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Abstract
FMS-like tyrosine kinase 3 (FLT3) is classified as a type 
Ⅲ receptor tyrosine kinase, which exerts a key role in 
regulation of normal hematopoiesis. FLT3 mutation is 
the most common genetic mutation in acute myeloid 
leukemia (AML) and represents an attractive therapeutic 
target. Targeted therapy with FLT3 inhibitors in AML 
shows modest promising results in current ongoing 
clinical trials suggesting the complexity of FLT3 
targeting in therapeutics. Importantly, resistance to 
FLT3 inhibitors may explain the lack of overwhelming 
response and could obstruct the successful treatment for 
AML. Here, we summarize the molecular mechanisms 
of primary resistance and acquired resistance to FLT3 
inhibitors and discuss the strategies to circumvent the 
emergency of drug resistance and to develop novel 
treatment intervention.

Key words: FMS-like tyrosine kinase 3; Tyrosine kinase 
domain; Internal tandem duplication; FLT3 inhibitor; 
Drug resistance; Acute myeloid leukemia; Combination 
therapy

© The Author(s) 2018. Published by Baishideng Publishing 
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abnormalities in acute myeloid leukemia (AML), predicting 
dismal outcome. The Federal Drug Administration granted 
the use of Midostaurin (Novartis) in newly diagnosed 
FLT3-ITD positive AML in April 2017. A number of other 
FLT3 inhibitors are in different phases of clinical trials. 
However, emerging drug resistance poses a major 
challenge for clinicians to use FLT3 inhibitors. In this 
manuscript, we systematically reviewed mechanism 
of primary resistance and acquired resistance to FLT3 
inhibitors. We then propose different strategies to 
overcome drug resistance and novel treatment options 
for FLT3-ITD positive AML.

Zhou J, Chng WJ. Resistance to FLT3 inhibitors in acute myeloid 
leukemia: Molecular mechanisms and resensitizing strategies. 
World J Clin Oncol 2018; 9(5): 90-97  Available from: URL: 
http://www.wjgnet.com/2218-4333/full/v9/i5/90.htm  DOI: 
http://dx.doi.org/10.5306/wjco.v9.i5.90

INTRODUCTION
Acute myeloid leukemia (AML) consists of a group of 
different disease characterized with diverse cellular 
morphologies and various genetic abnormalities[1-5]. 
Many of these genetic lesions are of clinical importance 
because they not only implicate in the pathology of 
AML, but also have prognostic values[6-8]. Mutation in 
in FMS-like tyrosine kinase 3 (FLT3) confers inferior 
response to chemotherapy and poor overall survival in 
AML patients[9-11]. Since the discovery of FLT3 mutations 
in 1996[12], intensive research effort has provided a 
better understanding of the molecular mechanism 
of normal and aberrant FLT3 signaling transduction 
pathways. Internal tandem duplications (ITDs) in the 
juxtamembrane domain and activating point mutations 
in the second tyrosine kinase domain (TKD) occur in near 
30% and 10% of patients with AML respectively[13-15].

FLT3 mutations constitutively activate PI3K-AKT, 
RAS-MEK-MAPK, and STAT5 pathways and result in 
uncontrolled cell proliferation and cell survival[16-19]. 
On the other hand, FLT3 mutations suppress myeloid 
transcription factors PU.1, CCAAT/enhancer-binding 
protein α (C/EBPα), which result in blocking of myeloid 
differentiation[20,21]. Thus, FLT3 mutations exert a key 
role in the pathology of AML, and have been validated 
as promising intervening targets[22-25]. Currently, 
Midostaurin (PKC412, Novartis) has been granted by the 
Federal Drug Administration (FDA) in the use in newly 
diagnosed FLT3-ITD positive AML in combination with 
chemotherapy[26]. Moreover, there are about a dozen 
of other FLT3 inhibitors in different phases of clinical 
development[27]. Despite most FLT3 inhibitors display 
strong effectiveness in cell culture system, most of AML 
patients in trials haven’t achieved durable response[28-30]. 
Notably, AML patients inevitably don’t respond to these 
drugs when they are administrated as single agent 
for a period. Scientists first observed this resistance 
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phenomenon in patients with chronic myeloid leukemia 
(CML) who received imatinib mesylate (Gleevec), the 
first small molecule kinase inhibitor targeting BCR-ABL 
fusion protein[31].

