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Abstract
End stage liver diseases (ESLD) represent a major, 
neglected global public health crisis which requires an 
urgent action towards finding a proper cure. Orthotro
pic liver transplantation has been the only definitive 
treatment modality for ESLD. However, shortage of do
nor organs, timely unavailability, post-surgery related 
complications and financial burden on the patients li
mits the number of patients receiving the transplants. 
Since last two decades cell-based therapies have revolu
tionized the field of organ/tissue regeneration. However 
providing an alternative organ source to address the 
donor liver shortage still poses potential challenges. 
The developments made in this direction provide useful 
futuristic approaches, which could be translated into pre-
clinical and clinical settings targeting appropriate app
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lications in specific disease conditions. Earlier studies 
have demonstrated the applicability of this particular 
approach to generate functional organ in rodent system 
by connecting them with portal and hepatic circulatory 
networks. However, such strategy requires very high 
level of surgical expertise and also poses the technical 
and financial questions towards its future applicability. 
Hence, alternative sites for generating secondary organs 
are being tested in several types of disease conditions. 
Among different sites, omentum has been proved to 
be more appropriate site for implanting several kinds 
of functional tissue constructs without eliciting much 
immunological response. Hence, omentum may be con
sidered as better site for transplanting humanized bio
engineered ex vivo  generated livers, thereby creating 
a secondary organ at intra-omental site. However, the 
expertise for generating such bioengineered organs are 
limited and only very few centres are involved for inve
stigating the potential use of such implants in clinical 
practice due to gap between the clinical transplant 
surgeons and basic scientists working on the concept 
evolution. Herein we discuss the recent advances and 
challenges to create functional secondary organs thr
ough intra-omental transplantation of ex vivo  genera
ted bioengineered humanized livers and their further 
application in the management of ESLD as a supportive 
bridge for organ transplantation.

Key words: Bioengineered liver; Omentum; Secondary 
organ; Transplantation; End stage liver diseases

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: The concept of bioengineering functional 
humanized neo-organs relies on finding more appro
priate immunologically tolerable transplantation site. 
We have experienced omentum as more appropriate 
ectopic site with excellent properties of angiogenesis, 
regeneration, fibrotic reconstruction, and immunological 
compatibility which together endorse vascularisation, 
promote tissue healing, and minimize rejection of for
eign body. However, regeneration of liver tissue in om
entum is still unknown. Despite the amazing breakth
roughs in the bioengineered organs, there is much work 
left to do. The approach described herein harbours en
ormous potential to overcome the limitations of organ 
transplantation and may support failing liver through 
ectopic transplantation as secondary organ.

Vishwakarma SK, Lakkireddy C, Bardia A, Paspala SAB, Tripura 
C, Habeeb MA, Khan AA. Bioengineered functional humanized 
livers: An emerging supportive modality to bridge the gap of 
organ transplantation for management of end-stage liver diseases. 
World J Hepatol 2018; 10(11): 822-836  Available from: URL: 
http://www.wjgnet.com/1948-5182/full/v10/i11/822.htm  DOI: 
http://dx.doi.org/10.4254/wjh.v10.i11.822

INTRODUCTION
End stage liver diseases (ESLD) have become the major 
reason for the increasing deaths worldwide. According 
to the World Health Organisation, the total deaths 
caused by cirrhosis and liver cancer have increased by 
50 million/year since 1990[1]. Liver transplantation is 
the only standard treatment available so far. However, 
more than 20% patients die on the waiting list due to 
a shortage of organ donors[2]. In order to expand the 
supply of livers available for transplantation, transpl­
ant surgeons and physicians have explored several 
new approaches including split liver transplants, living-
related partial donor procedures[3] and the increasing 
use of “marginal” organs such as older donors, steato­
tic livers, non-heart-beating donors, donors with viral 
hepatitis, and donors with non-metastatic malignancy[4]. 
Despite these medical and surgical developments, it is 
unlikely that the availability of good liver grafts will ever 
be sufficient to meet the increasing demand of patients 
with end stage liver disease.

In order to overcome these limitations, various other 
treatment options are being explored among which 
hepatocytes transplantation has been described as 
the first supportive modality in regenerative medicine. 
But major challenges with such treatment is its limited 
availability of therapeutic dose from surgical samples, 
liver grafts or biopsies and their maintenance in vitro 
which requires cell-to-cell and cell-to-matrix interac­
tions for proper functioning of anchorage dependent 
hepatocytes[5]. Usage of hepatocytes from xenogenic 
sources such as rabbit, porcine or canine, pose the risk 
of immunogenicity and transmission of zoonosis. This 
limitation can be addressed to certain extent by the 
usage of cell lines which can be maintained for longer 
time with higher growth rates under in vitro culture 
conditions but modification of gene expression under 
culture conditions might lead to problems and has iss­
ues related to its clinical applicability[6]. 

