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Abstract
Human hepatocyte-like cells (HLCs) derived from human pluripotent stem cells
(hPSCs) promise a valuable source of cells with human genetic background,
physiologically relevant liver functions, and unlimited supply. With over 10
years’ efforts in this field, great achievements have been made. HLCs have been
successfully derived and applied in disease modeling, toxicity testing and drug
discovery. Large cohorts of induced pluripotent stem cells-derived HLCs have
been recently applied in studying population genetics and functional outputs of
common genetic variants in vitro. This has offered a new paradigm for genome-
wide association studies and possibly in vitro pharmacogenomics in the nearly
future. However, HLCs have not yet been successfully applied in bioartificial
liver devices and have only displayed limited success in cell transplantation.
HLCs still have an immature hepatocyte phenotype and exist as a population
with great heterogeneity, and HLCs derived from different hPSC lines display
variable differentiation efficiency. Therefore, continuous improvement to the
quality of HLCs, deeper investigation of relevant biological processes, and proper
adaptation of recent advances in cell culture platforms, genome editing
technology, and bioengineering systems are required before HLCs can fulfill the
needs in basic and translational research. In this review, we summarize the
discoveries, achievements, and challenges in the derivation and applications of
HLCs.
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Core tip: Hepatocyte-like cells (HLCs) derived from human pluripotent stem cells
(hPSCs) have a great application prospect as an unlimited supply of human hepatocytes
in disease modeling, toxicity testing and drug discovery. In this review, we summarize
the derivation of HLCs from hPSCs, and the limitations and optimization of current
differentiation protocols. We also discuss progress in the application of HLCs, and
reveal the exciting future of HLCs for use in the study of rare diseases, population
genetics, and in vitro pharmacogenomics.
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INTRODUCTION
The liver represents one of the most pivotal organs of the human body in regulating
glucose homeostasis, lipid metabolism, detoxification and many other physiological
processes. As liver diseases, including fatty liver diseases, hepatic carcinoma, and
viral  hepatitis,  continue  to  increase  in  prevalence,  there  is  an  urgent  need  for
development  of  effective  treatments,  and  sufficiently  cell  or  tissue  sources  for
transplantation.  Primary  human  hepatocytes  and  liver  donors  offer  immediate
resources for studying liver diseases and transplantation. However, both primary
cells and available donor transplants are in persistent shortage. Although different
culture systems have been identified recently that  enable  long-term culture and
expansion  of  both  rodent  and  human  primary  hepatocytes[1-4],  the  capacity  of
expansion is  still  limited and has donor-dependent variability.  As stem cells  are
known to have potent self-renewal ability as well as the capacity to differentiate into
different somatic cell  types,  they have been proposed as an ideal alternative cell
source for large or even unlimited supplies of hepatocytes and even liver tissues.
Human hepatocytes  can  be  derived from embryonic  stem cells  (ESCs),  induced
pluripotent stem cells (iPSCs), mesenchymal stem cells and hepatic progenitor cells[5].
As the cells  derived from stem cells  often have incomplete  function and exhibit
characteristics of fetal liver cells, they are generally defined as hepatocyte-like cells
(HLCs).  The  discovery  made  by  Gurdon  and  Yamanaka  that  mature  cells  from
individual patients can be reprogrammed to iPSCs, opened up the possibility that
these  cells  can  be  applied  to  disease  modeling  and  organ  transplantation.
Furthermore, intense efforts have been made in recent years in generating better
HLCs and liver organoids from PSCs, and in applications of these cells in various
fields. Therefore, in this review, we focus on HLCs derived from human pluripotent
stem cells (hPSCs) and discuss recent progress in the derivation and applications of
HLCs in biomedical research.

DERIVATION OF HUMAN HLCs
hPSCs include human ESCs, mostly derived from the inner cell mass of the fertilized
eggs, and iPSCs reprogramed from terminally differentiated somatic cells. hPSCs
promise an unlimited supply of human somatic cells, due to their theoretical capacity
for self-renewal and differentiation into any kind of somatic cell types in human body.
To  date,  many  protocols  have  been  established  to  generate  human hepatocytes
derived from hPSCs. Most induction methods are based on the understanding of the
embryonic development processes of the liver, and aimed to imitate in Petri dishes the
endoderm development,  endoderm hepatic specification and hepatic maturation
stages. The directed differentiation protocols either rely on the use of embryoid body
(EB) formation[6,7] or start with monolayer culture, with the latter more frequently
adapted currently in laboratories. EB formation means to mimic the blastocyst and
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epiblast  architecture;  however,  it  can be  easily  disturbed by suboptimal  culture
conditions and sources of reagents, for example, different batches of fetal bovine
serum can affect  to  a  large  degree  the  quality  of  generated EBs.  Most  protocols
currently  in  use  apply  similar  strategies  with  contributions  from  individual
laboratories  by  improving  inducers  of  differentiation  and  optimizing  their
combinations (Table 1). These protocols can be largely specified to three consecutive
steps: endoderm differentiation, hepatic induction, and liver maturation.

