. 
Several members of ABCC family (ABCC1, ABCC2, 
ABCC3, ABCC4, ABCC5, ABCC7) and ABCG2 mediate 
glutathione transport, suggesting their involvement in 
cellular response to the oxidative stress. Also, ABCB10 
has been implicated in cellular protection from oxidative 
stress[102]. Moreover, oxidative stress induces the 
activation of NF-kB and Nrf2 signalling, which in turn 
enhances expression of ABCB1, ABCG2 and ABCC2, 
additionally contributing to cancer cell resistance[103,104]. 
Therefore, manipulation of the activity of ABC 
transporters in cancer cells might potentially increase 
their antioxidant capacity, which has been shown to 
provide additional anti-tumorigenic protection[105].

Additionally, tumour environment and its engagement 
in cancer progression and metastatic spread has 
emerged as key player in carcinogenesis. Considering 
the significant role of stroma in PDAC progression and in 
the development of tumour chemoresistance, targeting 
its components presents a tempting approach in the 
development of novel therapies. However, the attempts 
to deplete stroma have not provided satisfactory results 
so far. The most promising combination of gemcitabine 
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and Hedgehog inhibitor IPI-926-03 tested by Olive 
et al[106] has failed due to high toxicity and lack of 
effectiveness in clinical trials[107]. Currently, molecules 
targeting hyaluronic acid, combined with chemotherapy, 
are being tested in phase II and III clinical trials[108]. 
Nevertheless, investigation of new approaches to target 
stroma in order to increase chemotherapy efficiency, as 
well as restraining tumour expansion remains essential. 
Recently, expression of several of ABC transporters in 
PDAC stroma has been reported. One of the main stromal 
components- macrophages- have been demonstrated 
to express several of the drug transporters, inter alia 
ABCC1 and ABCC3, contributing to both chemoresistance 
and tumour progression[109]. Therefore, considering the 
involvement of ABC transporters in chemoresistance and 
an emerging role in tumorigenesis, therapies targeting 
ABC transporters might prove to be useful in depleting 
or reprograming cancer stroma and reversing cancer 
resistance to applied drugs. Additionally, expression of 
few of ABC transporters in non-neoplastic tissues has 
been recently reported to influence PDAC progression 
and to be predictive of patients’ overall response.

Finally, the most aggressive tumours are composed 
of non-differentiated cells possessing highly proliferative 
abilities[75], called cancer stem cells (CSCs). In particular, 
the existence and high importance of CSCs in cancer 
resistance to chemotherapy and its involvement in 
disease recurrence has been suggested for PDAC. 
Interestingly, high expression of ABC transporters has 
been reported in less differentiated tumour zones, 
conferring them a more aggressive phenotype[110-112], 
also in PDAC[76]. Therefore recently, the interest in CSCs 
as drivers of resistance and aggressive nature has 
emerged in PDAC[113,114]. A noticeable characteristic of 
cancer stem cells is the high expression of members 
of the ABC transporters family compared to more 
differentiated cells[115]. Also, it is speculated that their 
expression profile may be considered as the indicator 
of stem cell formation and carcinogenic potential 
of the tissue[116]. Considering the association of cell 
differentiation levels with its proliferative potential, the 
overexpression of ABC transporters in cancer stem 
cells highly supports their contribution to the more 
aggressive nature of the PDAC. Overexpression of ABC 
transporters in cancer stem cells may assist in their 
survival by efflux of xenobiotics, exhibiting protective 
roles, sustaining their proper performance and 
maintaining self-renewal characteristics. Additionally, 
their enhanced expression and activity in cancer cells 
and especially in CSCs, suggests an additional role in 
maintaining cancer cells aggressive biology and makes 
them an attractive therapeutical target. 