The first land mark study to bring hepatocyte tran­
splantation into clinics was by Mito et al[7] in cirrhotic 
patients. In line with this study, our centre has treated 
seven acute liver failure patients by intra-peritoneal 
transplantation of human primary hepatocytes extra­
cted from human foetus’s which showed clinical impro­
vement and support to the failing liver[8]. Following this, 
various other studies have reported successful trans­
plantation of primary hepatocytes in treating various 
metabolic diseases[9,10]. Although higher successful rate 
has been reported using hepatocyte transplantation, 
yet use of fetal hepatocytes poses major hurdle of 
ethical issues for its wider clinical applicability. Other 
potential treatment alternatives discovered in recent 
years included induced pluripotent stem cells, Mesen­
chymal stromal cells (MSC) which have the ability to 
differentiate into hepatocytes but still they couldn’t 
completely mimic the fully functional hepatocytes poin­
ting towards a need to identify better niche for func­
tional utilization of these cells[11-14]. 
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to isolate enough number of hepatocytes post-in vitro 
expansion which can provide required clinical response 
in both animal models and human[5,29]. The in vitro en­
richment of hepatocytes is challenging due to their 
contact-dependent growth, long-term survival and fun­
ction and maintenance of normal phenotype without 
de-differentiation[5,30]. Therefore alternative strategies 
are highly desirable to overcome these limitations.

Recent studies have reported use of embryonic 
and adult pluripotent stem cells to generate desired 
number of functional hepatocytes for therapeutic appli­
cations. However, use of embryonic stem cells (ESCs) 
represents ethical hurdles and immune incompatibi­
lity for the transplant recipients[31-33]. Moreover, use 
of induced pluripotent stem cells (iPSCs) has been re­
ported for effective differentiation into functional hepa­
tocytes, however poses potential issues related to 
genetic instability and lack of functional transplantation 
studies[11,12]. Mesenchymal stromal cells (MSCs) re­
presents another alternative type of pluripotent cells 
to generate functional hepatocytes and support liver 
regeneration[13,14]. However, multi-lineage differentia­
tion of MSCs represents major challenge to control the 
effective trans-differentiation into desired number of 
functional hepatocytes while restricting other default 
lineage cells. Although, stem cell transplantation stra­
tegies have showed potential in liver regeneration thr­
ough various mechanisms, still it has not been consi­
dered as durable solution to completely support the 
lost liver functions[15]. Hence, alternative strategies are 
highly desirable to generate therapeutic number of 
functional heaptocytes under controlled conditions. 

MAJOR SOURCES OF REGENERATIVE 
CELLS FOR THE TREATMENT OF ESLD 
Liver-derived stem sells
These are the stem cells that are derived from adult 
or fetal livers. Adult stem cells are known as oval cells 
which play an important role in liver regeneration when 
replication capacity of hepatocytes is impaired[34]. Fe­
tal liver stem cells are known as bipotent hepatoblasts 
that has ability to differentiate into bile duct cells or 
hepatocytes[35-37]. Fetal liver stem cells have been used 
to repopulate liver in animal models[38,39] and cultured 
hepatoblasts transplanted into immunodeficient mice 
showed greater in vivo engraftment and differentia­
tion[40]. But the limitation in use of liver derived stem 
cells is their low number around 0.3% to 0.7% of oval 
cells in adult liver[41], whereas fetal liver mass comprises 
only 0.1% of hepatoblasts[42] and has associated ethical 
issues. Thus isolation and expansion of these cells and 
usage for transplantation is challenging.

Bone marrow-derived stem cells 
Stem cells derived from bone marrow comprise he­
matopoietic and MSCs[43]. Among these, mesench­
ymal stem cells consists greater potential in liver 

Other alternative of direct cellular transplantation 
includes the use of extracorporeal liver support devices 
which can support a failing liver for a short period of 
time before organ transplantation[15]. But all these 
above mentioned treatment strategies may not fulfil 
the requirements to treat ESLD and may not provi­
de immediate support for a failing liver to maintain 
normal functions. Hence, there is a need to develop 
bioengineered transplantable liver grafts which can re­
tain the natural three-dimensional extra cellular matrix 
(3D-ECM) components and intact vascular networks 
similar to the native liver with repopulated functional 
hepatocytes or human hepatic progenitor cells. Rapid 
progress in the area of stem cell research and organ 
bioengineering paved a way in generating alternatives 
to liver transplantation. 

