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Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is rising
exponentially worldwide. The spectrum of NAFLD includes non-alcoholic fatty
liver, non-alcoholic steatohepatitis, liver cirrhosis, and even hepatocellular
carcinoma. Evidence shows that microbial metabolites play pivotal roles in the
onset and progression of NAFLD. In this review, we discuss how microbe-
derived metabolites, such as short-chain fatty acids, endogenous ethanol, bile
acids and so forth, contribute to the pathogenesis of NAFLD.
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Core tip: Non-alcoholic fatty liver disease (NAFLD) is a global epidemic metabolic
disease lacking effective therapeutic strategies and the internal pathogenesis is still
uncertain. Gut microbiota-derived metabolites have attracted much attention for its
association with the onset and progression of NAFLD. In this review, we mainly
elucidate the diverse roles of microbe-derived metabolites in the development of
NAFLD, which is conducive to better understanding the biological functions of
microbial metabolites in NAFLD via the gut-liver axis and facilitating the excavation of
potential therapeutic approaches for NAFLD.
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is a chronic metabolic disorder that is
strongly associated with obesity and metabolic syndrome. NAFLD has become the
most common chronic liver disease worldwide[1,2], causing a substantial global health
burden. Although the exact pathogenesis of NAFLD is uncertain, in addition to the
well-known “two-hit” theory or the multiple-parallel-hits hypothesis[3,4], the dysbiosis
of the gut microbiota also promotes the development of NAFLD by mediating the
processes of energy metabolism, insulin resistance, immunity, and inflammation[5-7].

The gut flora in the intestinal tract exhibits high diversity and distinct differences,
and the total number of bacterial cells can reach 1014[8]. The intestinal bacteria mainly
belong  to  the  following  phyla:  Firmicutes,  Bacteroidetes,  Actinobacteria,
Proteobacteria,  Verrucomicrobia,  and  Fusobacteria;  together,  Firmicutes  and
Bacteroidetes account for up to 90% of all bacterial cells in the human intestine. The
gut microbiota is  deemed a special  "organ" in human beings;  bacterial  genes are
approximately 100-fold more abundant than human genes, and they encode more
functional genes[8]. A large proportion of bacterial genes and their biological functions
are specific, and the metabolic potential related to the capacity for the conversion and
degradation of  host-derived substances  is  strong.  Therefore,  the  gut  microbiota
exhibits a profound capacity to synthesize or produce many metabolites. Recently,
increasing  evidence  has  shown  that  these  metabolites  play  pivotal  roles  in  the
interactions between the gut microbiota and the host in various ways, and the gut-
liver axis is the main link between the gut and the liver (Figure 1).  Naturally, an
imbalance in the intestinal microbiome and the related metabolites contributes to the
onset and progression of NAFLD[9,10]. The accurate pathological diagnosis of NAFLD
relies on a liver biopsy; however, with further investigation, the gut microbiota and its
metabolites  may  serve  as  potential  biomarkers  for  NAFLD  and  non-alcoholic
steatohepatitis (NASH). A clinical study demonstrated that certain gut microbiome-
derived metabolites shared gene-effects with hepatic steatosis and liver fibrosis[11,12]. In
addition, another study used targeted metagenomics and metabolomics analysis to
demonstrate  that  a  decrease  in  Oscillospira  accompanied  by  upregulation  of  2-
butanone and an increase in Ruminococcus and Dorea were signatures of non-alcoholic
fatty  liver  (NAFL)  onset  and NAFL-NASH progression[13].  However,  additional
validations with clinical samples are needed.

Recently, several original investigations showed that the severity of NAFLD is
associated with changes in the levels of certain metabolites in the serum; although not
all  such metabolites  are  synthesized or  produced by gut  bacteria[12,14-16],  a  better
understanding of the role of these metabolites in the development of NAFLD will be
valuable for the discovery of new non-invasive diagnostic and treatment options for
NAFLD.