ABC TRANSPORTERS EXPRESSION 
PROFILES AS PROGNOSTIC MARKERS IN 
PDAC
Although the investigation on the role of ABC transporters 

in PDAC is still in its outset, the initial analysis suggests 
their probable contribution to PDAC development and 
points at potential beneficial clinical consequences. 
Database analysis showed that the high importance and 
the potential of ABC transporters as pharmacological 
targets in PDAC is reflected in the association of the 
expression of its individual members with the prognosis 
of patients’ survival[117]. Notable correlation between 
observed 5-year survival and expression of a majority 
of ABC transporters has been observed (Table 1); 
however, this discovered association is not uniform. 
Significant reduction in survival probability has been 
attributed to high expression of e.g., ABCA1, ABCA12, 
ABCB1, ABCC1, ABCC3 or ABCC7. Expression of 
few other ABC transporters showed similar trend, 
nonetheless, their relationship with the OS was not 
remarkably pronounced. On the other hand, higher 
expression of a substantial number of ABC transporter 
genes has been correlated with increased chance of 
PDAC patients’ survival. Among others, the expression 
of ABCA2, ABCA7, ABCB6 ABCB8, ABCC5 or AGCG1 in 
PDAC tissues most markedly correlated with prolonged 
5-year survival, suggesting their-mediated release 
of molecules of anti-tumorigenic characteristics and 
favourable prognostic potential. 

Considering the elevated expression of multiple 
ABC transporters in a vast majority of cancers and 
their redundancy in substrate specificity and activity, 
determination of their expression profiles and their 
clustering in prognostic groups, rather than analysis 
of individual members, also raised a lot of interest 
in the last years. The existence of ABC transporters 
expression signatures in PDAC and their correlation 
with clinic-pathological characteristics of the tumours 
has been studied by Mohelnikova-Duchonova et al[95], 
and dysregulation of expression of several members 
of ABC family has been observed. Upregulation of 
ABCB4, ABCB11, ABCC1, ABCC3, ABCC5, ABCC10 and 
ABCG2 has been noted in PDAC, compared to non-
neoplastic tissues. Surprisingly however, expression 
of few ABC transporters in non-neoplastic tissues 
also could be correlated with tumour progression and 
survival. Moreover, higher levels of T3 and T4 stages 
were associated with ABCA1 and ABCB3 upregulation 
and ABCG1 and ABCG2 downregulation. In contrast, 
smaller size tumours were connected with the cluster, 
in which ABCA8, ABCB5, ABCA9, ABCA10 and ABCC9 
were upregulated, while downregulation of ABCA12, 
ABCA13, ABCC3, ABCC7 and ABCC13 has been noted. 
Similarly, ABCB9 and ABCC4 upregulation correlated 
with N1 status, while ABCA3, ABCD1 overexpression 
and ABCA6 and ABCC10 downregulation corresponded 
with increased angioinvasion. 

This and previous studies demonstrated the 
correlation of ABC transporter expression in tumour 
specimens with clinic-pathological features in different 
cancer types[118]. Nevertheless, the high importance of 
tumour microenvironment and its proposed involvement 
in PDAC progression, suggests that ABC transporter 

Adamska A et al . ABC transporters in PDAC therapy



3229 August 7, 2018|Volume 24|Issue 29|WJG|www.wjgnet.com

expression in non-neoplastic tissues might have important 
clinical implications. Following the analysis of 27 non-
neoplastic pancreatic tissues and pairing them with 32 
PDAC samples, 4 different clusters could be distinguished 
based on the gene expression profiles in cancer vs normal 
specimens. PN1 and PN2 clusters were characterized 
by upregulation of the majority of ABC transporters 
genes and correlated with significantly shorter patients’ 
overall survival (OS) than patients grouped into PN3 
and PN4 clusters, in which significant downregulation 
of genes or heterogeneous gene expression has been 
observed[119]. Especially, ABCA2, ABCA4, ABCA5, ABCC2 
and ABCD4 signatures showed significant difference in 
patients’ survival when comparison between upregulated 
and downregulated genes was carried out. Additionally, 
tumour-node-metastasis, age, gender, disease stage, 
margin status, therapy and survival have been analysed; 
however, no significant correlation between those features 
and ABC profiles could be established. Although the 
study presented few limitations, such as small group size 
or the distance between collected tumours and control 
tissue, created expression clusters could be successfully 
implemented into clinical practice. Moreover, reduction 
of the analysed genes to the limited group showing 
most distinct expression, did not have any impact on 
the statistical significance of observed clinic-pathological 
correlations, creating more practical and convenient 
clinical prognostic tools.  