After addressing all these limitations next comes 
the question of choosing an exact transplantable site 
where in these bioengineered organs can be easily 
acceptable and can able to perform the function. Re­
cently omentum has been discovered as a wonderful 
ectopic site for transplantation with excellent properties 
like remarkable angiogenic[16], stem cell[17,18], fibrotic[19], 
and immune activities[20], which together endorse va­
scularization, promote wound healing, and minimize 
infection. Several studies have already demonstrated 
the importance of intra-omental transplantation in dia­
betic animal models[21,22]. However, the regeneration of 
liver tissue in ectopic sites is still unknown. Few studies 
have shown the omentum as a reservoir for proliferat­
ing renal, pancreatic, splenic[23-25] cells and as a site for 
hepatocytes engraftment which can be used in tissue 
engineering[26]. Hence, opting omental transplantation 
of bioengineered liver may offer development of secon­
dary liver for the treatment of ESLD. This particular 
approach should offer promising treatment strategy in 
future and may rule out above mentioned limitations to 
answer for shortage of organ donors for ESLD.

CURRENT STATE OF REGENERATIVE 
STRATEGIES IN ESLD
Since last two decades, significant developments 
have been made to overcome the limitations of liver 
transplantation in ESLD. Among these strategies cell 
transplantation, use of extra-corporeal devices and 
transplantable bioengineered organs have been exp­
lored extensively.

CELL TRANSPLANTATION 
In cell transplantation strategies, hepatocytes tran­
splantation has been the most preferred cell types for 
infusion into liver due to their ability to perform major 
liver specific functions. However, getting therapeutic 
dose of human hepatocytes represents major limita­
tion towards its wider clinical application[27,28]. Although 
several studies have reported use of 10% liver tissues 
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regeneration[44] with immunosuppressive and immu­
nomodulatory properties[45]. But they always pose pro­
blem with low rates of liver repopulation[46] and have 
low trans-differentiation ability to hepatoblasts which 
limits to restore normal liver function[47]. 

Annex group of stem cells 
Stem cells derived from human umbilical cord, human 
placental tissue, amniotic fluid and human umbilical 
cord blood constitutes Annex group of stem cells. These 
are pluripotent stem cells with higher proliferation and 
differentiation rates than adult stem cells[46,48,49] and 
are not known to cause teratomas or teratocarcino­
mas formation in humans. Di Campli et al[50] study on 
diabetic severe combined immunodeficient mice after 
acute toxic liver injury when treated with intraperito­
neal administration of human umbilical cord stem cells 
showed rapid liver engraftment, differentiation into 
hepatocytes, improved liver regeneration, and reduced 
mortality rates[50].

IPSCs
These are similar to ESCs and the limitation of ethical 
issue can be overruled by in vitro generation of iPSCs 
from somatic cells avoiding the usage of embryonic 
tissue or oocytes[51]. However, the use of these cells in 
clinical practice is limited due to major hurdles with the 
genomic instability of these cells. 

EXTRA-CORPOREAL LIVER SUPPORT 
SYSTEMS
Extracorporeal liver support devices have been de­
signed with a goal to carry out normal liver function 
in patients with end-stage chronic, acute-on-chronic 
and acute liver failure for a short period of time until 
donor organ gets available. Two types of liver support 
systems have been designed: (1) Non-biological; and 
(2) Bio-artificial liver support devices.

Non-biological liver support devices
Designed to filter and adsorb accumulated toxins that 
are not cleared by non-functional liver[52]. Three major 
types of such devices have been explored as follows:

Molecular adsorbent recirculating system: Mole­
cular adsorbent recirculating system (MARS) has been 
well explored device which is a hollow fiber membrane 
hemodialyzer which removes soluble and protein-bo­
und substances against albumin-rich dialysate. This 
device was approved by FDA in 2012 for the treatment 
of hepatic encephalopathy. However, the major limi­
tation of such devices represents: (1) Short-term deto­
xification function; (2) Chance of getting sepsis; (3) 
Cost issues; (4) Can remove only albumin-bound toxins 
or drugs which are excreted in circulation; (5) Safety 
and efficacy of MARS has not been demonstrated in 
controlled, randomized trials; and (6) The effectiveness 

of MARS in patients that are sedative could not be 
established in clinical studies and therefore can’t be 
predicted in sedated patients.