Endoderm formation
Transforming growth factor (TGF) β family member Nodal  is  vital  in endoderm
formation, based on studies in developmental biology in models including frogs,
zebrafish, and mice[8-10]. Although Nodal is an attractive candidate for inducing hPSCs
to differentiate  into definitive  endoderm (DE),  it  is  difficult  to  get  highly active
protein. Activin is another TGFβ family member, which mimics Nodal activity in
triggering similar intracellular signaling events[11], thus is often used as a substitution
of  Nodal  in  vitro[12].  In  2005,  D’Amour  et  al[12]  demonstrated  efficient  endoderm
induction from monolayers of hPSCs by applying activin A, which was subsequently
reproduced by many other groups. The monolayer culture here seems important to
the endoderm differentiation in that cells can be exposed evenly to the endodermal
inducer, activin A, and can better synchronize development of the endodermal cell
fate[13]. Levels of Nodal signaling comprise key elements in cell fate determination,
with  high  level  promotes  endoderm differentiation,  whereas  low level  initiates
mesoderm specification[14-17].  Therefore,  high concentrations of activin A are now
widely utilized for endoderm induction in hPSC culture[18-22]. Besides, activation of
fibroblast growth factor (FGF), bone morphogenetic protein (BMP) and Wnt signaling
pathways also promote endoderm development[7,19,23]. Phosphatidylinositol 3-kinase
(PI3K) inhibitors, such as LY 294002 and AKT1-II, also promote activin-A-induced
endoderm development[17]. Several studies have shown that low doses of serum are
necessary for activin A to induce an efficient endoderm program[12,17,24].

Hepatic specification
In early embryo development, FGF signals and BMP signals initiate the liver gene
program and simultaneously block that for pancreas development[25]. Consistent with
the  in  vivo  discoveries,  the  signaling  molecules  FGF  and  BMP  have  also  been
demonstrated to be important in generating hepatic cells from DE cells in vitro. The
combination of FGFs and BMPs are thus widely used to induce hepatic endoderm
programs [18 ,21 ,23].  Dimethylsulfoxide  (DMSO)  can  assist  in  promoting  hPSC
differentiation and specific generation of hepatic progenitors, and is usually used in
hepatic differentiation[19,22,26,27].

Liver maturation
As for further liver maturation, hepatic progenitors are mostly treated by hepatocyte
growth factor (HGF), oncostatin M (OSM), and glucocorticoid dexamethasone (Dex).
HGF binds to its tyrosine kinase receptor c-Met, promoting hepatoblast proliferation,
increasing  cell  migration  and  improving  cell  survival[28,29].  OSM  produced  by
hematopoietic cells is an interleukin(IL)-6 family cytokine, which induces hepatic
maturation  by  the  phosphorylation  of  signal  transducer  and  activator  of
transcription[28,30]. The glucocorticoid dexamethasone has also been implicated in the
maturation of the hepatocytes[31,32]. After the maturation stage, obtained HLCs display
many hepatocyte features, such as albumin expression and secretion, urea secretion,
low-density lipoprotein (LDL) uptake, indocyanine green (ICG) uptake, and glycogen
storage  (Table  1).  However,  those  cells  express  fetal  liver  markers,  such  as  α-
fetoprotein (AFP), and have lower activities of CYP450 enzymes when compared to
primary liver tissue. With comparison of a set of human adult and fetal liver markers,
it is roughly estimated that the HLCs have the characteristics of fetal hepatocytes at <
20 wk gestation[33].

