
Roles of cholinergic receptors during attentional modulation 
of cue detection

Joshua A Burk

Joshua A Burk, Department of Psychology, College of William 
and Mary, Williamsburg, VA 23187, United States
Author contributions: Burk JA solely contributed to this paper.
Supported by AG030646 and the Jeffress Memorial Trust
Correspondence to: Joshua A Burk, Associate Professor, 
Department of Psychology, College of William and Mary, 540 
Landrum Drive PO Box 8795, Williamsburg, VA 23187, 
United States. jabur2@wm.edu
Telephone: +1-757-2213882  Fax: +1-757-2213896
Received: June 9, 2013           Revised: August 17, 2013
Accepted: September 13, 2013
Published online: December 9, 2013

Abstract
Basal forebrain corticopetal cholinergic neurons are 
known to be necessary for normal attentional process-
ing. Alterations of cholinergic system functioning have 
been associated with several neuropsychiatric diseases, 
such as Alzheimer’s disease and schizophrenia, in which 
attentional dysfunction is thought to be a key contrib-
uting factor. Loss of cortical cholinergic inputs impairs 
performance in attention-demanding tasks. Moreover, 
measures of acetylcholine with microdialysis and, more 
recently, of choline with enzyme-coated microelectrodes 
have begun to elucidate the precise cognitive demands 
that activate the cholinergic system on distinct time 
scales. However, the receptor actions following acetyl-
choline release under attentionally-challenging condi-
tions are only beginning to be understood. The present 
review is designed to summarize the evidence regarding 
the actions of acetylcholine at muscarinic and nicotinic 
receptors under cognitively challenging conditions in 
order to evaluate the functions mediated by these two 
different cholinergic receptor classes. Moreover, evi-
dence that supports beneficial effects of muscarinic 
muscarinic-1 receptor agonists and selective nicotinic 
receptor subtype agonists for cognitive processing will 
be discussed. Finally, some challenges and limitations 
of targeting the cholinergic system for treating cogni-

tive deficits along with future research directions will be 
mentioned. In conclusion, multiple aspects of cholinergic 
neurotransmission must be considered when attempting 
to restore function of this neuromodulatory system.
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Core tip: The corticopetal cholinergic system is critical 
for normal attentional processing. Disruption of this 
system is associated with cognitive deficits in several 
disorders. Thus, restoration of cortical cholinergic neu-
rotransmission represents a reasonable target for treat-
ing some cognitive disorders. Evidence is presented 
that the muscarinic muscarinic-1 receptor and nicotinic 
receptor subtypes appear to be key targets for future 
investigations related to treating cognitive disorders. 
Future research into muscarinic-nicotinic receptor inter-
actions, along with the role of second messenger sys-
tems, is needed to further develop appropriate strate-
gies for restoring cortical cholinergic neurotransmission.
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INTRODUCTION
Cortically-projecting cholinergic neurons originate from 
the nucleus basalis of  Meynert and substantia innominata 
within the basal forebrain[1]. Numerous hypotheses have 
been put forth proposing that the cortical cholinergic sys-
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tem is critical for the selection and subsequent processing 
of  stimuli[2,3]. Several other theories have proposed roles 
for cortical cholinergic inputs in learning and memory[4,5], 
but the focus of  this review will be with regard to the 
contribution of  these pathways to attention. Several 
cortical regions, including prefrontal cortex, posterior 
parietal cortex and some somatosensory cortical areas[6], 
are thought to be sites where acetylcholine can modulate 
neural activity to impact aspects of  attentional process-
ing[2,7,8]. The evidence in support of  these hypotheses has 
come from multiple experimental approaches. 

In rats, intrabasalis infusions of  excitotoxic com-
pounds that preferentially destroyed cholinergic neurons 
tended to produce larger deficits in tasks that placed 
greater demands on attentional processing[9,10]. The im-
munotoxin, 192 IgG-saporin, which destroys cortically-
projecting basal forebrain cholinergic neurons, has been 
an important tool for studying the impact of  loss of  the 
cholinergic system on attention[11]. Intrabasalis infusions 
of  192 IgG-saporin decrease signal detection accuracy 
in attention-demanding tasks[12-14]. Measures of  acetyl-
choline using microdialysis techniques have found eleva-
tions in acetylcholine associated with attention-demand-
ing tasks compared with procedures that control for 
motoric or motivational aspects of  performance[15-17]. 
More recently, enzyme-coated microelectrodes have 
been used to measure choline and acetylcholine re-
lease on a much shorter time scale[18,19]. Experiments 
employing these techniques have shown that there are 
cholinergic transients on different timescales during cue 
detection tasks[20,21]. Moreover, these transients tend to 
occur during a transition from a trial when no signal is 
perceived to a trial when a signal is detected and the ap-
propriate response rules are then activated[22]. Thus, the 
previous evidence has supported the idea that cortical 
acetylcholine contributes importantly to aspects of  cue 
detection and variations in cognitive demands. Despite 
these important findings, the most effective pharma-
cological strategies to activate cholinergic neurons to 
restore normal functioning remain unclear. The goal of  
the present review is to summarize some key findings 
regarding the activation of  muscarinic and nicotinic 
receptors during cue detection and to suggest future 
research areas that may facilitate the development of  
drug treatments aimed at restoring normal cholinergic 
neurotransmission.