Promethus fractionated plasma separator and 
adsorption system: Other type of devices includes, 
promethus fractionated plasma separator and ad­
sorption system (FPSA) which is an artificial device 
which removes both albumin-bound and water soluble 
toxins from blood more effectively than MARS. However, 
its wide applicability has been limited due to following 
reasons: (1) Direct contact between fractionated plasma 
and the Prometh anion exchanger causes significant 
adsorption of procoagulant and anti-coagulant factors, 
associated with clinically relevant adverse events; (2) 
Broad disturbances of the coagulation system have 
been confirmed in FPSA treated liver failure patients; 
and (3) An ex vivo recirculation model demonstrated 
nonspecific adsorption of coagulation factors protein S 
and protein C on the anion exchange cartridge. 

Single-pass albumin dialysis: Moreover, to over­
come on the limitations of above mentioned extra­
corporeal liver assist device, single-pass albumin dia­
lysis (SPAD) system was evolved which functions as 
one-pass dialysis against albumin solution to remove 
albumin-bound toxins and water-soluble substances. 
Detoxification system in SPAD is similar to or greater 
than MARS and is less expensive than MARS and FPSA. 
However, again the suitability and wide clinical app­
licability of SPAD is limited due to following limitations: 
(1) Only albumin bound or water soluble toxins can be 
removed; (2) Lipid soluble toxins can’t be removed by 
SPAD; (3) Bleeding risk from acquired coagulopathy; 
(4) Albumin solution is discarded after a single passage 
of membrane without being recycled; and (5) Absence 
of clinical data.

Bioartificial liver support systems
These are the bioreactors containing viable hepatocytes 
in a 3D network of hollow fibers. These are designed 
to achieve plasma perfusion and enhance the activities 
of living liver cells. Conversely, the membranes separa­
ting cells from plasma are not capable of achieving 
enough in vivo perfusion rates, and lack sources of 
safe, reliable, strongly proliferating and functionally 
active human cells. Still following major challenges 
remain to resolve: (1) Bio-artificial livers should be 
able to provide at least 10% of liver functioning; (2) 
Very difficult acquiring this many hepatocyte cells; (3) 
Controversy over the use of porcine cells due to po­
ssible transmission of infections; (4) Hepatocytes and 
plasma have very different physio-chemical properties; 
(5) Hepatocytes do not perform well when in contact 
with plasma; (6) Have a very high oxygen uptake rate; 
(7) Hepatocytes undergo a lot of stress inside of bio-
artificial liver; (8) Any stress above 5 dyn/cm2 renders 
cells useless; (9) Limited volume of the bioreactor; 
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(10) Maximum blood/plasma that can be safely drawn 
out of liver failure patient is one liter; (11) Difficult to 
achieve 10% of liver functioning within one liter; and 
(12) Makes Bio-artificial liver designing very difficult.

TRANSPLANTABLE BIOENGINEERED 
ORGANS
Owing to the hurdles in above mentioned devices, there 
is need to develop transplantable biological systems 
to provide: (1) Suitable three-dimensional organ ar­
chitecture; (2) Organ specific intact vasculature for 
homogeneous supply of oxygen and nutrients; (3) 
Long-term cell survival and function within the natural 
organ specific niche; and (4) Metabolic, synthetic and 
detoxification functions similar to native liver.

MAJOR COMPONENTS OF HUMAN 
LIVER FOR BIOENGINEERING 
Major components of human liver for bioengineer­
ing includes (1) Organ specific 3D-bioscaffolds; (2) 
Organ capsule; (3) Organ vasculature; (4) Cellular 
distribution in spatial anatomical organization of liver; 
(5) Biomolecules and growth factors for enhanced su­
rvival and function to transplanted cells; (6) Types of 
cells required for long-term support; and (7) Long-term 
functional response.

To provide these crucial components recently two 
major technological advancements have been made: 
(1) Organ bio-printing; and (2) Humanized neo-organ 
development.

Organ bio-printing
With the advancements in tissue engineering it is 
possible to construct complex parenchymal organ st­
ructures along with intact vascular network by 3D 
bio-printing[53]. 3D bio-printing is one of the prevalent 
examples of bioengineered organs in the science 
world today, and it is growing and advancing quickly. 
This jaw dropping technology is one of the hot topics 
in bioengineering. It still fascinates that we have the 
potential to build organs from the push of a button. 
3D bio-printing is a form of tissue engineering which 
utilizes inkjet printers and builds the scaffolding of a 
particular organ, layer by layer[54]. These inkjet printers 
allow the use of multiple cell types for printing. Robbins 
et al[55] developed a metabolically active 3D hepatic 
tissue where they identified increased liver specific 
function lasting for up to 135 h, and compartment-spe­
cific organization, along with a primitive hepatocyte 
microanatomy of hepatic stellate cells and endothelial 
cells. Researchers have also build bone repair constru­
cts by coating the 3D printed scaffold with stem cells, 
which can grow into tissues over time[54]. The mild con­
ditions used for bio-printing and material sintering have 
allowed viable cells and active therapeutic proteins to 

be incorporated into the construct production process. 
Today, this particular technology has been emerged 
only for ex vivo and its application in vivo has not been 
experienced which needs to be validated further.