ABC TRANSPORTERS IN CANCER 
THERAPY
Looking at the key role played by ABC transporters in 
cancer chemoresistance and the emerging knowledge 
on their crucial contribution to tumorigenesis, the 
development of targeted therapies, aiming to block or 
modulate their activity has become a crucial area in 
cancer research. Inhibition of transporter activity, arrest 

of the transcription factors regulating their expression or 
blockade of the transporter-induced signalling pathways 
represent the options for impeding ABC transporters 
activity[120]. So far, 3 generations of ABC transporters 
modulators, directed mainly against ABCB1, have 
been developed[120,121] (Table 2). The first generation 
inhibitors, such as verapamil, quinine or cyclosporine 
A, compounds previously established for other 
conditions, in spite of promising in vitro activity[122,123], 
showed significant toxicity, unacceptable for further 
usage[123,124]. Lack of potency and specificity, combined 
with pharmacokinetic complications restrained their 
further investigation[125]. Structural modifications of 
existing inhibitors, aiming to enhance their efficacy 
and specificity, at the same time decreasing observed 
adverse effects, also did not provide satisfactory 
results. Valspodar (cyclosporine A derivative), a second 
generation ABCB1 inhibitor, demonstrated enhanced 
efficiency accompanied by decreased toxicity[126]. 
However, it showed unsatisfactory results in the 
majority of clinical trials, in which its co-administration 
with chemotherapeutics, e.g., carboplatin, paclitaxel 
or doxorubicin did not exhibit any benefits, and in 
some cases deteriorated patients’ outcome[127,128]. 
Likewise, application of dofequidar or biricodar citrate 
(VX-710)[129] did not result to be favourable, as their use 
has been restricted by the potential interactions with 
anti-cancer therapeutics (vincristine or paclitaxel)[130]. 
All these limitations led to the development of a third 
generation of inhibitors which potency, due to the 
rational QSAR design, has been described as 200-fold 
higher than the previously developed anti-ABCB1 
molecules, greatly enhancing drug accumulation[131]. 
Additionally, only minimal drug-drug interactions have 
been reported. Clinical trials have been commenced 
for zosuquidar (LY335979)[132], elacridar (F12091)[133], 
mitotane (NSC-38721)[134], annamycin[135] or tarquidar 
(XR9576)[136]. Nevertheless disappointingly, most of 
the clinical trials testing their applicability have been 

Table 2  Selected ATP-binding cassette transporters responsible for the development of multi-drug resistance, their experimental 
inhibitors and drug specificity

ABC transporter Inhibitor MDR Ref.

ABCB1 I generation:Cyclosporine A, Verapamil Daunorubicin,  epirobicin, doxorubicin, 
colchicines, paclitaxel, docetaxel,  vincristine, 

vinblastine, imatinib

[46,145,146,171]
II generation: Valspodar, zosuquidar
III generation: Tariquidar, OC144-093

ABCC1 MK571, probenecid, ibrutinib, 3ATA Anthracyclines, vinca alkaloids, camptothecins, 
daunorubicin, imatinib, etoposide, vincristine, 

vinblastine, methotrexate

[46,145,146,172]

ABCC2 Metothrexate, cyclosporine A, fluorescein, MK571 Doxorubicin, cisplatin, irinotecan, epirubicin, 
vinblastine

[46,145,146,171,173]

ABCC3 Indomethacin, sufinpyrazone, probenecid, 
benzmromarone

Etoposide, methotrexate, teniposide [46,145,146,171,173]

ABCC5 Curcumin, trequensin, sildenafil Gemcitabine, methotrexate, 6-mercaptopurine [46,145,146,171,173]
ABCG2 Fumitremorgin C, Ko143, GF120918 Daunorubicin, doxorubicin, irinotecan, 

mitoxantrone, methotrexate, epirubicin, 
etoposide

[46,145,146,171]

MDR: Multi-drug resistance; ABC: ATP-binding cassette.
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discontinued due to lack of significant positive response 
and off-site effects.