ACETYLCHOLINE AND ALZHEIMER’S 
DISEASE: CURRENT CHOLINERGIC DRUG 
TREATMENTS
Alzheimer’s disease is characterized, in early stages, by 
deficits in attentional[23,24] and mnemonic processing[4]. 
Loss of  cholinergic neurons in the basal forebrain has 
been implicated in the cognitive deficits associated with 
Alzheimer’s disease[4,25]. A wide variety of  neuropatho-
logical changes have been noted in Alzheimer’s disease, 

with the major features including the development of  
β-amyloid-induced plaques and neurofibrillary tangles, al-
though the exact contribution of  these features to disease 
progression has remained controversial[26,27]. 

Interestingly, alterations of  cholinergic functioning 
appear to interact with many of  the key neuropatho-
logical changes in Alzheimer’s disease[28]. For example, 
elevated levels of  amyloid-β42 suppresses acetylcho-
line synthesis[29,30]. Immunotoxic lesions of  cholinergic 
neurons alter amyloid precursor protein secretion[31]. 
In animal models, loss of  muscarinic-1 (M1) receptor 
stimulation exacerbates the development of  plaques and 
tangles[32]. Conversely, muscarinic M1/M3 receptor stim-
ulation decreases amyloid-β42 levels[33]. Similarly, recent 
reports have shown that α7 nicotinic receptor agonists 
can also decrease amyloid-β42 levels[34,35]. Thus, the avail-
able evidence suggests, broadly, that there is a negative 
correlation between neuropathological features leading to 
plaques and activity of  the cholinergic system. Thus, it is 
possible that restoration of  optimal cholinergic function-
ing could assist in improving other aspects of  Alzheimer’s 
disease. The relationship between the cholinergic system 
and tangles is less well-characterized. In patients with Al-
zheimer’s disease, choline acetyltranferase-positive basal 
forebrain neurons do show tau pathology[36]. Elevated 
levels of  tau can be neurotoxic to M1/M3-containing 
neurons, an effect thought to be related to the high af-
finity of  tau for these receptors[37]. Activation of  M1 
receptors appears to lessen tau pathology, while nicotinic 
receptor stimulation can exacerbate tau pathology[38]. 
Thus, although cholinergic restoration may be beneficial, 
approaches that provide more modest levels of  choliner-
gic stimulation may limit adverse effects.