Humanized neo-organ development 
The recent concept of bioengineering functional hu­
manized neo-organs has given a hope towards find­
ing permanent cure as an alternative support to the 
failing organ. This concept of artificial organs was first 
originated in the radiation field post-World War Ⅱ, and 
was executed in the first bone marrow transplant in the 
1970s[56]. According the Llames S tissue engineering 
has three main constituents: The ex vivo expansion of 
cells, seeding of these expanded cells in three dimensio­
nal structures that mimic physiological conditions and 
grafting the prototype. The technology relies on the 
development of whole intact organ scaffolds through 
whole organ perfusion acellularization procedure which 
retains extra-cellular matrix and circulatory networks of 
the native organ post-acellularization[57]. This important 
phenomenon allows three-dimensional intact acellular 
organ specific scaffold for efficient repopulation of 
desired cell population further to generate functional 
neo-organ system.

With advancement in regenerative medicine it 
has been possible to create bioengineered functional 
tissues or organs that can be used clinically[58,59]. So 
far several successful studies have been published 
in generating various organs and tissues based on 
these acellularization and stem cell repopulation[59-61] 
that can be used for treating patients. Significant pro­
gress in generating several types of complex organ 
biological scaffolds has led to development of an effi­
cient acellularization protocols for whole organs thr­
ough perfusion based techniques[62-66] (Tables 1 and 
2). These acellularized whole organs combined with 
an efficient recellularization process[67-70] have made it 
possible to use these bioengineered organs for in vivo 
preclinical studies in small animal models[71-73].

Our centre has well expertise in generating various 
types of acellularized whole organ bioscaffolds including 
xenogeneic liver through detergent-based perfusion. 
So far, we have successfully generated acellularized and 
repopulated humanized whole liver and demonstrated 
its applicability as better natural 3D-drug testing mo­
del system[74]. Apart from liver, we have also generated 
acellularized kidney[75], heart[76], spleen, meninges, and 
many more. Still various other studies are in pipeline in 
generating humanized bioengineered organs from our 
centre. 

WHOLE LIVER BIOENGINEERING
Highly specialized thick and complex organs like liver 
can be subjected to acellularization technology to obtain 
intact 3D-ECM. Due to delayed co-morbidity beyond 
marginal criteria or because of delayed ischemic time, 
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Table 1  Method adopted for whole complex organ acellularization techniques for different organisms

Organ Acellularization agent Perfusion method Animal model Reference
Heart SDS, PEG, Triton X-100, and enzyme-based protocols 

deoxycholic acid
Antegrade coronary perfusion Rat   [98]

Trypsin, EDTA, NaN3, Triton X-100, and deoxycholic 
acid

Retrograde aortic perfusion Pig   [65]

Lung 0.1% and 0.5% SDS Antegrade pulmonary arterial 
perfusion

Rat   [63]

CHAPS Pulmonary artery and tracheal 
perfusion

Rat   [66]

Triton X-100 and sodium deoxycholate Right ventricle and tracheal perfusion Mouse   [99]
Liver Triton X-100 plus 0.1% SDS Portal vein perfusion Rat [100]

SDS Rat   [70]
1% Triton X-100 and 0.1% ammonium hydroxide Mouse, rat, ferret, 

rabbit and pig
  [69]

0.25% and 0.5% SDS Pig [101]
Sodium citrate + SDS + Triton-X-100 Hepatic artery perfusion Rat   [74]

Kidney 0.5, 3, 6, 10% Triton X-100, 5 mM Renal artery perfusion Rat   [71]
calcium chloride, 5 mM magnesium sulfate, 1 M 

sodium chloride, DNase, and 4% sodium deoxycholate
Rat   [72]

3% Triton X-100, DNase, and 4% SDS
1% SDS and 1% Triton X-100

1% Triton X-100 and 0.1% ammonium hydroxide Pig   [68]
Heparin and antibiotic-containing physiological 

saline, 0.1-1.0% SDS, 0.1% Triton-X-100 and 0.0025% 
deoxyribonuclease 1

Goat   [75]