SHORT-CHAIN FATTY ACIDS (SCFAS)
The most important bacterial metabolites are SCFAs, which contain fewer than six
carbon atoms and have become an increasingly studied gut metabolite due to their
multiple biological functions in the liver[17]. The fermentation of dietary fibers by gut
bacteria,  including  Roseburia,  Ruminococcus,  Salmonella,  Blautia,  Eubacterium,
Anaerostipes,  Coprococcus,  Faecalibacterium,  Marvinbryantia,  and Megasphaera,  is the
main source of SCFAs. The most abundant SCFAs present in the colon lumen are
acetate, propionate, and butyrate[18]. SCFAs not only provide energy for the intestinal
epithelium,  but  they  also  have  many  bioactive  roles,  such  as  the  regulation  of
immunity,  lipometabolism,  and  glycometabolism,  and  the  maintenance  of  gut
microbiota homeostasis. SCFAs are involved in the pathogenesis of NAFLD after their
absorption and delivery to the liver via the portal vein. A clinical study showed that
propionate  supplementat ion  s ignif icant ly  reduced  weight  gain  and
intrahepatocellular  lipid  content,  prevented  deterioration  in  the  case  of  insulin
sensitivity, and significantly stimulated the release of peptide-YY and glucagon-like
peptide-1 (GLP-1) from human colonic cells; these hormones are closely related to
energy metabolism[19]. Another clinical study showed that the total amount of SCFAs
was higher in obese subjects compared with lean subjects and, moreover, the ratio of
the phyla Firmicutes  to Bacteroidetes  was altered in favor of  Bacteroidetes  in obese
humans[20]. Basic studies have shown that butyrate-producing probiotics corrected
high-fat diet (HFD)-induced enterohepatic immunologic dissonance and attenuated
steatohepatitis in mice, which is mediated in part through SCFAs[21-23]. A clinical study
showed that a select group of SCFAs-producing bacterial strains played pivotal roles
in  regulating  glucose  and  lipid  metabolism,  in  part  through  increased  GLP-1
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Figure 1

Figure 1  Effects of microbial metabolites on non-alcoholic fatty liver disease via the gut-liver axis. SCFAs: Short-chain fatty acids; I3A: Indole-3-acetic acid;
IPA: Indole propionic acid; GPR41/43: G-protein-coupled receptors 41/43; ZO-1: Zonula occludens 1; GLP-1: Glucagon-like peptide-1; PYY: Peptide YY; TLR4: Toll-
like receptor 4; FMO3: Flavin-containing monooxygenase 3; TMAO: Trimethylamine-N-oxide; FXR: Farnesoid X receptor; TGR5: Takeda G-protein-coupled receptor
5; S1PR2: Sphingosine 1-phosphate receptor 2; BCAAs: Branched-chain amino acids.

production; therefore, the targeted restoration of these SCFA producers may present a
novel ecological approach for managing metabolic syndrome and NAFLD[24].

Increasing studies have revealed that SCFAs exert their biological functions mainly
via activating the G-protein-coupled receptor (GPR) 41/43 or through the inhibition of
histone deacetylase (HDAC). Animal experiments showed that GPR41 and GPR43
were involved in lipid and immune regulation, and GPR41/43 deficiency protected
against  HFD-induced  obesity,  insulin  resistance,  and  dyslipidemia,  in  part  via
increased energy expenditure and the promotion of gut-derived hormone GLP-1[25-27].
In addition,  the activation of  GPR41/43 has been suggested to participate in the
pathogenesis of NAFLD. As mentioned above, except for the activation of GPRs,
SCFAs can inhibit HDAC directly and regulate the transcriptional activation of genes;
among the SCFAs, butyrate is the most powerful HDAC inhibitor[28]. Previous animal
studies showed that sodium butyrate supplementation could attenuate HFD-induced
NASH, and the underlying mechanisms were associated with restoring the dysbiosis
of gut microbiota and improving the gastrointestinal barrier, thereby inhibiting the
delivery of gut-derived endotoxin into the liver[29]. Recently, an investigation found
that the expression of hepatic GLP-1 receptor was significantly down-regulated in
patients with NAFLD, and supplementation with butyrate enhanced hepatic GLP-1R
expression  in  an  NASH  mouse  model  by  inhibiting  histone  deacetylase-2  and
activating AMP-activated protein kinase  (AMPK).  These findings indicated that
butyrate could be a GLP-1 sensitizer and could prevent the progression of NAFL to
NASH via promoting the expression of hepatic GLP-1R[30].