There are several reasons for the lack of success of 
the ABC transporters inhibition. Increased toxicity caused 
by off-target action in healthy tissues, as well as their 
high doses were the main reasons for the discontinuation 
of the trials for first and second generation inhibitors[42]. 
Increasing evidence of substrate similarities between 
ABC transporters and CYP450, enzyme involved in drug 
metabolism, suggests interactions of tested compounds 
with the enzyme, which influences pharmacokinetic 
properties of co-administrated chemotherapeutics, 
changing their activity, lowering the efficacy and, as 
a consequence, increasing the toxicity[137]. Therefore 
single-agent application of ABC transporters inhibitors 
should be considered in future research. Another 
reason for high toxicity of these modulators has been 
attributed to decreased clearance of anticancer agents 
and natural xenobiotics caused by unspecific blockade 
of the transporters. As an example, ABCB1 inhibition, 
apart from cancer cells may also result in its blockade 
in canalicular membrane in healthy liver or kidney, 
reducing the clearance of chemotherapeutics[42,138]. The 
involvement of some of the ABC transporters (mostly 
ABCB and ABCC subfamilies) in the immune system is 
another obstacle, as disruption of its proper functioning 
may result in undesirable deterioration in anti-cancer 
immune responses[139]. The ineffectiveness of targeted 
therapies may also lay in the functional redundancy of 
several ABC transporters, highly impairing full efficiency 
of the blockade of individual protein. Another limitation 
in the presented approach has been the fact that the 
vast majority of studies have been focused on ABCB1. 
Nevertheless, with increasing evidence of the role of 
other ABC transporters in cancer, the inhibitors of ABCC1 
(e.g., probenecid, sulindac, biricodar, BAY-u9773 or 
MK571)[129,140-142], ABCG2 (Ko143, fumitremorgin C, 
genistein, biochanin A)[143,144] or ABCC3 (indomethacin 
or sulfinpyrazone)[145,146] have been considered (Table 
2). However, some of them similarly to ABCB1 blockers, 
exhibited unfavourable toxicity levels when combined 
with chemotherapy. Additionally, several non-selective 
ABCB1 inhibitors have been tested for their activity 
towards other ABC transporters[146]. Nonetheless, as the 
interest in ABC transporters increased only recently, the 
efficacy of the abovementioned therapeutic approach 
still needs to be evaluated. Also, the majority of the 
studies conducted so far have been focused on the 
reversal of chemoresistance rather than influencing 
cancer progression. However, current knowledge on the 
additional, or maybe principal role of ABC transporters 
in tumorigenesis might shed more light on the basis 
of current inhibitors toxicity as well as could allow for 
exploration of novel more specific molecules, aiming at 
slowing down cancer progression, rather than reversing 
MDR.

Considering the marginal effectiveness of ABC trans
porters inhibitors achieved so far, alternative concepts for 
ABC transporters targeting are being tested (Figure 2). 

RNA interference, use of monoclonal antibodies, antisense 
oligonucleotides or the use of transcription regulators 
is currently under consideration[147-150]. miRNA use has 
been also claimed as a possible way for ABC transporter 
regulation and reversal of chemoresistance[151,152]. As 
crucial players in carcinogenesis, also confirmed in PDAC, 
miRNA regulation has been proposed as an interesting 
therapeutic tool[153]. To date, several miRNAs have 
been reported to inhibit the expression of different ABC 
transporters, having chemotherapeutic effects[154-156]. 
Moreover, it has been demonstrated that tyrosine kinase 
inhibitors may block ABC transporters by binding to their 
transmembrane domain at substrate-binding sites[157]. 
Imatinib, nilotinib, sunitinib or lapatinib, drugs tested for 
the PDAC therapy independently of their ABC-inhibiting 
properties, have been demonstrated to block ABCB1, 
ABCC2 or ABCC10[158-161]. However, this approach also 
needs further evaluation. 

Currently, the use of nanoparticles for the delivery 
of therapeutics to the target cells has emerged as a 
growing area of interest[162,163]. Their small size, together 
with increased surface area, enhances the stability and 
solubility of the administered drugs, improving their 
bioavailability[164]. Additionally, controlled, prolonged 
release and protection form degradation present 
further advantages of that therapeutic approach. Co-
delivery of the inhibitors of ABC transporters and 
chemotherapeutics with the use of nanoparticles is also 
applied to minimize observed side effects occurring as 
a result of drug-drug interactions. Nevertheless, the 
emerging field of the manipulation of ABC transporter 
activity for therapeutic purposes is still in its outset 
and more studies are needed to fully assess their 
pharmacological potential. 