Table 2  Study outcome and major limitations of different types of acellularization techniques adopted for different types of whole 
organ scaffold development

Organ Acellularization Study out come Limitation References

Method
Rat liver Perfusion with 

detergents (SDS, Triton X-100)
Perfusion with SDS 

removes most of cells, 
damages the ECM when 
treated with Triton X-100 

and removes 97 % of 
DNA

SDS damages the 
ECM

[69,74]

Porcine 
liver

Mechanical perfusion 
(electroporation)

Most of the cells are 
removed, preserves the 

blood vessels

Disruption of 
microfilament and 

microtubule 

   [102]

Mouse 
heart

Enzymatic, detergents, 
Acids

Cells are removed Damages the ECM 
proteins, poorly 
maintains the 3D 

architecture

   [103]

Porcine 
trachea

Enzymatic (trypsin) 
non-enzymatic 

(EDTA), detergent 
(Triton X-100) and deionized 

Water

Cells are removed, clear the 
cell debris

Disruption of 
glycosaminoglycan, 
reduce the laminin 

and fibronectin

   [104]

Rat 
kidney

Perfuse with SDS, deionized 
water, dTriton 

X-100 and PBS along 
with antibiotics

Twice filtration is observed Loss of cell-mediated 
functions like 

transport of solutes

   [105]

Rat heart Perfused with detergents Long-term cell 
survival, oxygen 

tension and 
continuous rhythmic 

beating

[63,98]

Goat 
kidney

Perfused with Trypsin- 
EDTA in PBS, perfuse 
antibiotics and then 

with SDS in PBS

Cells are removed, pore to 
pore interconnection in the 

scaffold

[75,106]

ECM: Extra cellular matrix.
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in United Kingdom livers offered for transplantation 
are usually discarded[77]. This act offers a way to use 
this kind of livers for acellularization. The liver is the 
largest gland in the body and carries out numerous 
essential functions such as metabolism, maintaining 
homeostasis, and the synthesis of amino acids[57]. Th­
erefore, acellularization is extremely beneficial to the 
liver because it not only maintains the microstructure 
but also its bio signals such as extracellular matrix 
proteins and adhesion peptides[57]. 

Since extracellular matrices are similar from spe­
cies to species, whole organ scaffolds have become 
possible for livers. Several recent studies have been 
reported for efficient acellularization of livers obtained 
from various xenogeneic sources[78-81] and the resulting 
3D-ECM structure has become an outstanding sour­
ce for generating highly functionalized liver cells in vi­
tro[82,83]. As these extracellular matrices are conserved 
between species, the process of recellularization with 
human cells into an animal scaffold is easier[57] and this 
kind of approach does not elicit any kind of immune 
rejection, cross contamination and zoonosis. In our 
recent study, we have demonstrated development 
of humanized whole liver using human hepatic progeni­
tor cells repopulation through hepatic artery infusion 
into acellularized liver scaffolds[74]. These humanized 
livers perform detoxification and metabolic functions 
similar to the native liver. However, the complete re­
cellularization of a fully function human liver has not 
yet been accomplished[57]. Recent advances in isolating 
and culturing both native cells and stem cells, as well 
as the development of acellularized organ scaffolds 
and biocompatible synthetic biomaterials, suggest that 
we are making rapid progress towards providing new 
alternatives to donor livers for transplantation[56]. 

CHALLENGES NEED TO BE ADDRESSED 
IN GENERATING COMPLETE 
BIOENGINEERED FUNCTIONAL LIVER
Despite the amazing breakthroughs in the bioengin­
eered organs, there is much work left to do. Simply 
reconstructing the whole organ will not be sufficient 
to replace organ transplantation. The approaches 
described above are fairly new and are still in the 
developmental stages. There has been only handful 
of successful transplantation of bioengineered organs 
into actual humans. Scientists are still working on ways 
to engineer more complex organs such as the liver. 
There are also long-term issues to resolve, such as 
the preservation of the overall function of these bio-
engineered organs. However, little is known about 
the mechanisms by which these grafts may integrate 
and maintain function. When more complex organs 
are involved, the scenario is completely different, as 
investigations are still in very early stages and clinical 
translation is not foreseeable on the basis of current 
knowledge and available data[84]. The following major 