Protocol optimization
Different strategies have been adopted with the aim to promote maturation and to
reduce the large heterogeneity of HLCs. One strategy is to use 3D culture, mimicking
liver development in the body, thus promoting further maturation. Indeed, it has been
shown that cells demonstrate more matured phenotypes in 3D than other culture
systems. For example, it has been demonstrated that cAMP signaling within the 3D
hepatoblast  aggregates  can  promote  further  maturation  of  HLCs  that  display
comparable metabolic enzyme levels to those of primary human hepatocytes[34] . The
other  main  strategy  is  to  optimize  the  current  protocols  through  screening  for
molecules that can improve differentiation, and to understand better the molecular
mechanisms underlying liver development.  Towards this aim, by screening 4000
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Table 1  Summary of hepatocyte-like cells differentiation protocols

Ref. EB / monolayer
Protocol features

In vitro functional
assays In vivo assay

Endoderm induction Hepatic specification
and maturation

Cai et al[18], 2007 Monolayer Activin A, ITS FGF4, BMP2, HGF,
OSM, Dex

ALB, Glycogen, ICG,
LDL, CYP450

Yes

Hay et al[19], 2008 Monolayer Activin A, Wnt3a Serum, DMSO, Insulin,
HGF, OSM

Urea, Gluconeogenesis,
AFP

Yes

Agarwal et al[24], 2008 Monolayer Activin A, low serum FGF4, HGF, OSM, Dex ALB, Glycogen, ICG Yes

Basma et al[7], 2009 EB/monolayer Activin A, bFGF FGF, DMSO, Dex ALB, Urea, AAT,
CYP450

Yes

Song et al[20], 2009 Monolayer Activin A FGF4, BMP2, HGF,
KGF, OSM, Dex

ALB, Urea, Glycogen,
CYP450

No

Si-Tayeb et al[21], 2010 Monolayer Activin A BMP4 FGF2, HGF, OSM Glycogen, LDL, oil red
O storage, ICG, Urea

Yes

Sullivan et al[22], 2010 Monolayer Activin A, Wnt3a β-ME, DMSO, Insulin,
HGF, OSM

CYP450, Fibrinogen,
Fibronectin,
Transthyretin, AFP

No

Touboul et al[23], 2010 Monolayer Activin A, FGF2, BMP4,
LY294002

FGF10, RA, SB431542,
FGF4, HGF, EGF

Glycogen, CYP450, ICG,
LDL

Yes

Borowiak et al[35], 2009 Monolayer Activin A, Wnt3a, HGF OSM, Dex, ITS CYP450, Urea, LDL,
Glycogen

Yes

Ogawa et al[34], 2013 EB/monolayer BMP4, Activin A, Wnt3a FGF10, bFGF, BMP4,
HGF, OSM, Dex, cAMP

ICG, Glycogen, ALB,
CYP450

No

Siller et al[37], 2015 Monolayer CHIR99021 DMSO, dihexa, Dex ALB, Glycogen, ICG,
CYP450

No

EB: Embryoid bodies;  KGF: Keratinocyte growth factor;  β-ME: 2-mercaptoethanol;  RA: Retinoic acid;  EGF: Epidermal growth factor;  ITS:  Insulin,
transferrin, selenium; dihexa: Hepatocyte growth factor receptor agonist N-hexanoic-Tyr, Ile-(6) aminohexanoic amide; ALB: Albumin secretion; AFP:
Alpha-fetoprotein secretion; AAT: Alpha-1-antitrypsin secretion; LDL: Low-density lipoprotein uptake; glycogen: Glycogen storage; ICG: Indocyanine
green uptake; Urea: Urea secretion and production; CYP450: CYP450 activity.

compounds,  the  Melton  group  identified  IDE1  and  IDE2,  which  can  efficiently
promote differentiation of mouse and human ESCs into DE cells[35]. Other groups have
also identified other small molecules, and demonstrated their effects in improving
hPSC differentiation toward endoderm[36]. In 2015, the Siller et al[37] group developed a
new method for HLC differentiation with a combination of small molecules without
the inclusion of growth factors in a defined minimum medium. Shan et al[38] developed
a high-throughput chemical screening platform and identified two different classes of
small molecules, which are able to induce functional proliferation of human primary
hepatocytes in vitro and improve HLC maturation. By utilizing an established hepatic
lineage hPSC reporter line, our laboratory performed genetic and chemical screenings,
and identified several modulators involved in hepatic differentiation, and CI-994
compound (histone deacetylase 3 inhibitor) that can promote HLC differentiation at a
late stage[39].