Given the loss of  cholinergic functioning in Al-
zheimer’s disease, it is not surprising that restoring these 
pathways has received considerable attention to treat the 
cognitive deficits. Drugs that inhibit acetylcholinester-
ase (AChE), the enzyme that deactivates acetylcholine, 
have been used to treat Alzheimer’s disease. The origi-
nal approved AChE inhibitor approved for treatment 
of  Alzheimer’s disease, tacrine, was associated with a 
relatively high incidence of  side effects, including hepa-
totoxicity[39]. The newer generation of  AChE inhibi-
tors, donepezil, galantamine, and rivastigmine, provide 
modest beneficial effects with a lower rate and severity 
of  side effects compared with tacrine[40]. Additionally, 
a n-methyl-D-aspartate (NMDA) receptor antagonist, 
memantine, has been approved and appears to have ben-
eficial effects when administered later in the progression 
of  Alzheimer’s disease[41]. The limited beneficial effects 
of  the AChE inhibitors may be due to the widespread 
action these compounds have on multiple cholinergic 
receptors. A focus on more specific actions at certain 
cholinergic receptor subtypes may yield improved treat-
ments for the cognitive deficits in Alzheimer’s disease. 
Additionally, efforts to facilitate the action of  acetylcho-
line binding, such as through allosteric receptor agonists 
or compounds that sensitize specific cholinergic recep-
tors, may be beneficial.
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MUSCARINIC RECEPTORS
Five muscarinic receptor subtypes have been character-
ized, M1-M5[42]. The M1, M3 and M5 receptors are pri-
marily coupled to Gq proteins and can upregulate phos-
pholipase C and activate inositol triphosphate, which can 
inhibit potassium currents[43]. The M2 and M4 receptors 
are coupled to Gi or Go proteins, typically having inhibi-
tory effects. The M1 and M2 receptors have been most 
carefully studied with respect to cognition. Generally, the 
M1 receptors are located postsynaptically whereas the 
M2 receptors are most predominantly located in presyn-
aptically, serving as autoreceptors to inhibit acetylcholine 
release[44]. Many experiments have demonstrated that M1 
receptor blockade can impair aspects of  learning and 
memory[45-49]. With regard to attention, a muscarinic M1 
antagonist did not affect performance in a task that re-
quired a simultaneous discrimination when visual stimuli 
were presented in one of  two locations[50]. However, in a 
successive visual discrimination, when a visual stimulus 
is presented (or not) from a single location, M1 receptor 
blockade did decrease performance and this decrease in 
performance was seen at lower doses when a visual dis-
tracter was presented[51]. Thus, the M1 receptor system 
may not be essential when explicit attentional demands 
are minimal, but may be more likely to be recruited as 
task demands increase, such as in a successive discrimi-
nation task[52]. These findings are consistent with other 
results indicating that loss of  cortical cholinergic inputs 
does not yield deficits following manipulations of  any 
single attentional task parameter, but impairments are ob-
served when multiple parameters are adjusted to increase 
explicit attentional demands[53]. Electrophysiological ex-
periments have provided further evidence about neural 
processes that are supported by muscarinic M1 receptors. 
For example, muscarinic M1 receptors are sufficient for 
acetylcholine-induced prolonged cortical pyramidal cell 
excitability and at least partially contribute to transient 
inhibitory and excitatory activity in different cortical neu-
rons[54]. Moreover, M1 receptor deficient mice show less 
of  a shift toward a frequency coupled with stimulation 
of  the basal forebrain, suggesting that the muscarinic M1 
receptor is important for auditory cortical experience de-
pendent plasticity[55]. Collectively, the data provide strong 
support that modulation of  the muscarinic M1 receptor 
critically contributes to several processes that are impor-
tant for normal learning. 

Muscarinic M2 receptor antagonists enhance perfor-
mance in several measures of  working memory, includ-
ing in radial arm maze win-shift and win-stay tasks and 
delayed nonmatching to position tasks[46,56]. Moreover, 
M2 receptor antagonists can enhance memory in aged 
animals[57]. Not surprisingly, M2 receptor antagonists in-
crease acetylcholine release[57,58], although it is unknown 
whether this is the mechanism underlying enhanced 
memory performance following muscarinic M2 receptor 
blockade. Blockade of  muscarinic M2 receptors has also 
been shown to enhance long-term potentiation, which 
may contribute to the reported cognitive benefits of  

drugs that act in this manner[59]. The effects of  musca-
rinic M2 receptor antagonist administration on measures 
of  attention have not been examined. Thus, the extent 
to which attentional enhancement may contribute to the 
memory improvement following muscarinic M2 receptor 
blockade remains unclear.

There is growing evidence that other muscarinic re-
ceptor subtypes contribute to aspects of  cognition. For 
example, muscarinic M3 receptor knockout mice display 
deficits in contextual fear conditioning[60]. The develop-
ment of  more selective muscarinic toxins should greatly 
enhance the ability to study the roles of  specific musca-
rinic receptor subtypes. These toxins have been used to 
show that inhibition of  muscarinic M1 receptors, but not 
M4 receptors, in the dorsomedial striatum disrupts place 
reversal learning[48]. 

NICOTINIC RECEPTORS
When acetycholine binds to nicotinic receptors, release 
of  several neurotransmitters is promoted and several 
processes are activated, including elevation of  intracel-
lular calcium levels[61-63]. There are two predominant neu-
ronal nicotinic receptor subtypes, those containing α4β2 
subunits and those containing the α7 subunit. The α4β2 
subtype has a higher affinity for nicotine compared with 
the α7 subtype[64]. The available evidence suggests that 
α7- and α4β2-subunit containing receptors are located 
pre- and postsynaptically in the brain, with a larger pro-
portion of  these receptors located presynaptically[65,66].