critical issues are yet to be resolved to make these 
approaches a clinical reality: (1) Liver is a complex 
organ with various cell types, hence rebuilding liver 
micro architectures with these cells is yet to be add­
ressed; (2) The optimal cell source that can meet the 
criteria for recellularization of acellularized liver sca­
ffolds still remains unclear; (3) The first and foremost 
challenge is the need to address the reconstruction 
of complete and functional uniform endothelial cell 
layer throughout acellularized liver scaffolds; (4) It is 
necessary to reconstruct biliary system which is needed 
for bile acid excretion to develop a fully functional bio­
engineered liver; (5) Assessing the functionality of 
these bioengineered livers after in vivo transplanta­
tion for long term needs to be studied clearly; (6) For 
organ functionality, maintaining its vascular structure 
is much more important. As hepatocytes require hi­
gher amounts of oxygen for their functionality, it is 
necessary to maintain hierarchical vascular network 
structure in acellularized liver scaffolds[85]. Critical step 
in engineering a transplantable liver is the creation of a 
functional vasculature capable of long-term perfusion 
following anastomosis. Without an appropriate endo­
thelial lining of the vessels, continuous blood perfusion 
of the graft in the absence of anticoagulation quickly 
results in thrombosis; and (7) Finding an appropriate 
site for providing enough support to the failing liver 
has been one of the most challenging issue to use the 
bioengineered organs as secondary liver. 

OMENTUM AS BETTER ECTOPIC SITE 
FOR TRANSPLANTATION TO GENERATE 
SECONDARY ORGAN IN VIVO
The major question for applying these humanized 
bioengineered livers relies on finding an exact and 
more appropriate transplantable site where in these 
bioengineered organs can be easily acceptable and 
are able to perform the function. Recently omentum 
has been discovered as a potential ectopic site for tra­
nsplantation with excellent properties like remarkable 
angiogenic[16], stem cell[17,18], fibrotic[19], and immune[20] 
activities, which together endorse vascularization, pr­
omote wound healing, and minimize infection (Table 
3). Several studies have already demonstrated the im­
portance of intra-omental transplantation in diabetic 
animal models[22,86]. 

The omentum is a visceral adipose tissue derived 
from mesothelial cells[87] connected to the spleen, 
stomach, pancreas, and colon[88,89]. Although well 
known as a visceral fat depot, the role of the omentum 
in peritoneal immunity was not recognized until 
the early 1900s, when a British surgeon referred 
to it as ‘the police man of the abdomen’ due to its 
ability to attenuate peritonitis and promote surgical 
wound healing[90]. In fact, omentum was noted to 
move about the peritoneal cavity and occlude sites 
of inflammation, such as ruptured ovaries, inflamed 
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appendices, ulcerated intestines, or wounds due to 
trauma or surgery[90]. Consistent with this observation, 
the omentum has remarkable angiogenic[16], fibrotic[19], 
regenerative[17,18] and immune[20] activities, which 
together promote vascularization, accelerate wound 
healing, and limit infection. However, these same 
activities are also likely involved in pathological 

responses, such as the rapid growth of omental tumour 
metastases[91].

Once thought of as just a large amount of redun­
dant fat overlying the intestines, surgeons’ attitudes 
towards the omentum have changed. It is recogni­
zed as an organ in its own right, with many diverse 
functions ranging from its ability to attenuate the 

Table 3  List of recent studies reporting use of omentum as transplantation site to support the lost organ function from ectopic 
transplantation of engineered tissues or grafts

Animal model Site of transplantation Mode of graft used Results Reference
Femoral bone of New 
Zealand rabbit was

Greater omentum on the left 
side

Free transplant 
of the greater omentum

Process of the callus formation and its 
mineralisation are much quicker and thicker on the 
defect that was covered with the free transplant of 

the greater omentum.

[107]

Pancreatectomized 
dogs

Spleen or Omentum Islet auto-transplantation Beta cell response to mild non-insulin induced 
hypoglycemia was normal, whereas the alpha cell 

response was not.

[108]

Murine carotid artery 
injury model

Omentum was applied to the 
injured vessel

Omentum + Omental 
progenitor cells

Omentum can directly contribute reparative 
progenitor cells to injured tissues upon treatment 

with Tβ4.

[109]

Nondiabetic nude 
rats

Omentum/kidney capsule Perinatal porcine islet cell 
grafts

In both sites, the A-cell volume increased fourfold 
between weeks 1 and 10 reflecting a rise in A-cell 

number. In the omental implants, however, 
the cellular insulin reserves and the percent of 
proliferating cells were twofold higher than in 
kidney implants. In parallel, the blood vessel 

density in omental implants increased twofold, 
reaching a density comparable with islets in adult 

pig pancreas.