Here we review published literature on preclinical and 
clinical findings and molecular mechanisms of primary 
resistance and acquired resistance to FLT3 inhibitors. 
We further discuss the strategies to circumvent the 
emergency of drug resistance and development of novel 
treatment intervention. 

PRIMARY RESISTANCE TO FLT3 

INHIBITORS
The identification of a number of de novo and secondary 
point mutations in the BCR-ABL kinase domain from 
imatinib-resistant patients promotes researchers to 
investigate variable sensitivity of FLT3 inhibitors between 
different activating point mutations in the kinase domain 
of FLT3. 

Based on the mutations identified in AML cases, 
Grundler et al[32] employed site-directed mutagenesis 
method to create Asp835Tyr, Ile836del and Ile836Met 
+ Arg (numbering is based on the human FLT3) into 
the cDNA of murine wild-type FLT3. These vectors 
were then transfected into murine Ba/F3 and 32Dcl3 
cells, rendering them independent from growth factors. 
Tyrphostin AG1296 does not inhibit FLT3 Asp835Tyr 
(D835Y)-induced proliferation, inhibition of apoptosis, as 
well as the downstream signaling, and phosphorylation 
of STAT5. AG1296 is effective on the inhibition of 
signaling from FLT3 Ile836del (I836del), -ITD and to 
the less extent, from Ile836Met + Arg (I836M + R). 
Staurosporin derivative PKC412 is sensitive to all the 3 
catalytic domain mutations, but less sensitivity to - ITD 
mutant. Indolinone compound SU5416 shows similar 
inhibition profile as PKC412. This study suggests that 
different inhibitors exert a divergent sensitivity toward 
different mutations in the FLT3 receptors. 

A similar approach was used to introduce each FLT3 
activation loop mutant, including D835Y, Asp835Ala 
(D835A), Asp835Glu (D835E), Asp835Gly (D835G), 
Asp835His (D835H), Asp835Asn (D835N), Asp835Val 
(D835V), and D835del into human FLT3 cDNA[33]. Ba/
F3 cells were transformed with each vector. These 8 
activation loop mutations display variable sensitivity 
toward quinazoline-based inhibitor MLN518 with more 
than a 10-fold range. I836del is as sensitive as ITD with 
IC50 0.55 µmol/L. The IC50 of D835E, D835A, D835N, 
D835H ranges from 0.99 to 2.65 µmol/L. D835del, 
D835V and D835Y confer relative resistance to MLN518 
with much higher IC50 up to greater than 10 µmol/L. 

This phenomenon could be explained by the as
sumption that the mutations in the amino acid sequence 
change the conformation of the catalytic domain of FLT3, 
resulting in a weaken affinity with FLT3 inhibitors[32,33]. 
However, the structural analysis of these inhibitors in 
the context of various mutants is not available in these 
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papers. These findings are of great clinical interesting. 
Patients enrolled in the FLT3 inhibitor trials potentially 
can be screened for all known activation loop mutations. 
In addition, sensitivity of specific inhibitor can potentially 
be evaluated ex vivo prior to clinical administration to 
avoid known primary resistant cases. 

About 1% to 2% of newly diagnosed AML patients 
carry both ITD and TKD (FLT3-ITD-TKD) with worse 
outcome when compared with patients with either ITD 
or TKD mutation alone[34-36]. Similarly, an in vitro study 
using Ba/F3 cells transfected with FLT3-ITD-TKD dual 
mutants, for example ITD-D835N and ITD-D835Y, can 
induce resistance toward not only FLT3 inhibitor SU5614, 
but also cytotoxic drug Daunorubicin[37]. Molecular study 
reveals these dual mutants promote overactivation of 
STAT5 pathway, and result in upregulation of downstream 
target Bcl-xL and RAD51 and arrest in the G2/M phase of 
the cell cycle[37]. Overexpression of Bcl-2 is also detected 
in primary AML patient samples with FLT3-ITD-Y591 
duplication, correlated to high levels of phosphorylated 
p53. However, whether this mutant induces resistance to 
FLT3 inhibitors has not been tested[38]. 