Many experiments have examined the role of  nico-
tinic receptors in attention. There appears to be sharp 
age-related differences in the effects of  nicotine exposure 
on cognition. In rodents, prenatal nicotine exposure pro-
duces attentional impairments[41]. Adolescent nicotine ex-
posure impairs attention[67,68] and learning[69,70]. In adults, 
acute nicotine exposure can have beneficial effects, al-
though nicotine-induced performance improvement is 
occasionally observed during specific task conditions[71,72]. 
Moreover, impairments in attentional performance have 
been reported following nicotinic receptor blockade, 
however, changes in variables thought to reflect nonspe-
cific aspects of  performance have complicated the inter-
pretation of  these data[73,74]. Chronic nicotine exposure, 
on the other hand, appears to robustly enhance perfor-
mance in attention-demanding tasks in rats[75], similar to 
findings in human smokers[76]. 

The exact mechanisms of  nicotine-induced atten-
tional enhancement in adults are beginning to become 
better understood. A recently published experiment failed 
to find effects of  nicotine or a selective nicotinic α4β2 
receptor agonist, S 38232, on a well-trained attention 
task. However, when attentional demands were increased, 
the α4β2 receptor agonist, but not nicotine, enhanced 
attentional performance[77]. Examination of  putative 
cholinergic transients in the prefrontal cortex found that 
the α4β2 receptor agonist produced a faster rise time 
and steeper decay compared with nicotine[77]. Subsequent 
experiments showed that nicotine and blockade of  α7 

86 December 9, 2013|Volume 2|Issue 4|WJP|www.wjgnet.com

Burk JA. Muscarinic and nicotinic receptors



87 December 9, 2013|Volume 2|Issue 4|WJP|www.wjgnet.com

FUTURE RESEARCH DIRECTIONS: 
RESTORING CHOLINERGIC 
NEUROTRANSMISSION
Modes of cholinergic neurotransmission
Actions at cholinergic receptors have traditionally 
thought to reflect “volume” transmission, reflecting 
sensitivity to acetylcholine levels beyond the synapse. 
Part of  the evidence in support of  this idea is the loca-
tion of  cholinergic receptors, with nicotinic receptors 
predominantly located presynaptically and relatively few 
cholinergic varicosities forming classical synapses onto 
muscarinic M1 receptors in cortical pyramidal cells[89]. 
However, the use of  choline-sensitive microelectrodes 
has provided evidence that phasic acetylcholine release, 
over several seconds, can predict aspects of  trial-by-trial 
attentional performance[20,22,90]. Thus, there is develop-
ing evidence that acetylcholine may act on multiple time 
scales[21]. The functional implications of  these different 
modes of  transmission are not well-understood. Given 
these findings, treatments that maintain or facilitate cho-
linergic transmission modes by binding to allosteric sites 
on cholinergic receptors may be beneficial.

Allosteric agonists have considerable potential for 
treating cognitive deficits associated with cholinergic 
dysfunction. Several of  these compounds have been 
thoroughly discussed in other reviews[91-93] so only a few 
allosteric ligands will be highlighted in this review to il-
lustrate the progress and challenges with this approach. 
One compound in clinical trials for treating Alzheimer’
s disease and schizophrenia is the nicotinic α7 receptor-
sensitizing agent, EVP-6124. This compound can en-
hance mnemonic processing, though its effects on atten-
tion remain less clear[94]. Although the precise mechanism 
of  action of  EVP-6124 is unclear, it is hypothesized that 
at least two pockets within the channel must be bound to 
activate the α7 receptor and that low doses of  EVP-6124 
can fill a small portion of  the sites, allowing the same 
level of  endogenous acetylcholine to activate more α7 
nicotinic receptors[94]. Another compound that has been 
shown to have beneficial effects in rodent models of  at-
tentional dysfunction is the α4β2 agent, sazetidine-A[78]. 
Curiously, this compound initially stimulates and then 
desensitizes α4β2 receptors. Additional studies of  the 
impact of  this drug on acetylcholine and glutamate 
release may yield further insights into the exact mecha-
nisms through which sazetidine-A can reverse attentional 
deficits. With regard to positive allosteric modulators of  
muscarinic receptors, challenges have existed with devel-
oping sufficiently targeted compounds[91], although more 
recent reports provide encouraging progress[95]. Overall, 
the positive results observed with initial allosteric ago-
nists, along with novel insights about cholinergic trans-
mission modes and potential disease-modifying effects of  
restoring cholinergic transmission, all lend support to the 
importance of  further research with cholinergic receptor 
positive allosteric modulators.

nicotinic receptors also enhanced performance, suggest-
ing that the actions of  nicotine at α7 nicotinic receptors 
may slow the rise time and decay of  cholinergic tran-
sients, which may be a critical factor for enhancement 
of  attentional performance under taxing conditions[77]. 
Recent data have supported the idea that agents, such as 
sazetidine-A, which desensitizes α4β2 nicotinic receptors, 
can enhance attentional performance and reverse deficits 
induced by blockade of  NMDA or muscarinic recep-
tors[78,79]. Thus, the available data provide strong evidence 
that α4β2 nicotinic receptors are important targets for 
regulating attentional performance.