In general, SCFAs are thought to be beneficial prebiotics; however, a recent study
demonstrated that  the soluble  fiber  inulin,  when fermented by gut  bacteria  into
SCFAs,  could  induce  icteric  hepatocellular  carcinoma  (HCC)[31],  which  was  an
astounding finding. However, SCFA-induced HCC was shown to be conditional and
microbiota-dependent, and this condition was observed in dysbiotic mice; meanwhile,
the inhibition of fermentation reduced intestinal SCFAs and prevented HCC. Thus,
the enrichment of fermentable fiber should be promoted with caution, and the intake
of diverse types of dietary fiber should be emphasized to establish and maintain
healthy gut microbiota. This topic still requires further investigation for the design,
production,  and  supply  of  rational  food  additives  to  improve  human  health.
According to various studies, it is very difficult to draw accurate conclusions about
the roles of gut microbiota and SCFAs in NAFLD because confounding factors are
extensive and cannot be ignored[32].

ENDOGENOUS ETHANOL AND ENDOTOXINS
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It is well known that ethanol is a substance that can contribute to hepatic steatosis and
inflammation and increase the risk of liver fibrosis and HCC[33]. Endogenous ethanol
produced by bacterial fermentation (mainly by Ruminococcus) stimulates oxidative
stress and aggravates liver inflammation in NAFLD, which was confirmed in animal
experiments[34].  Zhu  et  al[35]  showed  that  children  and  adolescents  with  NASH
harbored more ethanol-producing bacteria in the gut and exhibited higher serum
levels of ethanol; moreover, the expression of genes involved in alcohol metabolism
was  enhanced.  Another  clinical  study  showed  that  children  with  NAFLD  had
significantly higher serum levels of ethanol, which were associated with a greater
abundance  of  Gammaproteobacteria  and  Prevotella[36].  However,  another  study
demonstrated that the increased blood ethanol levels in patients with NAFLD might
result from insulin-dependent impairments of ethanol dehydrogenase activity in the
liver rather than an increase in endogenous ethanol synthesis[37].  Although these
studies  did not  all  produce consistent  results,  endogenous ethanol  might  play a
pivotal  role  in  the pathogenesis  of  NASH. Future  investigations  are  required to
determine the exact influence of endogenous ethanol on NAFLD and NASH.

Systemic low inflammatory state is related to the insulin resistance (IR) which
contributes to the onset of NAFLD. Gram-negative bacteria-derived endotoxins such
as  lipopolysaccharide  (LPS)  were  proved  to  stimulate  and  aggravate  hepatic
necroinflammation.  The  increased  intestinal  permeability  and  dysbiosis  of  gut
microbiota promote the translocation of microbial products from intestinal lumen to
the  liver  via  the  portal  vein[38].  Toll-like  receptors  (TLRs),  including TLR4,  were
involved in the LPS-induced liver damage, and LPS could activate TLR4-myeloid
differentiation primary-response gene 88 (Myd88) signaling pathway, causing IR,
hepatic  steatosis,  liver  inflammation,  and fibrosis[39,40].  In  addition,  Kupffer  cells
positive for cluster of differentiation 14 (CD14) could enhance LPS-TLR4 response in
the liver[41].