[110]

Diabetic rat and 
nonhuman 
primate (NHP) models

Intra-omental In situ-generated adherent, 
resorbable plasma thrombin 

biologic scaffold

Improved metabolic function and preservation of 
islet cytoarchitecture, with reconstitution of rich 
intrainsular vascular networks in both species.

  [21]

Adult male Spraguee 
Dawley rats

Omental transposition Hepatic tissue sutured into 
the omentum mobilization 

of the omentum and 
transposition onto the left 

hepatic lobe

Omental transposition provided adequate 
microcirculation for proliferation of ectopic hepatic 

cells after liver resection.

[111]

Vascular bed

Rat omentum showing
well established

mesenteric circulatory
networks which connects
all major organs including

liver

Transplantation of

bioengineered

humanized live
r

Transplanted
bioengineered

humanized liver after

14 d in rat omentum

A B C

Figure 1  Intra-omental transplantation of bioengineered humanized livers showing development of secondary liver after 14 d. A: Anatomy of rat omentum 
showing well-established web of circulatory networks which connected with major organs; B: Developed bioengineered humanized liver in our lab ex vivo; C: Intra-
omentally transplanted bioengineered humanized liver showing well engraftment with the surrounding tissue.
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spread of sepsis in peritonitis to acting as a source of 
angiogenic and hemostatic factors involved in tissue 
healing and repair. The omentum has been identified 
as a source of adult stem cells which may have future 
prospects in the fields of tissue engineering and the 
synthesis of vascular grafts. Its regenerative properties 
have been exploited in virtually every field of surgery 
from the reconstruction of complex wounds to the pro­
tection of gastrointestinal anastomosis.

The regenerative properties of the omentum have 
been exploited by surgeons for over a century, ranging 
from the protection of anastomosis in gastrointesti­
nal surgery, revascularization of arterial ulcers, to the 
reconstruction of head and neck deformities[92]. The 
advantage of the omentum is that it is an accessible 
and versatile source of growth factors, angiogenic 
factors, and leukocytes. It can be lengthened con­
siderably by careful dissection to produce a mobile 
organ[93]. 

The regeneration of liver tissue in ectopic sites is still 
unknown. It has been discovered that the omnetum 
is a reservoir for proliferating renal, pancreatic, splenic 
tissues[23-25] and as a site for hepatocytes engraftment 
which can be used in tissue engineering[26]. Hepatocyte 
transplantation has been done in various tissues like 
spleen, pancreas and omentum[26,72,94-96]. With advan­
cements in tissue engineering hepatocytes seeded 
onto polymer scaffolds and have been transplanted 
into omentum wherein engraftment of hepatocytes oc­
curred due to elevated rates of angiogenesis into cell-
polymer constructs within the omentum[96].

Thus intra-omental transplantation of bioengin­
eered livers may provide adequate microcirculation 
for proliferation of ectopic hepatic cells repopulated 
within the bio-artificial liver. It has been observed that 
portal vein ligation does not affect the ectopic liver 
regeneration[97]. In our preliminary experiences, we 
have observed that intra-omental transplantation of 
bioengineered liver lobes gets easily accommodated 
into the site without eliciting immunological responses 
while maintain their biological functions and commu­
nicates blood borne growth factors for survival and 
function of the graft (Figure 1). We also observed that 
these bioengineered liver grafts survive at omental site 
in long-term and functions as secondary liver (Figure 
2). These findings are well supported by earlier studies 
wherein other types of grafts have been transplanted 
into the omentum[21]. Future efforts at understanding 
mechanisms to regulate ectopic liver regeneration may 
assist the pursuit for liver tissue/organ bioengineering 
to support the failing liver functions in long-term.

CONCLUSION
Engineers and researches have been making monu­
mental breakthroughs in the area of bioengineered 
organs. These bio-artificial organs may redefine tran­
splants for human applications in future with more 
critical advancements. The introduction of cells into 

the human body is designed to stimulate regenera­
tion, promote vascularization and/or supplement the 
production of hormones and growth factors[56]. Conse­
quently, bioengineered biological substitutes present a 
new way to restore damaged tissue and maintain their 
functions. Not only does this provide a new source of 
organs, but probably even more reliable organs at that. 
Not only would people not need an organ donation, but 
their body will more readily accept a bioengineered 
organ through intra-omental transplantation, most likely 
reducing recovery time as well (Figure 3). In near future 
these potential strategies can overcome the limitation 
of organ donors and these bioengineered organs can 
even serve as a best natural 3D-drug testing models[74] 
and investigating precise molecular mechanisms in bio-
mimetic natural organ system[112] and could support 
failing liver through ectopic transplantation as secondary 
organ in ESLD. 
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