Other possible mechanisms of primary resistance 
to TKIs have been investigated. P-glycoprotein (p-gp, 
also named multi-drug resistance 1, MDR1), a major 
membrane efflux pump, Primary AML blasts co-expressing 
p-gp and FLT3-ITD, are resistant to herbimycin A, 
a tyrosine kinase inhibitor, and AG1296, but not to 
PKC412[39]. The difference could be due to the fact that 
PKC421 has dually inhibitory roles in FLT3 and protein 
kinase C (PKC), which can induce phosphorylation of p-gp, 
resulting in subversion of p-gp mediated MDR. However, 
other study shows no association between FLT3 
mutations and high levels of MDR1 gene expression in 
AML patients[40].

In contrast to earlier studies, Siendones et al[41] 
demonstrate that inhibition of FLT3-ITD activity does not 
necessary block the phosphorylation of AKT, ERK and 
STAT5, which are the 3 major pathways activated by FLT3 
mutations, in some primary AML cells. This could be one 
reason for the limited anti-tumor effect of FLT3 inhibitors 
used as monotherapy in clinical trials. In addition, a new 
“niche and leukemia stem cell” model was proposed to 
explain the limitation of single agent[42]. If FLT3 - ITD is 
presented in CD34 + CD38 - CD123 + leukemia stem 
and progenitor cells (LSPC) from primary AML samples, 
they are more resistant to FLT3 inhibitor in culture under 
defined nice conditions (fibronectin, IL - 3, SCF, IL - 6 and 
Ang-). This result is consistent with an earlier finding that 
patients whose CD34+CD33- precursors harbor FLT3 
- ITD have worse outcome than patients whose CD34 
+ CD33 + progenitors have FLT3 - ITD[43]. These data 
indicate that FLT3 - ITD AML derived from the less mature 
progenitors may be associated with drug resistance. 

ACQUIRED (SECONDARY) RESISTANCE 
TO FLT3 INHIBITORS
Pioneer researches in imatinib-resistant CML patients 

revealed two different resistant mechanisms including 
increased copy number of BCR-ABL fusion and point 
mutations in its adenosine triphosphate (ATP) 
binding motif[44]. These initial discoveries facilitate our 
understanding of acquired resistance to FLT3 inhibitors. 
As demonstrated by imatinib-resistant CML studies, 
over expression of a mutated FLT3 could also be a 
common mechanism for drug desensitization and 
leading to resistance. Weisberg and Boulton et al[45] first 
address this issue using a Ba / F3 - FLT3 - ITD resistant 
polyclonal subline developed by coculture with increasing 
concentration of PKC412 (up to 40 nmol/L) with the 
parental cell line over 2 mo. The protein level of FLT3-
ITD is significantly increased in this resistant subline 
compared to the parental Ba / F3 - FLT3 - ITD, leading to 
desensitize PKC412. It is not clear that FLT3 - ITD protein 
over expression was regulated on transcriptional (gene 
amplification) or post-translational levels (increased 
protein stability). Also, there is no further study on 
whether this resistant subline harbors point mutation(s) 
in the TKD domain. 

Other resistant lines, designated as Ba / F3 - ITD - 
R1 to R4 derived from the same parental Ba / F3 - FLT3 
- ITD have been developed in the presence of escalatory 
dose of SU5614[46]. The average IC50 of these lines is 
17 - fold higher than the parent line. Consistent with 
their resistant phenotypes, on the molecular level, the 
phosphorylation of MAPK and STAT5 in these sublines is 
not inhibited by higher dose up to 10 µmol/L SU5614, 
while 1 µmol/L of SU5614 effectively decreases activity 
of MAPK and STAT5 in the parental line. They are also 
completely resistant to AG1295, which is structurally 
similar to SU5614. But, Ba / F3 - ITD - R1 to R4 display 
a similar sensitivity to a structural unrelated FLT3 
inhibitor PKC412, a general TKI, Genistein and a 
chemotherapeutic agent cytosine arabinoside (Ara-C) 
as the parent ITD cells. Both flow cytometric analysis 
and western blot demonstrate elevated amount of 
FLT3 receptor in the resistant Ba / F3 - ITD - R1 to R4 
compared with the parent line. Sequence analysis of 
TKD domain identifies Y842H mutation in ITD-R1 and –
R2 cells, and D835 mutation in ITD-R3 and -R4 cells. 
These data indicate that both FLT3 target desensitization 
and acquired mutations in the activation kinase domain 
can contribute to secondary resistance in vitro. 