APPLICATIONS OF HLCs

Disease models
Human PSCs offer a unique in vitro  cellular model system for disease modeling.
Induced PSCs derived from patients  or  hPSCs engineered with specific  disease-
causing mutations using genome editing technologies allow researchers to study the
consequences  of  genetic  mutations  with  a  human-  and  patient-specific  genetic
background; whereas the differentiation processes in vitro often recapitulate aspects of
normal  development,  thus  providing  the  opportunity  to  investigate  the
developmental and degenerative processes of certain human diseases. Furthermore,
as hPSCs possess great capacity in self-renewal, they can offer large-scale cellular
materials with identical genetic background for disease modeling and for possible
compound screenings to develop potential treatments.

Studying rare genetic variants
For modeling liver  diseases  with rare mutations in Mendelian diseases,  patient-
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specific iPSCs carrying certain genetic mutations are often derived and differentiated
to  HLCs.  Many disease  models  of  inborn liver  metabolic  disorders,  such as  α1-
antitrypsin deficiency, familial hypercholesterolemia, glycogen storage disease type
1a, and Wilson’s disease, have been generated[40-42].  Upon differentiation to HLCs,
these cells  with genetic  mutations displayed certain disease phenotypes that  are
reflected in  patients,  highlighting potential  utility  of  these  models  for  studying
diseases or screening for therapeutic interventions. In situations in which patients are
not available, disease mutations of interest can be engineered using genome editing
technologies into wild-type hPSCs to create mutant hPSCs for disease study[43,44]. Drug
screening with these  disease  models  can highlight  novel  discoveries  for  disease
treatment. In a study by the Duncan and Rader groups[45], HLCs derived from familial
hypercholesterolemia iPSCs were applied to drug screening to identify potential
LDL–cholesterol (LDL-C)-lowering drugs, which has successfully revealed cardiac
glycosides as a candidate treatment for hypercholesterolemia. Other than studying
diseases  harboring genetic  mutations,  hPSC-derived HLCs are  also  powerful  in
providing cellular models for studying the lifecycle of hepatitis viruses. hPSC-derived
HLCs have be used in hepatitis C virus (HCV) infection and screening for anti-HCV
drugs[46], as well as modeling hepatitis B virus infection[47].

Studying common genetic variants
As a remarkable improvement in the recent  iPSC disease modeling fields,  large,
diverse population cohorts of iPSCs have been generated and differentiated in parallel
to HLCs as well as other cell types, offering valuable tissue substitutes for studies to
reveal the relationship between genotype and phenotype; for example, expression
quantitative trait locus (eQTL) analysis[48,49]. Two independent cohorts of iPSCs have
been generated from healthy donors (68 iPSC lines from 34 donors in one study and
91 iPSC lines from 91 donors in the other study) and used for subsequent hepatic
differentiation and genetic analysis.  Studies either successfully confirmed eQTLs
previously characterized in vivo[49], or identified a number of loci controlling hepatic
gene expression with these in vitro HLCs[48]. In one study, the cohort of iPSC-derived
HLCs were also subjected to metabolite abundance quantitative trait locus (mQTL)
analysis,  leading  to  the  discovery  of  a  strong  association  between  a  lipid-
dysregulating phenotype and the minor allele at the 1p13 locus[49]. For the first time,
these two studies demonstrated the capacity for iPSCs-derived cells to reproduce in
vivo  phenotypes driven by common genetic variants, and uncovered a potentially
unlimited  supply  of  human  cells  that  allow  to  discover  cell-type-specific  QTL
phenotypes (eQTL, mQTL and potentially others) that would be inaccessible using in
vivo tissues. Together with several other studies that have performed genome-wide
QTL analyses and identified a number of loci that contribute to interline heterogeneity
using hundreds of undifferentiated iPSC lines[50-52], these studies have offered a new
paradigm for human research, with iPSC-driven disease modeling being applied to
study population genetics in vitro.

In vitro pharmacogenomics
Aside from drug discovery with iPSC-derived disease models with small cohorts,
large cohorts of iPSCs and iPSC-derived cells have been proposed to perform trials-in-
dish,  to  assist  in  translating the  discoveries  of  genome-wide association studies
(GWASs) into improved treatment regimens and drug discovery; that is, to apply
genotype analysis to patient stratification and design of individual treatment plans[53].
In possible scenarios, iPSC-derived cells may provide an important link between drug
development and Phase I trials, where iPSC-derived hepatocytes, cardiomyocytes or
neurons can be used for preliminary safety screens with candidate drugs that might
induce  hepatotoxicity,  cardiotoxicity,  neurotoxicity  or  other  off-target  effects.
Furthermore, between Phase I and Phase II trials, drug target cells derived from large
cohorts of iPSCs can serve as the surrogate human population and be used in testing
for drug efficacy; results from which can be applied to classify patients into responder
and non-responder groups, thus increasing the relevance and successfully rate of
further Phase 2 and 3 trials. Altogether, small or large cohorts of iPSCs and iPSC-
derived function cell types are revolutionizing the field of drug discovery.