DISCUSSION
In the last years, ABC transporters have attracted 
remarkable attention of researchers from different 
scientific areas. The role of ABC transporters in different 
physiological and pathological conditions, including 
cancer, has been widely reported, increasing the interest 
in the development of their specific inhibitors. Especially, 
the well-known involvement of ABC transporters in 
the development of multi-drug resistance (MDR) led 
to the investigation of the potential of its reversal by 
blocking ABC transporter activity. Clinical relevance 
of several ABC transporters in multi-drug resistance 
reversal has been primarily attributed to P-gp, ABCG2, 
ABCB4 and 4 members of ABCC subfamily- ABCC1, 
ABCC2, ABCC3 and ABCC4[165]. Therefore, the main 
focus so far has been placed on these proteins in terms 
of their pharmacological potential. However, in spite 
of the initial enthusiasm regarding ABCB1 inhibitors, 
their efficacy in clinical settings has failed to provide 
any improvements, leading to the early closure of the 
trials[166,167]. Considerably high toxicity caused by lack of 
specificity and changes in pharmacokinetic of co-applied 
chemotherapeutics, decreasing their efficacy were 
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some of the reasons for the disappointing results[168]. 
The successful implementation of developed inhibitors 
was strongly impeded by the complexity of ABC 
transporters functioning. The correlation between cancer 
chemoresistance and ABC transporters expression 
is two-sided and forms a specific loop, which may 
increase cancer resistance to applied therapies. On one 
hand, their expression contributes to enhanced drug 
efflux from the cells, diminishing their efficacy, on the 
other hand, many studies have reported increased 
expression of the transporters, induced by drugs 
application, complementing formed loop. Therefore, 
in spite of the enhancement of drug accumulation and 
reversal of induced chemoresistance demonstrated in 
vitro, little success has been reported during clinical 
trials. Also, increased toxicity and insufficient potency 
observed during clinical trials restrained the majority of 
tested compounds from the clinical use. Additionally, 
the majority of carried clinical trials were performed 
on patients previously treated with several anticancer 
therapeutics. Therefore, the assessment of the protein 
levels might have been misevaluated due to drug-
induced enhancement of expression of ABC transporters. 
Moreover, several of the studies were designed without 
proper patient stratification for ABC transporters 
expression. As an example, little success rate in 
ovarian cancer patients, might be explained by low 
expression rate of P-gp in this tumour type[127]. Although 
reversal of the drug resistance was the principal goal 
of ABC-targeted therapies, considering the increasing 
awareness of the pivotal role of ABC transporters beyond 
chemoresistance, their specific inhibition might not only 
aid to increase the activity of other therapeutics, but 
directly balk tumour development and progression[56], 
encouraging their further exploration. Therefore, the 
repertoire of ABC transporters against which inhibitors 
are being developed should be expanded for those 
playing an active role, not only in MDR, but in the 

expulsion of bioactive molecules. Looking at the wide 
variety of substrates transported by ABC transporters, 
together with their increased expression in cancer 
cells and especially cancer stem cells, the role of these 
proteins in the transport of signalling molecules, which 
activity promotes cancer progression, has become an 
area of interest. High impact of bioactive lipids, including 
phospholipids, sphingolipids or cholesterol on PDAC 
tumorigenesis and an emerging role of ABC transporters 
in their release presents a novel opportunity for targeting 
the disease. It has been previously demonstrated that 
one of the hallmarks of PDAC is lipid-dependence and 
that the decrease of the lipids levels may reduce cancer 
progression. Accordingly, aiming to block specific ABC 
transporters responsible for their extrusion, mainly 
members of ABCA and ABCC subfamilies, and depriving 
cancer cells of the necessary fuel may highly contribute 
to slowing down PDAC development. In fact, it has been 
demonstrated in several cancers that targeting of ABC 
transporters involved in lipid transport (e.g., ABCC1 in 
prostate or ovarian cancer or ABCC4 in neuroblastoma) 
showed significant improvement in in vitro and in 
vivo models[75], slowing down cancer progression. 
Therefore, single-agent therapies based on ABC trans
porter inhibition should be considered to target cancer 
progression. Moreover, patients’ treatment with ABC 
transporters single inhibitors would eliminate the risk 
of drug-drug interactions, reducing the risk of adverse 
events.