Using random PCR mutagenesis to introduce point 
mutations in ATP-binding pocket of the KD of MSCV-
FLT3-ITD, Cools et al[47] identified 4 different point 
mutations (Ala627, Asn676, Phe691, or Gly697) in Ba/
F3 cells that render resistance to PKC412, SU5614 or 
K-252a. The G697R mutation is the most resistant clone 
to all the three inhibitors tested. Accordingly, PCK412 
fails to reduce phosphorylation of FLT3 up to 400 nmol/L 
in cells with G697R and they are cross-resistant to 
other structurally different FLT3 inhibitors (GTP-14546, 
AGL2043, D-64406, D-64476, TMPPP and DQPPC). 
Modeling crystal structure of FLT3 receptor in complex 
with PCK412 indicates that the amino acid Gly697 and 
Phe691 directly contact with PKC412 and substitution 

September 14, 2018|Volume 9|Issue 5|

Zhou J et al . Resistance to FLT3 inhibitors in AML



93WJCO|www.wjgnet.com

Gly697 with a larger amino acid will decrease its binding 
affinity due to possible steric clash with the FLT3 
inhibitors. Importantly, mutation in Asn676 (N676K) 
has been reported in 1 of 6 patients with FLT3-ITD AML 
who relapsed after PKC412 treatment in a phase 2 
clinical trial[48]. The authors were able to rule out other 
common mechanisms of drug resistance including gene 
amplification, overexpression of FLT3 protein, drug 
metabolism, drug efflux, inhibition by serum proteins 
and major deficiency in apoptosis pathway. Although the 
identification of N676K is clinically significant to elucidate 
the mechanism of resistance and relapse, so far acquired 
point mutation of TKD has been reported only in a FLT3 
inhibitor treated, and relapsed AML patient. In addition, 
transfection of FLT3-ITD-N676K in 32D cells confers 
resistance to PKC412[48]. This finding is in consistent with 
the clinical observation that this mutant could be the sole 
reason of secondary resistance. 

Most of the initial pre-clinical studies on mutations 
were conducted in murine cell lines transfected with 
FLT3 cDNA[32,33,37,45-47]. We and others to have further 
investigated the molecular mechanisms of acquired 
resistance to FLT3 inhibitors. Human leukemia cell lines 
with FLT3 mutations are valuable and relevant models 
for molecular biology and drug sensitivity studies. 
MV4-11 and MOLM-14 cell lines were derived from 
primary AML cells, while MV4-11 has two FLT3-ITD 
alleles; MOLM-14 harbors one mutant FLT3-ITD allele, 
while the other allele is wild-type (WT). Leukemia cell 
line Hb1119 and SEM-K2 were derived from primary ALL 
(acute lymphoblastic leukemia) cells. Hb1119 harbors 
FLT3-D836H, whereas SEM-K2 over expresses wild-type 
FLT3. Piloto et al[49] reported that prolonged coculture 
of MOLM-14, Hb1119 and SEM-K2 cells with CEP-5214 
and CEP-701 respectively leaded to the development 
of resistant lines including M14(R)5214, M14(R)701, 
Hb(R)5214, Hb(R)701, SEM(R)5214 and SEM(R)701. 
They are cross resistant to PKC412 and AG1295, a 
structurally related FLT3 inhibitor[49]. Although TKIs 
can inhibit phosphorylation of FLT3 receptor in most 
of the resistant clones as demonstrated in this study, 
the downstream Akt and/or MAPK signaling remain 

activated, thus providing cells sustained survival and 
proliferative signaling. Acquired N-Ras mutations have 
been identified in 2 [M14 (R) 5214 and M14 (R) 701] 
out of the 6 resistant lines. Transducing N-Ras-G12V 
mutation into MOLM-14 cells results in resistance to 
CEP-701[49]. So, activation of parallel signaling pathway 
independent to FLT3 signaling may contribute to 
secondary resistance in some cases. 