Making liver organoids
The liver is a highly specialized organ consisting of mostly hepatocytes, but also
several other cell types, such as Kupffer cells, endothelia cells, bile duct cells, and
hepatic stellate cells. These cells all contribute to the highly organized architecture
and functions of liver tissue. Compared to HLCs in 2D culture, liver tissue organoids
constitute more than one cell type, can resemble part of the architecture of liver tissue,
and possess some functions that may not exist in HLCs. Liver organoids can either be
derived from adult stem cells[54,55] or hPSCs[56-59]. Other than HLCs, development of
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protocols to obtain other cell types derived from hPSCs that constitute the liver tissue
are  important.  To  date,  protocols  of  directed  differentiation  to  obtain
cholangiocytes[56,57],  endothelia  cells[60]  and  hepatic  stellate  cells[61]  have  been
established, which may further aid the generation of functional liver tissue organoids.
Other reviews discuss the generation and application of tissue organoids, which can
assist in better understanding the opportunities as well as challenges in this field[62,63].

Bioartificial livers
Artificial liver support systems have been developed to provide an alternative to
orthotopic liver transplantation (OLT). Artificial livers use nonbiological components
to perform hepatic detoxification, removing toxins and drugs that accumulate in the
blood during liver failure[64]. However, artificial livers do not have the capacity to
adequately replicate the physiological liver function. The incorporation of live cells
harboring liver functions into these artificial liver systems, which establishes the
bioartificial livers (BALs) systems, offers a solution to overcome these limitations[64].
BAL support systems are extracorporeal bioreactors in which whole livers or liver
cells are cultured in a 3D manner within a network of hollow fibers for blood plasma
perfusion.  BAL  systems  provide  both  biotransformation  and  hepatic  synthetic
functions[65]. To date, different sources of liver cells have been tested in BAL devices,
for example, human primary hepatocytes, immortalized human hepatoma cell lines,
porcine hepatocytes[66],  as well as induced human hepatocytes transdifferentiated
from human fibroblasts (hiHeps)[67]. While human hepatocytes are the preferred cells,
obtaining sufficient human hepatocytes faces the same difficulty of organ shortage.
Porcine  hepatocytes  are  close  to  human hepatocytes,  but  have  potential  risk  of
xenozoonosis  and  immunological  response.  Hepatoma  cells  can  provide  large
amounts  of  materials,  but  suffer  from  incompetent  metabolism  and  ammonia
clearance[68]. HiHeps representing a new invaluable cell source for BAL devices, and
have been successful in pigs[67] as well as in primary tests in patients. While we have
not seen reports of HLCs being applied in BAL devices, we envisage that HLCs will
be a potential cell source for the treatment of liver failure in BAL support systems in
the future. The advantages of HLCs are obvious: human or patient-specific genetic
background,  normal  karyotype,  potentially  unlimited  supply,  and  better  liver
functions.  However,  to  obtain  a  large  amount  of  functional  and  homogeneous
hepatocytes  from  hPSCs  still  depends  on  continuous  improvement  to  the
differentiation protocols and development of optimal large-scale culture systems.