Several studies have begun to examine the role of  
nicotinic α7 receptor agonists in attention[80]. Nicotinic 
α7 nicotinic receptor knock-out mice are not different 
from controls during baseline performance of  the five-
choice serial reaction time task, but do demonstrate 
elevated omissions when task demands are increased[81]. 
Moreover, α7 nicotinic receptor agonists facilitate aspects 
of  pre-attentive processing[82,83]. However, α4β2 receptor 
agonists, but not α7 agonists, can reverse vigilance decre-
ments in the five choice serial reaction time task[84]. Thus, 
there is evidence that nicotinic α7 receptor agonists can 
facilitate attention, although additional work is needed to 
clarify the aspects and conditions under which attentional 
processing can be enhanced by these compounds.

INTERACTIONS BETWEEN MUSCARINIC 
AND NICOTINIC RECEPTORS: 
PHARMACOLOGICAL EVIDENCE
Administration of  cholinergic receptor-specific drugs 
has been used to study the relationship between musca-
rinic and nicotinic receptors. Several experiments have 
demonstrated that co-administration of  muscarinic and 
nicotinic receptor antagonists, at doses that do not have 
effects when either receptor is blocked alone, can dis-
rupt performance in attention- and memory-demanding 
tasks[73,85,86]. Moreover, as mentioned above, attentional 
impairments following blockade of  muscarinic receptors 
can be overcome by drugs that desensitize α4β2 nico-
tinic receptors[79]. The ability of  muscarinic, particularly 
M1 receptor agonists, to restore attentional processing 
following nicotinic receptor blockade has not been well-
characterized. Collectively, the available evidence sug-
gests that decreasing cholinergic receptor activity at mul-
tiple subtypes can have a synergistic negative effect on 
attentional performance and that agonism, increasing the 
activity of  α4β2 nicotinic receptors, can overcome at-
tentional deficits following muscarinic receptor blockade. 
Notably, reversing the effects of  muscarinic receptor 
blockade on attentional processing is not exclusively ac-
complished by α4β2 nicotinic receptor agonists[87]. Nico-
tinic receptor agonists can also reverse scopolamine-
induced deficits in measures of  memory[88], although the 
focus of  this review is primarily on attentional process-
ing. 
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Contributions of second messenger systems to 
attentional processing
As mentioned above, activation of  both muscarinic and 
nicotinic receptors can induce further intracellular signal-
ing cascades. The role of  second messenger systems in 
attentional processing remains poorly understood. These 
systems may contribute to activation of  response rules 
following cue detection or engagement of  top-down 
mechanisms that guide attention. For example, inhibi-
tion of  protein kinase A in the prefrontal cortex impairs 
attentional performance[96]. Protein kinase C (PKC) is ac-
tivated by muscarinic M1 receptors and is lower in patients 
with Alzheimer’s disease[97-99]. Moreover, as Alzheimer’s dis-
ease progresses, there is increased M1 receptor/G-protein 
decoupling, suggesting that drugs targeting the muscarinic 
M1 receptor may only be effective in early disease stag-
es[100]. Furthermore, this M1 receptor/G-protein decou-
pling correlates with the loss of  PKC activity in Alzheim-
er’s disease[100]. PKC inhibition impairs signal detection 
in attention-demanding tasks in rats, a finding consistent 
with the idea that lower PKC activity may contribute to 
attentional deficits during early stages of  Alzheimer’s 
disease[51]. These findings support the idea that PKC activa-
tors may be beneficial for Alzheimer’s disease[101,102]. These 
preliminary experiments suggest that a focus on the role 
of  second messenger systems is likely to provide insight 
into modulation of  attentional processing and may offer 
useful targets for treating some cognitive disorders.

CONCLUSION
The muscarinic and nicotinic receptor systems are well-
known to contribute to cognitive processing and to be 
disrupted in diseases characterized by cognitive deficits. 
Surprisingly, there are relatively few studies that exam-
ine combined agonism of  muscarinic M1 receptor and 
nicotinic receptor subtypes in treating attentional deficits. 
The benefits derived from this approach will likely be 
determined, at least in part, by the ability to normalize 
cholinergic neurotransmission on multiple time scales. 
Allosteric agonists may be beneficial for achieving this 
goal. It will also be important to maintain the effects of  
cholinergic signaling on downstream signaling, such as 
PKC activation. Collectively, these approaches may yield 
greater benefits for cognitive disorders associated with 
corticopetal cholinergic dysfunction.
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