Through long-term culture of MV4-11 cell line with 
the FLT3 inhibitor, ABT-860, a FLT3 inhibitor-resistant 
line, MV4-11-R was generated[50]. The IC50 of ABT-869 for 
MV4-11-R line is 52 nmol/L vs 6 nmol/L for the parental 
MV4-11 cell line. Importantly, other structurally unrelated 
inhibitors including SU5416, AG1296 and a FLT3 inhibitor 
Ⅲ from MERCK, were not effective to MV4-11-R line 
anymore, suggesting a cross resistant circumstance. 
Sequencing analysis showed normal sequence of FLT3-
TKD in MV4-11-R cells. Western blot and FACS analysis 
excluded the overexpression of p-FLT3, FLT3 and three 
multidrug resistance related proteins (MDR, MRP1 and 
LRP) in this resistant line. But, overexpression of FLT3LG 
and Survivin was demonstrated at the both transcript 
and protein level. Down-regulation of suppressor of 
cytokine signaling (SOCS) proteins (negative regulators 
of STAT pathways) was also observed in the presence of 
overactivation of the STAT1, STAT3 and STAT5 pathways 
in this resistant line. In conclusion, our findings show 
that overactivation of STAT pathways and subsequently 
increased expressions of surviving genes are the main 
mechanism of resistance to FLT3 inhibitors. A total 
of 9 main studies regarding to primary and acquired 
resistance is summarized in Table 1.

STRATEGIES TO CONQUER RESISTANCE
The understanding of molecular mechanisms of primary 
and secondary resistance to FLT3 inhibitors (Figure 
1) provides the foundation for establishing strategies 
to conquer or reduce resistance. Combination of FLT3 
inhibitors with cytotoxic drugs or other small molecule 
inhibitors targeting different pathways has been 
extensively searched and tested in vitro, in murine 

Table 1  Summary of main studies on primary and acquired resistance to FMS-like tyrosine kinase 3 inhibitors

Ref. Disease model (method and material) Mechanisms of resistance

Primary resistance Grundler et al[32], 2003 Site-directed mutagenesis, murine Ba/F3 TKD mutation, deletion or insertion
Clark et al[33], 2004 Site-directed mutagenesis, murine Ba/F3 TKD mutation 

Bagrintseva et al[37], 2005 Site-directed mutagenesis, murine Ba/F3 ITD-TKD mutation, Bcl-xL overexpression
Acquired resistance Weisberg et al[45], 2002 Coculture with PKC412, murine Ba/F3-FLT3-ITD FLT3 protein overexpression

Bagrintseva et al[46], 2004 Coculture with SU5614, murine Ba/F3-FLT3-ITD ITD-TKD mutation, FLT3 protein overexpression
Cools et al[47], 2004 Random PCR mutagenesis, murine Ba/F3-FLT3-ITD ITD-TKD mutation
Heidel et al[48], 2006 PKC412 clinical trial, relapsed AML with ITD ITD-TKD (N676K) mutation
Piloto et al[49], 2007 Coculture with CEP-5214 and CEP-701, human 

MOLM-14, Hb1119 and SEM-K2
RTK amplification, N-Ras mutation

Zhou et al[50], 2009 Coculture with ABT-869, human MV4-11 Overactivation of STAT, overexpression of 
Survivin

FLT3: FMS-like tyrosine kinase 3; ITD: Internal tandem duplication; TKD: Tyrosine kinase domain; RTK: Receptor tyrosine kinase; STAT: Signal transducer 
and activator of transcription.
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xenograft models and some in clinical trials. 
We and other investigators have demonstrated 

that combination of FLT3 inhibitors with conventional 
chemotherapy drugs, such as cytarabine and doxoru
bicin, can achieve synergistic effect[30,51-54]. The optimal 
combination sequence should start with chemotherapy, 
followed by FLT3 inhibitors to maximize synergism and 
potential to reduce and/or overcome resistance[30,53]. 