In vivo transplantation
OLT remains the most effective treatment for end-stage liver diseases. However, liver
donor shortage and life-long need for immunosuppression are the main limitations to
liver transplantation. A potential alternative to liver transplantation is hepatocyte
transplantation[69-71]. However, cell transplantation is also limited by the availability of
effective cell sources, generation of alternative hepatocytes is thus an urgent problem.
The ideal cell source should at least meet the following requirements: (1) Available in
large quantity. Similar to hepatocytes needed in BAL devices, a large number of cells
(> 109) may be needed for transplantation to every adult patient; (2) High efficiency of
in  vivo  homing and repopulation.  Transplanted cells  can home and adapt  to  the
microenvironment  in  recipient  and  successfully  repopulate  the  liver;  (3)  Low
immunogenicity. Cells have no or low immunogenic responses, which can be su-
ppressed by low doses of immunosuppressant; (4) No tumorigenic risk. Transplanted
cells should have normal karyotype and be free of potential tumorigenic modulations,
such as modifications in oncogenic or tumor suppressor genes. To date, several mouse
models  have  been  adopted  in  testing  the  transplantation  efficiency  of  human
hepatocytes, which in general can be divided into two categories[72]. One is a mouse
model with a genetic disorder that causes depletion of the host hepatocytes, such as
mice expressing urinary plasminogen activator (uPA) driven by the albumin or Mup
promoter[73,74],  and  immunodeficient  FRG [Fah(-/-)  Rag2(-/-)  Il2rg  (-/-)]  mice[75];
another is a mouse model with drug- or surgery-induced liver damage, including
mice receiving treatment with retrorsine[7], CCl4

[24,76], diethylnitrosamine[77] or partial
hepatectomy[7,78]  (Table 2). Transplantation using primary human hepatocytes has
been successful in mouse models, for example, with the FRG mouse model, the ratio
of human hepatocytes in a mouse liver can be up to 90%[75]. However, there are no
definitive conclusions so far regarding whether the maturity of transplanted liver cells
affects the efficiency of transplantation when HLCs are used. Cells in endoderm,
hepatoblasts, and mature hepatocyte stages along the HLC differentiation process all
have  possibilities  as  donor  cells  in  cell  transplantation[7,24,73,76,77]  (Table  2).  The
microenvironment in recipient liver is thought to supply necessary signals to promote
further maturation of transplanted cells, although direct evidence and the underlying
mechanism are lacking. However, the overall HLC transplantation efficiency is lower
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compared  to  that  of  human  primary  hepatocytes [75]  (Table  2).  Furthermore,
transplantation  with  HLCs  may  suffer  tumorigenic  risks  due  to  remnant
undifferentiated hPSCs, and the immunogenicity has not been addressed so far, as
most studies were performed with immunocompromised animals.

To  improve  the  transplantation  efficiency,  several  ectopic  sites  have  been
investigated, including spleen, peritoneal cavity, kidney, lung, pancreas and fat pads.
Bioengineering  approaches  have  also  been  applied  in  cell  transplantation.  For
example, Song et al[20] transplanted hPSC-derived HLCs in immunocompetent mice
via  3D  cell  coaggregates  with  stromal  cells  and  encapsulation.  This  study
demonstrated an improved approach for the engraftment of hPSC-derived HLCs[79]. In
a different study, Nagamoto et  al[78].  used a cell  sheet engineering technology by
attaching HLC sheets onto the surface of mouse liver with acute liver failure, which
showed improved hepatocyte engraftment and animal survival in contrast, genetic
modification  to  HLCs  represents  another  approach  to  improve  transplantation
efficiency.  For  example,  Nagamoto  et  al[74]  demonstrated  higher  transplantation
efficiency using HLCs transduced with an adenovirus vector expressing FNK (Ad-
FNK), by inhibiting apoptosis in the process of integration into liver. However, there
is still a long way to go before HLCs can be used in clinical liver transplantation.
Strenuous  efforts  are  needed  to  understand  the  complex  processes  of  cell
transplantation, for example, the donor–host interactions, to improve the quality of
HLCs and optimize the transplantation strategy. Plus, the potential tumorigenic risk
of transplanted HLCs had to be carefully considered. Specifically, tumor cells can
arise from cells with residual expression of factors in iPSC reprogramming process
(e.g., the myc expression), undifferentiated iPSCs remaining in the culture, and cells
with mutations or karyotype abnormalities caught in the rather long in vitro culture
and differentiation  processes.  Several  approaches  can  be  adopted to  reduce  the
tumorigenic  risk:  (1)  Use  integrating-free  viruses  or  small  molecules  for  iPSC
reprogramming[80,81];  (2)  Improve the in  vitro  culture conditions and enhance the
differentiation efficiency of  hPSC-derived HLCs[82];  (3)  Remove undifferentiated
iPSCs, e.g. through treatments with small molecules or antibodies that can specifically
target  iPSCs[83,84];  or  enrich  HLCs  using  HLC  specific  surface  markers  before
transplantation[85]; (4) Monitor the genome integrity of cells at the iPSC stage and the
HLC stage, through karyotype analysis and whole-genome sequencing; (5) Engineer a
self-killing circuit in cells that would allow the trigger of cell death in vivo to remove
tumorigenic cells, if necessary, to further assure safety[86]. Nonetheless, hPSC-derived
HLCs provide a potential valuable cell source to OLT for liver diseases that is worth
pursuing.