Importantly, the expression of ABC transporters may 
not only be explored in terms of their pro-tumorigenic 
activity but may also serve as prediction of therapy 
efficiency and patients’ outcome. Database analysis 
demonstrated strong influence of the expression of 
the transporters e.g., ABCC3 or ABCC1 on reported 
5-year survival. However, positive association of other 
transporters (e.g., ABCC5 or ABCA7) with the increased 
survival demonstrates the complexity of the role of ABC 
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Figure 2  Pharmacological approaches towards inhibition of ATP-binding cassette transporters. MDR: Multi-drug resistance; PDAC: Pancreatic ductal 
adenocarcinoma; ABC: ATP-binding cassette; TK: Tyrosine kinase.
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transporters in PDAC tumorigenesis. It also shows the 
necessity for enhanced research in this area to fully 
understand and explore the therapeutic potential of 
these transmembrane proteins in PDAC therapy. The 
enhancement of chemotherapy efficacy, e.g., by ABCC5 
blocking, has been demonstrated for the gemcitabine-
based therapies. However, considering the favourable 
association of this transporter with PDAC patients’ 
survival, it is tempting to speculate that its inhibition 
might interfere with some of the protective functions 
that ABCC5 might exhibit and, as a consequence, 
deteriorate patients’ outcome. Also, despite being 
overexpressed in a majority of cancer types, the 
role of ABC transporters is not uniform. Negative or 
positive correlation of the protein expression and 
survival observed in PDAC patients, is not invariably 
reflected in other cancer types. As an example ABCA7, 
expressed at a similar level in pancreatic and lung 
cancer, although positively correlated with 5-year 
survival in the PDAC (38% high expression vs 0% low 
expression), has no statistically significant effect in the 
latter case (48% vs 43%)[117]. Therefore, studying the 
context accompanying ABC transporters expression and 
functioning is of high importance in order to stratify their 
individual members in context of their pharmacological 
potential in diverse cancers. Additionally, the focus of 
research should not be placed only on the potential of 
the inhibition of ABC transporters that have undermining 
roles in carcinogenesis. Hence, the investigation of the 
characteristics of the ABC transporters that favour the 
survival of PDAC patients should be also explored to 
study the mechanisms and molecules responsible for 
their protective function. 

Finally, ABC transporters profiling in cancer has 
proven to provide a potent tool in estimation of patients’ 
response to applied therapies. As an example, analysis 
of 21 breast cancer specimens before and after 
neoadjuvant treatment showed different expression 
of several ABC transporters[169]. Similarly, 6 ABC 
transporters genes in AML samples allowed for their 
organization in two expression groups, correlated with 
resistance and patients’ prognosis[170]. Correspondingly, 
generation of ABC transporter expression profiles in 
PDAC has allowed for creation of clusters, characterized 
by differentiated expression of their individual members. 
Correlation of each cluster with a variety of disease 
parameters (e.g., number of metastases or drug 
response) and more importantly, with patients’ survival 
suggested the gene profiling for ABC transporters 
expression as a clinically relevant prognostic tool. 

CONCLUSION
Although a lot of advancement has been achieved in 
the identification of new druggable targets involved in 
PDAC progression and chemoresistance, no significant 
improvement in transferring that knowledge into 
clinical practice has been accomplished, leaving PDAC 

patients with grim prognosis. As critical players in 
PDAC chemoresistance and disease development, 
ABC transporters seem a promising target for the 
development of novel targeted therapies. However, 
despite their remarkable pharmacological potential 
demonstrated in vitro, acquired knowledge has not been 
successfully implemented in the clinic yet. Nevertheless, 
the knowledge learnt from previous mistakes and 
the potential reasons for the failed implementation 
of the inhibitors should be considered in the develop
ment of new studies and treatments. In the light of 
recent data, the potential of few ABC transporters 
beyond MDR reversal should be further explored to 
fully scrutinize the applicability of ABC transporter 
inhibition for clinical practice. More emphasis on the 
ABC transporters involvement in PDAC progression 
should be placed in prospective studies, leading 
to the determination of the proteins with the most 
pharmacological potential followed by design of single-
agent treatment. The knowledge on the involvement 
of ABC transporters in cancer metabolic swift, their 
role in tumour-microenvironment cross-talk should be 
additionally expanded. Animal models of pancreatic 
cancer should be implemented in the development 
of new potential inhibitors to investigate their impact 
on abovementioned processes. In conclusion, proper 
study design and patients stratification regarding ABC 
transporters expression leading to tailored therapies 
should be elucidated in order to add to the efficiency of 
administered drugs. 
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