Combination of FLT3 inhibitors with a spectrum of 
small molecules inhibitors targeting downstream or 
independent signaling pathways have been evaluated 
in pre-clinical studies and showed early promises. 
Rapamycin, an mTOR inhibitor, sensitizes not only 
Imatinib-resistant BCR-ABL positive cells[55] but also TKI-
resistant Ba/FLT3 dual mutant (ITD and TKD) cell[46,55]. 
Approaches targeting cellular apoptosis machinery 
also have been explored. BH3 mimetic ABT-737, 
a potent inhibitor of anti-apoptotic Bcl2, effectively 
neutralizes resistance to FLT3 inhibitors in primary 
AML blasts[56]. The proapoptotic inhibitor LBW242, a 
Smac (one member of the inhibitor of apoptosis, IAP) 
mimetic, can overcome resistance to PKC412 when 
used in combination with PKC412[57]. Combination 
of FLT3 inhibitor GTP14564 with a HSP90 inhibitor, 
17-allylamino-17-demethoxygeldanamycin (17-AAG), 
produces synergism via STAT5 pathway[58]. Concurrent 
treatment with histone deacetylase inhibitor (HDACi) 
LAQ824 and PCK412 can synergistically induced 
apoptosis in human cell line and primary AML samples 
with FLT3 mutations[59]. We demonstrate that either 
treatment with IDR E804, an inhibitor of CDKs and the 
SRC-STAT pathway, or targeting Survivin by shRNA or 
a dominant-negative vector (survivin-T34A) sensitize 

MV4-11-R to ABT-869 induce apoptosis[50].
Other compounds such as bis(1H-indol-2-yl) 

methanone Cpd.98, Cpd.102 and Sorafenib (B-Raf 
inhibitor) also overcome resistance to FLT3 inhibitors[60,61]. 
Downregulation of FLT3 expression by RNAi increases 
sensitivity to FLT3 inhibitor MLN518 in human AML cell 
lines, a potential approach to override resistance[62]. 
The PIM family of serine/threonine kinases (PIM-1, 
-2 and -3) has been shown to be cytoprotective[63]. 
Constitutively activated FLT3 signaling up-regulates the 
PIM-1 expression via STAT5 pathway, which results 
in phosphorylation of BAD protein (pSer112 and 
pSer136), exerting anti-apoptotic effect[63,64]. PIM-2 also 
phosphorylates BAD at Ser-112, blocking BAD-inducing 
cell death[65]. Silencing PIM-2 or PIM-1 sensitizes resistant 
cells to FLT3 inhibitors[66]. IMC-EB10, an anti-FLT3 
monoclonal antibody, is still effective in FLT3-TKI resistant 
clones, because it mediates antibody-dependent, cell-
mediated cytotoxicity (ADCC) which is independent of 
the FLT3-ITD signaling pathway[49]. 

CONCLUSION
Primary and secondary resistance to TKI therapy is 
challenging issue in modern anti-cancer warfare for 
various cancers including AML. At present time, mono
therapy using FLT3 inhibitors showed limited benefit 
in relapsed AML clinical trials. We now began to better 
understand the molecular mechanisms of resistance 
in FLT3 targeting. Ongoing early phase clinical trials 
are important to further shed light on various poten
tial mechanisms of resistance, and will eventually 
facilitate better strategies to prevent and overcome 
resistance. Sequel combination of FLT3 inhibitors 
with chemotherapy or other small molecule inhibitors 
targeting mTOR, HDAC, HSP90, STAT3, Bcl2, PIM family, 
IAPs (Survivin and Smac) and others are ongoing 
strategies. The correlative studies with these ongoing 
trials for identifying resistance mechanisms among trial 
patients, will help investigators in refining the design 
for next generation trial protocols. In addition, by 
determining “oncogenic signature” of each patient prior 
to treatment should guide the proper choice of most 
efficient combinations targeting the specific “oncogenic 
signature” individually. 
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