BRANCHED-CHAIN AMINO ACIDS (BCAAS)
BCAAs are produced by proteolytic fermentation in the colon. Species implicated in
proteolytic fermentation include Clostridium, Fusobacterium, Bacteroides, Actinomyces,
Propionibacterium, and Peptostreptococci[42]. Patients with NAFLD have dysregulation of
BCAA metabolism, the BCAAs including leucine, valine, and isoleucine were higher
both in the blood and urine samples from NAFLD patients[16], the circulating BCAAs
were negatively correlated with hepatic insulin sensitivity, and the baseline valine
level was identified to be predictive of liver fat accumulation[43]. Meanwhile, BCAAs
could reflect hepatic steatosis independently of routine metabolic risk factors, and the
metabolic aberrations of BCAAs may precede the development of NAFLD to a certain
extent[44]. The increased BCAA levels (valine, leucine, and isoleucine) and downstream
BCAA metabolites, such as branched-chain keto acids and short-chain acylcarnitines,
were associated with a greater body mass index (BMI)[45]. Further animal experiments
showed that BCAA supplementation reduced HFD-induced overweight, but caused
obvious  liver  damage  in  HFD  mice,  which  was  associated  with  the  abnormal
lipolysis[46].  Oppositely,  several  studies  indicated that  BCAA intervention could
alleviate NASH in animal models via inhibiting triglyceride deposition in hepatocytes
and reducing oxidative and endoplasmic reticulum stress[47-50]. BCAAs were found to
have the ability to improve immune function, decrease susceptibility to pathogens,
promote the growth of intestinal beneficial bacteria, and enhance the intestinal barrier
function[51], all of which appear to prevent the gut-derived toxic substances into the
liver.

According to the inconsistent results, limited information is available about the
accurate role of  BCAAs in the metabolic  diseases;  it  may be valuable to develop
diagnostic  biomarkers  for  NAFLD.  Further  research  examining  proteolytic
fermentation may be vital to understand the interaction between the BCAAs and
NAFLD.

BILE ACIDS
Bile acids are not directly produced by the intestinal microbiota; rather,  they are
mainly synthesized in the liver by using cholesterol as the substrate. Bile acids can be
deconjugated and dehydroxylated by the  gut  microbiota,  and the  enterohepatic
circulation of bile acids, which are reabsorbed and returned to the liver via the portal
vein, perform many biological functions involved in lipid and glucose metabolism,
and are linked to the pathogenesis and treatment of NASH. In an early clinical trial
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using  Danning  Pian  (a  traditional  Chinese  medicine  that  regulates  bile  acid
metabolism) to treat NAFLD, clinical symptoms, serum alanine transaminase levels,
blood lipid profiles, and ultrasound-based fatty liver were significantly improved
after three months of treatment[52].  Studies show that patients with NASH exhibit
alterations in their bile acid profile. The serum levels of bile acids were shown to be
elevated in patients  with NASH, including the more hydrophobic  and cytotoxic
secondary  species;  this  increased  bile  acid  exposure  may  be  involved  in  the
pathogenesis of NAFLD[53]. Furthermore, another clinical study demonstrated that
increased bile  acids  were  significantly  associated with  higher  grades  of  heaptic
steatosis  (taurocholate),  lobular  (glycocholate)  and  portal  inflammation
(taurolithocholate), and hepatocyte ballooning (taurocholate), while the conjugated
cholate  and  taurocholate  directly  and  secondary  to  primary  bile  acid  ratio  was
inversely correlated to NAFLD activity score[54]. These results indicated a relationship
between the specific bile acids and the histological features of NASH.

Obesity is strongly associated with NAFLD and HCC[55]. Recently, deoxycholicacid
(DCA) and the senescence-associated secretory phenotype (SASP) axis were found to
have crucial  roles in promoting obesity-associated HCC in mice;  obesity induces
alterations in the gut microbiota and contributes to the increase in DCA, which can
cause DNA damage. Moreover, the enterohepatic circulation of DCA promotes the
SASP in hepatic stellate cells, which consequently secrete various inflammatory and
tumor-promoting factors in the liver. Hence, HCC development was exacerbated in
mice  after  exposure  to  this  chemical  carcinogen [56].  This  work  inferred  that
maintaining a balanced intestinal microbiota should be advocated, and weight loss
may be an effective method.