CONCLUSION
The generation of iPSCs has revolutionized the whole field of cell biology. It is truly
inspiring to imagine that we can grow any person’s pluripotent cells indefinitely in a
dish and turn them into any cell type. With this capability of iPSCs, the approach to
the study of human biology has been profoundly changed. HLCs were among the first
batch of adult cell types that have been derived from iPSCs, and have been tested ever
since for disease modeling, toxicity screening, and drug discovery, and as donor cells
for transplantation (Figure 1). Complexities and difficulties in the derivation and
applications of these HLCs seem beyond our initial expectations. More than 10 years
have  passed,  but  HLCs  derived  from  hPSCs  remain  a  largely  heterogeneous
population with incompetent liver cell function and low transplantation efficiency.
Protocols  to  grow HLCs from hPSCs need to  be  substantially  and continuously
improved  and  standardized  on  the  basis  of  deeper  understanding  of  liver
development. Despite the gap between the reality and ideal conditions, efforts have
paid off well and the field has made tremendous achievements in recent years, such
as  generation of  functional  liver  organoids,  successful  modeling of  certain  liver
diseases, identification of candidate treatments, and application of large cohorts of
HLCs for human genetic studies, to name a few (Figure 1). With advances in cell
culture systems including 3D culture platforms[87], coculturing conditions[88], tissue-on-
a-chip approaches[89], and invention of new technologies including genome editing
tools and bioengineering systems, HLCs obtained from hPSCs will eventually be able
to fulfill the needs in biomedical research and clinical translation.
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Table 2  Summary of transplantation studies using hepatocyte-like cells

Ref. Animal model Route Proliferative
stimulus

Type and
number of cells

Donor /
recipient (%
engrafted)

Donor /
recipient (%
repopulated)

Time post-
transplantation

Agarwal et al[24],
2008

NOD-SCID mice Portal vein CCl4-injured 106 hES-DEs < 1% NA 28 d

Basma et al[7],
2009

NOD-SCID mice Spleen Retrorsine and
partial
hepatectomy

1 × 106 hES-HLCs NA NA 21 d

Liu et al[77], 2011 NSG mice Tail vein dimethylnitrosam
ine -injured

0.1 - 2 × 106

hiPSC- multistage
hepatic cells

2%–17% 8%–15% 56 d

Asgari et al[76],
2013

Normal mouse Tail vein CCl4-injured 1 × 106 hiPSC-
HLCs

2 ± 0.7% NA 35 d

Carpentier et
al[73], 2014

MUP-uPA/
SCID/Bg mice

Spleen NA 4 × 106 hiPSC-
HLCs

1%-7% < 1 to up to 20% 100 d

Song et al[20],
2015

Immunocompete
nt mice

Intraperitoneal
cavity

NA 4.4×105 hiPSC-
HLCs in capsules

NA NA 24 d

Nagamoto et
al[74], 2015

uPA/SCID mice Spleen NA 1 × 106 Ad-FNK-
transduced
hiPSC-HLCs

NA NA 28 d

Nagamoto et
al[78], 2016

Mice hiPS-HLC sheet
transplantation

2/3 partial
hepatectomy and
CCl4-injured

8 × 105 hiPSC-
HLCs

NA NA 14 d

DE: Definitive endoderm; HLCs: Hepatocyte-like cells; hPSCs: Human pluripotent stem cells.
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Figure 1

Figure 1  Derivation and applications of human hepatocyte-like cells. A: Directed differentiation process of human pluripotent stem cells (hPSCs)-derived
hepatocyte-like cells (HLCs) in vitro includes endoderm development, endoderm hepatic specification, and hepatic maturation stages; B: Applications of human HLCs.
HPSC-derived HLCs can be used to generate disease models to study rare or common genetic variants. These cellular models can be applied in pathophysiological
research, drug screening, and toxicity testing. Cohorts of HLCs provide in vitro cell models for genome-wide association studies and potentially pharmacogenomics in
dishes. HLCs also offer a potential cell source for bioartificial livers or liver transplantation. HLCs: Hepatocyte-like cells; hPSCs: Human pluripotent stem cells.
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