In addition, bile acids are ligands for the nuclear receptor farnesoid X receptor
(FXR).  FXR-mediated  signaling  has  beneficial  effects  on  hepatic  lipid  and
carbohydrate metabolism, and this signaling pathway also modulates primary bile
acid synthesis in the liver. A previous study found that the serum concentration of
bile  acids  was  increased  in  patients  with  NAFLD,  and  the  FXR  antagonistic
deoxycholic acid was also increased, whereas the agonistic chenodeoxycholic acid and
the serum level of fibroblast growth factor 19 (FGF 19) were decreased in NAFLD;
these alterations contribute to the suppression of hepatic FXR-mediated and fibroblast
growth factor receptor 4-mediated signaling, thereby exacerbating NAFLD[57]. This
study indicated that targeting FXR signaling might be helpful to the intervention of
NAFLD. Fan et al. reported that ursodeoxycholic acid (UDCA) combined with a low-
calorie  diet  had therapeutic  effects  on steatohepatitis  in  rats[58].  A clinical  study
demonstrated that patients with NASH who were treated with obeticholic acid (an
activator of FXR) exhibited improvements in liver fibrosis, hepatocellular ballooning,
steatosis, and lobular inflammation, although the long-term benefits and safety of this
drug treatment require further clarification[59]. Newer synthetic FXR agonists that are
currently being investigated might cause fewer side effects and exert more powerful
effects against NASH[60]. Except for FXR, bile acids are ligands for the cell membrane
G-protein-coupled bile acid receptor 1 (known as Takeda G-protein-coupled receptor
5 [TGR5]). TGR5 can regulate inflammation and glucose homeostasis in the liver,
which may be associated with the release of GLP-1 and the inhibition of the NLRP3
inflammasome; meanwhile, the activation of TGR5 results in sustained weight loss,
improved  hepatic  steatosis,  remitted  insulin  resistance,  and  increased  energy
expenditure in mice[61,62]. Nagahashi et al[63] found that the conjugated bile acids can
activate  the  ERK1/2 and AKT signaling  pathways  via  sphingosine  1-phosphate
receptor  2  (S1PR2)  in  rodent  hepatocytes  and  in  vivo  to  regulate  hepatic  lipid
metabolism. Overall, bile acids are important substances for communication between
the liver and the gut; therefore, therapeutically targeting bile acid-related pathways
warrants further exploration.

TRIMETHYLAMINE
The  nutrient  choline  was  first  classified  as  an  essential  nutrient  due  to  its
physiological function in the prevention of NAFLD[64]. Choline deficiency can lead to
NAFLD; thus, a choline-deficient diet is widely used in animal models of NASH[65].
Choline is mainly obtained from the diet, and studies have shown that choline was
metabolized to trimethylamine (TMA) by the gut microbiota including Proteus penneri,
Escherichia fergusonii, Proteus mirabilis, and other bacteria which can cut the C-N bond
of choline[66,67].  TMA is absorbed into the liver via  the portal vein and oxidized by
hepatic flavin-containing monooxygenases into trimethylamine-N-oxide (TMAO)[68].
TMAO is found to contribute to many metabolic diseases, such as cardiovascular
diseases,  type  2  diabetes  mellitus,  and NAFLD.  A clinical  study found that  the
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circulating levels of TMAO were inversely associated with the severity of NAFLD; in
particular, the serum levels of TMAO, choline, and the betaine/choline ratio were
shown to  be  adversely  associated with  the  scores  of  steatosis  and total  NAFLD
activity. Moreover, the severity of NAFLD was independently correlated with higher
serum levels of TMAO, lower levels of betaine, and a lower ratio of betaine/choline[69].
Although the direct mechanisms through which TMA is involved in the onset and
progression  of  NAFLD  require  further  investigation,  another  clinical  study
demonstrated that the serum levels of TMAO increased along with BMI and were
strongly associated with the fatty liver index, suggesting that a specific cut-off value
of serum TMAO might help to identify subjects who are at high risk for NAFLD[70].
Animal  experiments  showed that  in  HFD-fed 129S6  mice,  the  impaired glucose
homeostasis and NAFLD occurred, which were associated with disruptions in choline
metabolism; meanwhile, the circulating plasma levels of phosphatidylcholine were
lower, and the urinary excretion of methylamines was higher, indicating the crucial
role of the metabolic balance of choline by the gut microbiota[71]. In addition, previous
experiments demonstrated that supplementation with TMAO along with an HFD
exacerbated impaired glucose tolerance,  obstructed the hepatic  insulin signaling
pathway, and caused adipose tissue inflammation in mice[72]. Moreover, blocking the
TMAO-producing enzyme flavin-containing monooxygenase 3 (FMO3) can regulate
obesity and the beiging of white adipose tissue[73]. There are also inconsistent results
showing that supplementation with TMAO in HFD-fed mice attenuated impaired
glucose tolerance and increased insulin secretion. Therefore, the effects of TMAO on
NAFLD  might  be  a  double-edged  sword[74].  In  addition,  TMAO  can  influence
cholesterol transport, thereby reducing the synthesis of bile acids and decreasing the
production of very low-density lipoprotein (VLDL)[75-77]. In research on other disease,
the inhibition of TMA production exhibited beneficial effects on cardiometabolic
diseases[67]. Therefore, further well-designed studies are needed to explore the effects
of TMA on metabolic syndrome and NAFLD.

TRYPTOPHAN METABOLITES
In addition to the aforementioned gut microbiota-derived metabolites, tryptophan
metabolites have been shown to affect the development of NAFLD. Indoles are the
main tryptophan-derived gut bacterial products, which include indole-3-acetic acid
(I3A), indole propionic acid (IPA), indole-3-lactic acid, indole-3-carboxylic acid, and
tryptamine, mainly produced by Bacteroides, Eubacterium, and Clostridium[18]. I3A and
tryptamine reduced the production of pro-inflammatory cytokines by macrophages
and inhibited macrophage migration to  monocyte  chemoattractant  protein-1.  In
addition, I3A could alleviate cytokine-mediated lipogenesis in hepatocytes via the
activation of  the aryl-hydrocarbon receptor[78].  This  study suggests  that  I3A and
tryptamine are crucial metabolites that mediate host-microbiota crosstalk. Further
studies are warranted, including animal experiments and clinical investigations, to
determine whether I3A and tryptamine can effectively alleviate NAFLD.

Obesity is definitely associated with the morbidity of NAFLD, and supplement of
IPA obviously reduced weight gain in animal experiments[79]. Previous work showed
that IPA could scavenge free radicals and reduce oxidative stress[79],  and IPA was
thought to be a candidate for treatment of metabolic disorders as for its beneficial
effects on glucose metabolism and insulin resistance[80]. Besides, IPA was found to be
lower in obese subjects, and the elevation of plasma IPA level improved intestinal
barrier function in vitro and in vivo through the combination of IPA and pregnane X
receptor[81,82],  which in turn inhibited the endotoxin-induced TLR4 signaling and
improved tissue inflammation. Taken all together, further basic and clinical research
on the tryptophan-derived microbial metabolite may be crucial for understanding
their implications in obesity and NAFLD.

CONCLUSION
NAFLD  has  become  the  most  common  chronic  liver  disease  worldwide.  The
interactions between the gut microbiota and NAFLD have been widely investigated,
and advances in understanding the molecular mechanisms underlying the gut-liver
interactions are critical to the development of non-invasive serum biomarkers and
targeted therapies for NAFLD and NASH. To date, the precise association between
the gut microbiota and NAFLD, as well as an accurate definition of a healthy gut
microbiota, are still difficult to conclude; however, the gut microbiota is undoubtedly
a contributing pathogenic factor in NAFLD, and the microbial metabolites serve as a
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key bridge between the gut microbiota and NAFLD via the gut-liver axis.
Although alterations  in  microbial  metabolites  may be  remarkable  therapeutic

targets or excellent biomarkers for NAFLD, conclusions from different studies are
inconsistent  due  to  numerous  uncontrollable  factors  that  influence  the  results.
Therefore,  unified  research  standards,  detection  methods  and  conditions,  and
evaluation approaches should be established. On the other hand, translational and
precision studies including a single species or a specific bacterial group, and a single
signaling  pathway  molecule  associated  with  bacterial  metabolism  should  be
employed  for  improvements  of  human  health.  In  addition,  a  larger  and  more
comprehensive  clinical  cohort  from the  world  is  indispensable.  Different  races,
environments, and genetic backgrounds should be effectively distinguished, which
would  help  to  obtain  more  accurate,  stable,  and  applicable  results.  Hopefully,
individualized  treatment  for  NAFLD  targeting  the  gut  microbiota  or  microbial
metabolites will be revealed in the near future.
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